cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A049667 a(n) = Fibonacci(7*n)/13.

Original entry on oeis.org

0, 1, 29, 842, 24447, 709805, 20608792, 598364773, 17373187209, 504420793834, 14645576208395, 425226130837289, 12346203370489776, 358465123875040793, 10407834795746672773, 302185674200528551210, 8773792386611074657863
Offset: 0

Views

Author

Keywords

Crossrefs

A column of array A028412.

Programs

  • Magma
    [Fibonacci(7*n)/13: n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Maple
    a:= n-> (<<0|1>, <1|29>>^n)[1, 2]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    Fibonacci[(7*Range[0,20])]/13 (* or *) LinearRecurrence[{29,1},{0,1},20] (* Harvey P. Dale, Sep 17 2017 *)
  • MuPAD
    numlib::fibonacci(7*n)/13 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    a(n)=fibonacci(7*n)/13 \\ Charles R Greathouse IV, Oct 07 2016
    
  • Sage
    [fibonacci(7*n)/13 for n in range(0, 17)] # Zerinvary Lajos, May 15 2009
    

Formula

G.f.: x/(1 - 29*x - x^2).
a(n) = A134498(n)/13.
a(n) = F(n, 29), the n-th Fibonacci polynomial evaluated at x=29. - T. D. Noe, Jan 19 2006
a(n) = 29*a(n-1) + a(n-2), n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Nov 22 2008
For n >= 1, a(n) equals the denominator of the continued fraction [29, 29, ..., 29] (with n copies of 29). The numerator of that continued fraction is a(n+1). - Greg Dresden and Shaoxiong Yuan, Jul 26 2019
a(n) = ((-1)^n*7*F(n) + 14*5*F(n)^3 + (-1)^n*7*5^2*F(n)^5 + 5^3*F(n)^7)/13, n >= 0. See the general D. Jennings formula given in comment on triangle A111125, where also the reference is given. Here the fourth row (k=3) applies. - Wolfdieter Lang, Sep 01 2012
G.f.: G(0)*x/(2-29*x), where G(k)= 1 + 1/(1 - (x*(845*k-841))/((x*(845*k+4)) - 58/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 15 2013
O.g.f.: x*exp(Sum_{n >= 1} Lucas(7*n)*x^n/n) = x + 29*x^2 + 842*x^3 + .... - Peter Bala, Oct 11 2019

A051294 a(n) = F(n^2)/F(n), where F(n) = A000045(n) is the n-th Fibonacci number.

Original entry on oeis.org

1, 3, 17, 329, 15005, 1866294, 598364773, 505248088463, 1114384187445409, 6440451785077489365, 97415813466381445596089, 3858093084890921488916776332, 400009475456580321242184872389193, 108580324845164033411588204172311746011, 77162132055850720265395402022419687035969985
Offset: 1

Views

Author

Keywords

Crossrefs

Main diagonal of array A028412.

Programs

  • Maple
    a:= n-> (f->f(n^2)/f(n))(k->(<<0|1>, <1|1>>^k)[1, 2]):
    seq(a(n), n=1..15);  # Alois P. Heinz, May 08 2025
  • Mathematica
    Table[Fibonacci[n^2]/Fibonacci[n],{n,15}]  (* Harvey P. Dale, Apr 12 2011 *)
  • PARI
    a(n)=fibonacci(n^2)/fibonacci(n)
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1/(1-Lucas(n)*x+(-1)^n*x^2+x*O(x^n)),n-1)} /* Paul D. Hanna, Jan 28 2012 */

Formula

a(n) = [x^(n-1)] 1/(1 - Lucas(n)*x + (-1)^n*x^2), where Lucas(n) = A000204(n). - Paul D. Hanna, Jan 28 2012

Extensions

More terms from Benoit Cloitre, Jan 05 2003

A047946 a(n) = 5*F(n)^2 + 3*(-1)^n where F(n) are the Fibonacci numbers A000045.

