cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A048573 a(n) = a(n-1) + 2*a(n-2), a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 7, 13, 27, 53, 107, 213, 427, 853, 1707, 3413, 6827, 13653, 27307, 54613, 109227, 218453, 436907, 873813, 1747627, 3495253, 6990507, 13981013, 27962027, 55924053, 111848107, 223696213, 447392427, 894784853, 1789569707, 3579139413, 7158278827, 14316557653
Offset: 0

Views

Author

Michael Somos, Jun 17 1999

Keywords

Comments

Number of positive integers requiring exactly n signed bits in the modified non-adjacent form representation. - Ralf Stephan, Aug 02 2003
The n-th entry (n>1) of the sequence is equal to the 1,1-entry of the n-th power of the unnormalized 4 X 4 Haar matrix: [1 1 1 0 / 1 1 -1 0 / 1 1 0 1 / 1 1 0 -1]. - Simone Severini, Oct 27 2004
Pisano period lengths: 1, 1, 6, 2, 2, 6, 6, 2, 18, 2, 10, 6, 12, 6, 6, 2, 8, 18, 18, 2, ... - R. J. Mathar, Aug 10 2012
For n >= 1, a(n) is the number of ways to tile a strip of length n+2 with blue squares and blue and red dominos, with the restriction that the first two tiles must be the same color. - Guanji Chen and Greg Dresden, Jul 15 2024

Examples

			G.f. = 2 + 3*x + 7*x^2 + 13*x^3 + 27*x^4 + 53*x^5 + 107*x^6 + 213*x^7 + 427*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [(5*2^n+(-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Mathematica
    LinearRecurrence[{1,2},{2,3},40] (* Harvey P. Dale, Dec 11 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (5*2^n + (-1)^n) / 3)};
    
  • PARI
    {a(n) = if (n<0 ,0, if( n<2, n+2, a(n-1) + 2*a(n-2)))};
    
  • Sage
    [(5*2^n+(-1)^n)/3 for n in range(35)] # G. C. Greubel, Apr 10 2019

Formula

G.f.: (2 + x) / (1 - x - 2*x^2).
a(n) = (5*2^n + (-1)^n) / 3.
a(n) = 2^(n+1) - A001045(n).
a(n) = A084170(n)+1 = abs(A083581(n)-3) = A081254(n+1) - A081254(n) = A084214(n+2)/2.
a(n) = 2*A001045(n+1) + A001045(n) (note that 2 is the limit of A001045(n+1)/A001045(n)). - Paul Barry, Sep 14 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-3, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=-charpoly(A,-1). - Milan Janjic, Jan 27 2010
Equivalently, with different offset, a(n) = b(n+1) with b(0)=1 and b(n) = Sum_{i=0..n-1} (-1)^i (1 + (-1)^i b(i)). - Olivier Gérard, Jul 30 2012
a(n) = A000975(n-2)*10 + 5 + 2*(-1)^(n-2), a(0)=2, a(1)=3. - Yuchun Ji, Mar 18 2019
a(n+1) = Sum_{i=0..n} a(i) + 1 + (1-(-1)^n)/2, a(0)=2. - Yuchun Ji, Apr 10 2019
a(n) = 2^n + J(n+1) = J(n+2) + J(n+1) - J(n), where J is A001045. - Yuchun Ji, Apr 10 2019
a(n) = A001045(n+2) + A078008(n) = A062510(n+1) - A078008(n+1) = (A001045(n+2) + A062510(n+1))/2 = A014551(n) + 2*A001045(n). - Paul Curtz, Jul 14 2021
From Thomas Scheuerle, Jul 14 2021: (Start)
a(n) = A083322(n) + A024493(n).
a(n) = A127978(n) - A102713(n).
a(n) = A130755(n) - A166249(n).
a(n) = A007679(n) + A139763(n).
a(n) = A168642(n) XOR A007283(n).
a(n) = A290604(n) + A083944(n). (End)
From Paul Curtz, Jul 21 2021: (Start)
a(n) = 5*A001045(n) - A280560(n+1) = abs(A140360(n+1)) - A280560(n+1).
a(n) = 2^n + A001045(n+1) = A001045(n+3) - A000079(n).
a(n) = A001045(n+4) - A340627(n). (End)
a(n) = A001045(n+5) - A005010(n).
a(n+1) + a(n) = a(n+2) - a(n) = 5*2^n. - Michael Somos, Feb 22 2023
a(n) = A135318(2*n) + A135318(2*n+1) = A112387(2*n) + A112387(2*n+1). - Paul Curtz, Jun 26 2024
E.g.f.: (cosh(x) + 5*cosh(2*x) - sinh(x) + 5*sinh(2*x))/3. - Stefano Spezia, May 18 2025

Extensions

Formula of Milan Janjic moved here from wrong sequence by Paul D. Hanna, May 29 2010

A306846 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-1))/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 1, 2, 8, 1, 1, 1, 4, 16, 1, 1, 1, 2, 8, 32, 1, 1, 1, 1, 5, 16, 64, 1, 1, 1, 1, 2, 11, 32, 128, 1, 1, 1, 1, 1, 6, 22, 64, 256, 1, 1, 1, 1, 1, 2, 16, 43, 128, 512, 1, 1, 1, 1, 1, 1, 7, 36, 85, 256, 1024, 1, 1, 1, 1, 1, 1, 2, 22, 72, 170, 512, 2048
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2019

Keywords

Examples

			Square array begins:
     1,   1,  1,  1,  1,  1, 1, 1, 1, ...
     2,   1,  1,  1,  1,  1, 1, 1, 1, ...
     4,   2,  1,  1,  1,  1, 1, 1, 1, ...
     8,   4,  2,  1,  1,  1, 1, 1, 1, ...
    16,   8,  5,  2,  1,  1, 1, 1, 1, ...
    32,  16, 11,  6,  2,  1, 1, 1, 1, ...
    64,  32, 22, 16,  7,  2, 1, 1, 1, ...
   128,  64, 43, 36, 22,  8, 2, 1, 1, ...
   256, 128, 85, 72, 57, 29, 9, 2, 1, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n, k*j], {j, 0, Floor[n/k]}]; Table[T[k, n - k + 1], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 21 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n,k*j).

A119363 a(n) = Sum_{k=0..n} C(n,3k)^2.

Original entry on oeis.org

1, 1, 1, 2, 17, 101, 402, 1275, 3921, 14114, 58601, 243695, 950578, 3537847, 13166791, 50514102, 198627921, 782913717, 3054480306, 11824753551, 45823049817, 178682390994, 700285942731, 2747647985241, 10767833451954, 42164261091351, 165225573240651
Offset: 0

Views

Author

Paul Barry, May 16 2006

Keywords

Comments

a(n) - A119364(n) = A119365(n).

Crossrefs

Central coefficients of number triangle A119335.
a(n) = A119335(2n, n).

Programs

  • Mathematica
    Table[Sum[Binomial[n,3k]^2, {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Mar 12 2019 *)
    Table[HypergeometricPFQ[{1/3 - n/3, 1/3 - n/3, 2/3 - n/3, 2/3 - n/3, -n/3, -n/3}, {1/3, 1/3, 2/3, 2/3, 1}, 1], {n, 0, 30}] (* Vaclav Kotesovec, Mar 12 2019 *)

Formula

From Vaclav Kotesovec, Mar 12 2019: (Start)
Recurrence: (n-2)*(n-1)*n*(637*n^6 - 11466*n^5 + 84364*n^4 - 324394*n^3 + 686227*n^2 - 755060*n + 336132)*a(n) = 3*(n-2)*(n-1)*(1274*n^7 - 23569*n^6 + 180194*n^5 - 733383*n^4 + 1699606*n^3 - 2208294*n^2 + 1449504*n - 351000)*a(n-1) - 3*(n-2)*(3185*n^8 - 63700*n^7 + 539028*n^6 - 2512118*n^5 + 7020469*n^4 - 11971242*n^3 + 12050010*n^2 - 6446736*n + 1362744)*a(n-2) + (14014*n^9 - 315315*n^8 + 3072678*n^7 - 16986046*n^6 + 58535088*n^5 - 129861691*n^4 + 184326992*n^3 - 159830656*n^2 + 75517728*n - 14313456)*a(n-3) + 3*(n-3)*(3185*n^8 - 63700*n^7 + 538391*n^6 - 2501394*n^5 + 6946794*n^4 - 11707256*n^3 + 11530544*n^2 - 5915328*n + 1142208)*a(n-4) + 18*(n-4)*(n-3)*(2*n - 9)*(637*n^6 - 7644*n^5 + 36589*n^4 - 88858*n^3 + 114124*n^2 - 71840*n + 16440)*a(n-5).
a(n) ~ 4^n / (3*sqrt(Pi*n)). (End)

Extensions

Edited by N. J. A. Sloane, Jun 12 2008

A130781 Sequence is identical to its third differences: a(n+3) = 3*a(n+2) - 3*a(n+1) + 2*a(n), with a(0)=a(1)=1, a(2)=2.