Original entry on oeis.org

3, 2, 8, 17, 48, 122, 323, 842, 2208, 5777, 15128, 39602, 103683, 271442, 710648, 1860497, 4870848, 12752042, 33385283, 87403802, 228826128, 599074577, 1568397608, 4106118242, 10749957123, 28143753122, 73681302248, 192900153617, 505019158608, 1322157322202
Offset: 0

Views

Author

John W. Layman, May 21 1999

Keywords

Comments

Form the matrix A=[1,1,1;2,1,0;1,0,0]. a(n)=trace(A^n). - Paul Barry, Sep 22 2004
The set of prime divisors of elements of this sequence with the exception of 3 is the set of primes that do not divide odd Fibonacci numbers. - Tanya Khovanova, May 19 2008
If a(n) is prime then n is a power of 3 (Boase, 1998). The only values of k not exceeding 12 for which a(3^k) is prime are 0 and 1. - Amiram Eldar, Jun 19 2022

Crossrefs

Second row of array A028412.
Cf. A133247 (prime numbers p such that no odd Fibonacci number is divisible by p).

Programs

  • Mathematica
    Table[LucasL[n]^2 - (-1)^n, {n, 0, 30}] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n)=5*fibonacci(n)^2+3*(-1)^n
    
  • Python
    from sympy import fibonacci
    def A047946(n): return 5*fibonacci(n)**2+(-3 if n&1 else 3) # Chai Wah Wu, Jul 29 2022

Formula

a(n) = F(3n)/F(n), n>0.
a(n) = 2*a(n-1)+2*a(n-2)-a(n-3).
a(n) = 3a(n-1)-a(n-2)+5(-1)^n.
a(n) = A005248(n) + (-1)^n.
G.f.: ( 3-4*x-2*x^2 ) / ( (1+x)*(x^2-3*x+1) ).
for n>0 a(n) = A000045(3n)/A000045(n) - Benoit Cloitre, Aug 30 2003
For n>0, the linear recurrence for the sequence F(n*k)^2 has signature (a(n),a(n),-1) for n odd, and (a(n),-a(n), 1) for n even. For example, the linear recurrence for the sequence F(3*k)^2 has signature (17, 17, -1) (conjectured). - Greg Dresden, Aug 30 2021
a(n) = Lucas(n)^2 - (-1)^n. - Amiram Eldar, Feb 02 2022

Extensions

Entry improved by comments from Michael Somos.

A049669 a(n) = Fibonacci(9*n)/34.

Original entry on oeis.org

0, 1, 76, 5777, 439128, 33379505, 2537281508, 192866774113, 14660412114096, 1114384187445409, 84707858657965180, 6438911642192799089, 489441992665310695944, 37204030354205805690833
Offset: 0

Views

Author

Keywords

Crossrefs

A column of array A028412.
Cf. A000045.

Programs

  • Magma
    [Fibonacci(9*n)/(34): n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Maple
    with (combinat):seq(fibonacci(3*n,4)/17, n=0..13); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Fibonacci[9Range[0,20]]/34 (* or *) LinearRecurrence[{76,1},{0,1},20] (* Harvey P. Dale, Jan 20 2013 *)
  • MuPAD
    numlib::fibonacci(9*n)/34 $ n = 0..25; // Zerinvary Lajos, May 09 2008
    
  • PARI
    for(n=0,30, print1(fibonacci(9*n)/34, ", ")) \\ G. C. Greubel, Dec 02 2017
    

Formula

G.f.: x/(1-76*x-x^2), 76=L(9)=A000032(9) (Lucas).
a(n) = 76*a(n-1) + a(n-2), n>1, a(0)=0, a(1)=1. - Philippe Deléham, Nov 23 2008
a(n) = (9*F(n) + (-1)^n*30*5*F(n)^3 + 27*5^2*F(n)^5 + (-1)^n*9*5^3*F(n)^7 + 5^4*F(n)^9)/34, n >= 0. See the general D. Jennings formula given in a comment on the triangle A111125, where also the reference is given. Here the fifth row (k=4) applies. - Wolfdieter Lang, Sep 01 2012
For n >= 1, a(n) equals the denominator of the continued fraction [76, 76, ..., 76] (with n copies of 76). The numerator of that continued fraction is a(n+1). - Greg Dresden and Shaoxiong Yuan, Jul 26 2019
E.g.f.: exp(38*x)*sinh(17*sqrt(5)*x)/(17*sqrt(5)). - Stefano Spezia, Aug 05 2019