Original entry on oeis.org

1, 1, 2, 5, 11, 22, 43, 85, 170, 341, 683, 1366, 2731, 5461, 10922, 21845, 43691, 87382, 174763, 349525, 699050, 1398101, 2796203, 5592406, 11184811, 22369621, 44739242, 89478485, 178956971, 357913942, 715827883, 1431655765, 2863311530
Offset: 0

Views

Author

Paul Curtz, Jul 14 2007, Jul 18 2007

Keywords

Comments

The inverse binomial transform is 1,0,1,... repeated with period 3, essentially A011655. - R. J. Mathar, Aug 28 2023

Crossrefs

Essentially a duplicate of A024493.

Programs

  • Mathematica
    a[n_] := a[n] = 3 a[n - 1] - 3 a[n - 2] + 2 a[n - 3]; a[0] = a[1] = 1; a[2] = 2; Table[a@n, {n, 0, 33}] (* Or *)
    CoefficientList[ Series[(1 - 2 x + 2 x^2)/(1 - 3 x + 3 x^2 - 2 x^3), {x, 0, 33}], x] (* Robert G. Wilson v, Sep 08 2007 *)
    LinearRecurrence[{3,-3,2},{1,1,2},40] (* Harvey P. Dale, Sep 17 2013 *)

Formula

3*a(n) = 2^(n+1) + A087204(n+1).
Also first differences of A024494.
G.f.: (1-2x+2x^2)/(1-3x+3x^2-2x^3).
Binomial transform of [1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ...]; i.e., ones in positions 2, 5, 8, 11, ... and the rest zeros. [Corrected by Gary W. Adamson, Jan 07 2008]

Extensions

Edited by N. J. A. Sloane, Jul 28 2007

A091917 Coefficient array of polynomials (z-1)^n-1.

Original entry on oeis.org

1, -2, 1, 0, -2, 1, -2, 3, -3, 1, 0, -4, 6, -4, 1, -2, 5, -10, 10, -5, 1, 0, -6, 15, -20, 15, -6, 1, -2, 7, -21, 35, -35, 21, -7, 1, 0, -8, 28, -56, 70, -56, 28, -8, 1, -2, 9, -36, 84, -126, 126, -84, 36, -9, 1, 0, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -2, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1
Offset: 0

Views

Author

Paul Barry, Feb 13 2004

Keywords

Comments

The first element has been changed to 1 to produce an invertible matrix. Alternatively, this is the coefficient array for the polynomials P(z,n) = Product_{j=0..n-1} (z-(1+w(n)^j)) where w(n) = e^(2*Pi*i/n), i=sqrt(-1).
The row entries determine interesting recurrences. For instance, a(n) = 4a(n-1) + 6a(n-2) + 4a(n-3), a(0)=a(1)=a(2)=1, gives A038503. Sequences of the form a(n) = Sum_{k=0..n} (binomial(n,k) if k mod m = r, otherwise 0), for r=0..m-1, result. Equivalently, a(n) = Sum_{j=0..n-1} 2^n*(cos(Pi*j/m))^n*cos((n-2r)Pi*j/m)/m, r=0..m-1. These include A024493, A024494, A024495, A038503, A038504, A038505. The inverse matrix is A091918.
Triangle T(n,k), 0 <= k <= n, read by rows given by [ -2, 2, 1/2, -1/2, 0, 0, 0, 0, 0, ...] DELTA [1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 11 2007

Examples

			Rows begin:
  { 1},
  {-2,  1},
  { 0, -2,  1},
  {-2,  3, -3,  1},
  { 0, -4,  6, -4,  1},
  ...
		

Programs

  • Maple
    T:= n-> `if`(n=0, 1, (p-> seq(coeff(p,z,i), i=0..n))((z-1)^n-1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, May 23 2015
  • Mathematica
    Table[If[n == 0, 1, CoefficientList[(z-1)^n-1, z]], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
  • PARI
    row(n) = if (n==0, 1, Vecrev((z-1)^n-1)); \\ Michel Marcus, May 23 2015

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = -2, T(2,0) = 0, T(n,k) = 0 for k > n or for k < 0. - Philippe Deléham, May 23 2015
G.f.: (1-2*x-x^2+x^2*y)/((x-1)*(-x+x*y-1)). - R. J. Mathar, Aug 11 2015

A097122 Expansion of (1-x)^2/((1-x)^3 - 3*x^3).

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 70, 169, 421, 1036, 2521, 6139, 14998, 36661, 89545, 218644, 533941, 1304071, 3184966, 7778449, 18996733, 46394716, 113307745, 276726019, 675833686, 1650553981, 4031064961, 9844867684, 24043624093, 58720529071
Offset: 0

Views

Author

Paul Barry, Jul 25 2004

Keywords

References

  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^2/((1-x)^3-3x^3),{x,0,40}],x]
  • PARI
    a(n) = sum(k=0, n\3, binomial(n, 3*k) * 3^k); \\ Michel Marcus, Oct 11 2021

Formula

G.f.: (1-2*x+x^2)/(1-3*x+3*x^2-4*x^3).
a(n) = 3*a(n-1) - 3*a(n-2) + 4*a(n-3).
a(n) = Sum_{k=0..floor(n/3)} binomial(n, 3k) * 3^k.

A100137 a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 2^(n-6k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 65, 136, 296, 672, 1584, 3840, 9473, 23566, 58736, 146080, 361760, 891328, 2184961, 5331476, 12958684, 31400160, 75910320, 183220800, 441787201, 1064687642, 2565404524, 6181873208, 14899796416, 35922756992, 86635757825
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

Binomial transform of 1,1,1,1,1,1,2,2,2,5,5,11,11,... with g.f. (1-x)^2(1+x)^2/(1-3x^2+3x^4-2x^6)=(1+x)(1-x^2)^2/((1-x^2)^3-x^6).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-3k,3k]2^(n-6k),{k,0,Floor[n/6]}],{n,0,30}] (* or *) LinearRecurrence[{6,-12,8,0,0,1},{1,2,4,8,16,32},31] (* Harvey P. Dale, Mar 19 2015 *)

Formula

G.f.: (1-2x)^2/((1-2x)^3 - x^6).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) + a(n-6).

A131090 First differences of A131666.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 7, 15, 28, 57, 113, 228, 455, 911, 1820, 3641, 7281, 14564, 29127, 58255, 116508, 233017, 466033, 932068, 1864135, 3728271, 7456540, 14913081, 29826161, 59652324, 119304647, 238609295, 477218588, 954437177, 1908874353
Offset: 0

Views

Author

Paul Curtz, Sep 24 2007

Keywords

Comments

The first differences b(n)=a(n+1)-a(n) obey the recurrence b(n+1)-2b(n) = (-3,3,-2,3,-3,2), continued with period 6.
The 2nd differences c(n)=b(n+1)-b(n) obey the recurrence c(n+1)-2c(n) = (6,-5,5,-6,5,-5), periodically continued with period 6.
The hexaperiodic coefficients in these recurrences for A113405, A131666 and their higher order differences define a table,
0, 0, 1, 0, 0, -1 <- A113405
0, 1, -1, 0, -1, 1 <- A131666
1, -2, 1, -1, 2, -1 <- a(n)
-3, 3, -2, 3, -3, 2 <- b(n)
6, -5, 5, -6, 5, -5 <- c(n)
-11,10,-11, 11,-10, 11
21,-21,22,-21, 21,-22
...
in which the first three columns are A024495, A131708 and A024493, multiplied by a checkerboard pattern of signs.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1,2},{0,1,0,1},40] (* Harvey P. Dale, Jan 15 2016 *)

Formula

a(n) = A131666(n+1)-A131666(n).
a(n+1)-2a(n) = A131556(n), a sequence with period length 6.
G.f.: -(x-1)^2*x / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, Mar 04 2013

Extensions

Edited by R. J. Mathar, Jun 28 2008

A167613 Array T(n,k) read by antidiagonals: the k-th term of the n-th difference of A131531.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, -1, -2, -3, 0, 0, 1, 3, 6, -1, -1, -1, -2, -5, -11, 0, 1, 2, 3, 5, 10, 21, 0, 0, -1, -3, -6, -11, -21, -42, 1, 1, 1, 2, 5, 11, 22, 43, 85, 0, -1, -2, -3, -5, -10, -21, -43, -86, -171, 0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, -1, -1, -1, -2, -5, -11, -22, -43, -85, -170, -341, -683, 0, 1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365
Offset: 0

Views

Author

Paul Curtz, Nov 07 2009

Keywords

Comments

The array contains A131708(0) in diagonal 0, then -A024495(0..1) in diagonal 1, then A024493(0..2) in diagonal 2, then -A131708(0..3), then A024495(0..4), then -A024493(0..5).