Extensions

More terms from James Sellers, Jan 20 2000

A383742 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 5, 4, 0, 1, 14, 35, 12, 5, 0, 1, 34, 197, 204, 29, 6, 0, 1, 82, 1155, 2772, 1189, 70, 7, 0, 1, 198, 6725, 39236, 39005, 6930, 169, 8, 0, 1, 478, 39203, 551532, 1332869, 548842, 40391, 408, 9, 0, 1, 1154, 228485, 7761996, 45232349, 45278310, 7722793, 235416, 985, 10
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Examples

			Square array begins:
  0,  0,    0,     0,       0,        0, ...
  1,  1,    1,     1,       1,        1, ...
  2,  2,    6,    14,      34,       82, ...
  3,  5,   35,   197,    1155,     6725, ...
  4, 12,  204,  2772,   39236,   551532, ...
  5, 29, 1189, 39005, 1332869, 45232349, ...
		

Crossrefs

Columns k=0..6 give A001477, A000129, A001109, A041085(n-1), A091761, A292423, A097731(n-1).
Rows n=0..5 give A000004, A000012, A002203, A383720, A383740, A383741.
Main diagonal gives A380083.
Cf. A028412.

Programs

  • Mathematica
    A[n_, k_] := Fibonacci[k*n, 2]/Fibonacci[k, 2]; A[n_, 0] := n; Table[A[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 08 2025 *)
  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    a(n, k) = if(k==0, n, pell(k*n)/pell(k));

Formula

A(0,k) = 0, A(1,k) = 1; A(n,k) = A002203(k) * A(n-1,k) - (-1)^k * A(n-2,k) for n > 1.
A(n,k) = Pell(k*n)/Pell(k) for k > 0.

A083564 a(n) = L(n)*L(2n), where L(n) are the Lucas numbers (A000204).

Original entry on oeis.org

3, 21, 72, 329, 1353, 5796, 24447, 103729, 439128, 1860621, 7880997, 33385604, 141421803, 599075421, 2537719272, 10749959329, 45537545553, 192900159396, 817138154247, 3461452823129, 14662949371128, 62113250430021
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2003

Keywords

Comments

a(n+1)/a(n) -> (phi)^3 = ((1 + sqrt(5))/2)^3 = 4.236067...

Examples

			a(4) = Lucas(4)*Lucas(8) = 7*47 = 329.
		

Crossrefs

Third row of array A028412.

Programs

Formula

From Benoit Cloitre, Aug 30 2003: (Start)
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4);
a(n) = Fibonacci(4*n)/Fibonacci(n) = A000045(4*n)/A000045(n). (End)
a(n) = Lucas(3*n) + (-1)^n*Lucas(n).
From R. J. Mathar, Oct 27 2008: (Start)
G.f.: x*(3+12*x-9*x^2-4*x^3)/((1+x-x^2)*(1-4*x-x^2)).
a(n) = A061084(n+1) + 2*A001077(n). (End)
a(n) = (1+phi)^n + (-phi)^n + (2*phi+1)^n + (3-2*phi)^n, phi = (1+sqrt(5))/2. - Gary Detlefs, Dec 09 2012

A103326 a(n) = Fibonacci(5n)/Fibonacci(n).

Original entry on oeis.org

5, 55, 305, 2255, 15005, 104005, 709805, 4873055, 33379505, 228841255, 1568358005, 10750060805, 73681030805, 505019869255, 3461450947505, 23725155368255, 162614587921805, 1114577087604805, 7639424691459005, 52361396626646255, 358890349406803505
Offset: 1

Views

Author

Ralf Stephan, Feb 03 2005

Keywords

Crossrefs

Fourth row of array A028412.

Programs

  • Magma
    [Fibonacci(5*n)/Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    p:= (1+5^(1/2))/2: q:=(1-5^(1/2))/2:
    seq(simplify(q^(4*n)+(p-2)^n+(q-2)^n+(3*p+2)^n+(-1)^(2*n)/4+3/4),n=1..19);
  • PARI
    Vec(-5*x*(x^4-4*x^3-9*x^2+6*x+1)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^30)) \\ Colin Barker, Jun 03 2016

Formula

a(n) = L(4n) + (-1)^n*L(2n) + 1, where L(n) = A000032, the Lucas numbers.
a(n) = 1 + L(n)*L(3n). - Neven Juric, Jan 05 2009
a(n) = 25*(Fibonacci(n)^4 + (-1)^n*Fibonacci(n)^2) + 5. - Gary Detlefs, Dec 22 2012
G.f.: -5*x*(x^4 - 4*x^3 - 9*x^2 + 6*x + 1) /((x - 1)*(x^2 - 7*x + 1)*(x^2 + 3*x + 1)). - Colin Barker, Jul 16 2013
a(n) = 5*A088545(n). - Joerg Arndt, Jul 16 2013
exp(Sum_{n >= 1} a(n)*x^n/n) = Sum_{n >= 0} A001656(n)*x^n. - Peter Bala, Mar 30 2015
a(n) = 1 + (1/2*(7 - 3*sqrt(5)))^n + (1/2*(-3 - sqrt(5)))^n + (1/2*(-3 + sqrt(5)))^n + (1/2*(7 + 3*sqrt(5)))^n. - Colin Barker, Jun 03 2016

Extensions

More terms from Colin Barker, Jul 16 2013

A103624 Quotient F(n(n+1))/{F(n)*F(n+1)}, where F(n) is the n-th Fibonacci number A000045(n).

Original entry on oeis.org

1, 4, 24, 451, 20801, 2576099, 827294629, 698114862576, 1540142884690276, 8900260727038783399, 134626641626040936157699, 5331733869372412024840703621, 552800277142057127306392295957801
Offset: 1

Views

Author

Lekraj Beedassy, Mar 25 2005

Keywords

Crossrefs

Programs

  • Maple
    seq(combinat:-fibonacci(n*(n+1))/combinat:-fibonacci(n)/combinat:-fibonacci(n+1),n=1..25); # Robert Israel, Jan 11 2018
  • Mathematica
    Table[Fibonacci[n(n+1)]/(Fibonacci[n]Fibonacci[n+1]),{n,20}] (* Harvey P. Dale, Aug 04 2012 *)
  • PARI
    {a(n)=fibonacci(n*(n+1))/(fibonacci(n)*fibonacci(n+1))}  \\ Paul D. Hanna, Jan 28 2012

Formula

a(n) = phi^(n^2 - n - 1) + O(phi^(n^2 - 3n)). [Charles R Greathouse IV, Feb 01 2012]

Extensions

a(2) corrected by Paul D. Hanna, Jan 28 2012

A214982 a(n) = (Fibonacci(5n)/Fibonacci(n) - 5)/50.

Original entry on oeis.org

0, 1, 6, 45, 300, 2080, 14196, 97461, 667590, 4576825, 31367160, 215001216, 1473620616, 10100397385, 69229018950, 474503107365, 3252291758436, 22291541752096, 152788493829180, 1047227932532925, 7177806988136070
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

See the comments at A028412.

Crossrefs

Programs

  • Mathematica
    (See A028412.)
    Table[(Fibonacci[5n]/Fibonacci[n]-5)/50,{n,25}] (* or *) LinearRecurrence[ {5,15,-15,-5,1},{0,1,6,45,300},30] (* Harvey P. Dale, Nov 03 2013 *)

Formula

a(n) = (Fibonacci(5n)/Fibonacci(n) - 5)/50.
Empirical G.f.: -x^2*(x+1)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Nov 22 2012
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5), with a(1)=0, a(2)=1, a(3)=6, a(4)=45, a(5)=300. - Harvey P. Dale, Nov 03 2013
a(n) = (1/2)*Fibonacci(n)^2*(Fibonacci(n)^2 + (-1)^n) shows that a(n) is always an integer. - Peter Bala, Nov 29 2013

A205505 Fibonacci(n*(n+1)) / Fibonacci(n).

Original entry on oeis.org

1, 8, 72, 2255, 166408, 33489287, 17373187209, 23735905327584, 84707858657965180, 792123204706451722511, 19386236394149894806708656, 1242293991563772001787883943693, 208405704482555536994509895576090977, 91533085042008706066658193727853843719640
Offset: 1

Views

Author

Paul D. Hanna, Jan 28 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[n(n+1)]/Fibonacci[n],{n,20}] (* Harvey P. Dale, Mar 30 2012 *)
  • PARI
    {a(n)=fibonacci(n*(n+1))/fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1/(1-Lucas(n)*x+(-1)^n*x^2+x*O(x^n)), n)}

Formula

a(n) = [x^n] 1/(1 - Lucas(n)*x + (-1)^n*x^2), where Lucas(n) = A000204(n).
Forms a diagonal in table A028412.
Previous Showing 11-20 of 20 results.