Examples

			The table starts in row n=0 with columns k >= 0 as:
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0 A131531
0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1 A092220
1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2 A131556
-3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3 A164359
6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5
-11, 10, -11, 11, -10, 11, -11, 10, -11, 11, -10, 11, -11, 10, -11
21, -21, 22, -21, 21, -22, 21, -21, 22, -21, 21, -22, 21, -21, 22
		

Crossrefs

Cf. A167617 (antidiagonal sums).

Programs

  • Maple
    A131531 := proc(n) op((n mod 6)+1,[0,0,1,0,0,-1]) ; end proc:
    A167613 := proc(n,k) option remember; if n= 0 then A131531(k); else procname(n-1,k+1)-procname(n-1,k) ; end if;end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    nmax = 13;
    A131531 = Table[{0, 0, 1, 0, 0, -1}, {nmax}] // Flatten;
    T[n_] := T[n] = Differences[A131531, n];
    T[n_, k_] := T[n][[k]];
    Table[T[n-k, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 20 2023 *)

Formula

T(0,k) = A131531(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.
T(n,n) = A001045(n). T(n,n+1) = -A001045(n). T(n,n+2) = A078008(n).
T(n,0) = -T(n,3) = (-1)^(n+1)*A024495(n).
T(n,1) = (-1)^(n+1)*A131708(n).
T(n,2) = (-1)^n*A024493(n).
T(n,k+6) = T(n,k).
a(n) = A131708(0), -A024495(0,1), A024493(0,1,2), -A131708(0,1,2,3), A024495(0,1,2,3,4), -A024493(0,1,2,3,4,5).

A094715 a(n) = Sum_{2*i+3*j=n, 0<=i<=n, 0<=j<=n} n!/( (2*i)!*(3*j)! ).

Original entry on oeis.org

1, 0, 1, 1, 1, 10, 2, 35, 29, 85, 211, 220, 926, 1001, 3095, 5461, 9829, 25126, 37130, 97223, 164921, 349525, 728575, 1309528, 2973350, 5326685, 11450531, 22369621, 43942081, 91869970, 174174002, 365088395, 708653429, 1431655765, 2884834891
Offset: 0

Views

Author

Benoit Cloitre, May 23 2004

Keywords

Comments

Average of binomial and inverse binomial transform of {1, 0, 0, 1, 0, 0, 1, ...}. - Paul Barry, Jan 04 2005

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-2*x^2-x^3+x^4-x^5)/((1-2*x)*(1-x+x^2)*(1+3*x+3*x^2)) )); // G. C. Greubel, Feb 13 2023
    
  • Maple
    A094715_list := proc(n) local i; (exp(z)+2*exp(-z/2)*cos(z*sqrt(3/4)))*cosh(z)/3;  series(%,z,n+2): seq(i!*coeff(%,z,i),i=0..n) end: A094715_list(34); # Peter Luschny, Jul 10 2012
  • Mathematica
    Table[(1/6)*(Boole[n==0] +2^n +2*ChebyshevU[n,1/2] -ChebyshevU[n-1, 1/2] +2*3^(n/2)*ChebyshevU[n, -Sqrt[3]/2] +3^((n+1)/2)*ChebyshevU[n- 1, -Sqrt[3]/2]), {n,0,50}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,if(n-2*i-3*j,0,n!/(2*i)!/(3*j)!)))
    
  • SageMath
    def A094715_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x^2-x^3+x^4-x^5)/((1-2*x)*(1-x+x^2)*(1+3*x+3*x^2)) ).list()
    A094715_list(50) # G. C. Greubel, Feb 13 2023

Formula

Limit_{n --> oo} a(n)/2^n = 1/6.
G.f.: (1-2*x^2-x^3+x^4-x^5)/((1-2*x)*(1-x+x^2)*(1+3*x+3*x^2)). - Vladeta Jovovic, May 23 2004
a(n) = (1/3)*Sum_{k=0..floor(n/2)} C(n, 2*k)*(2*cos(2*Pi*(n-2*k)/3) + 1). - Paul Barry, Jan 04 2005 [corrected by Jason Yuen, Aug 28 2024]
E.g.f.: (exp(z) + 2*exp(-z/2)*cos(z*sqrt(3/4)))*cosh(z)/3. - Peter Luschny, Jul 10 2012
a(n) = (1/6)*([n=0] + 2^n + 2*A010892(n) - A010892(n-1) + 2*A000748(n) + 3*A000748(n-1)). - G. C. Greubel, Feb 13 2023
Previous Showing 11-20 of 33 results. Next