cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 262 results. Next

A019565 The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35, 70, 105, 210, 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310, 13, 26, 39, 78, 65, 130, 195, 390, 91, 182, 273, 546, 455, 910, 1365, 2730, 143, 286, 429, 858, 715, 1430, 2145, 4290
Offset: 0

Views

Author

Keywords

Comments

A permutation of the squarefree numbers A005117. The missing positive numbers are in A013929. - Alois P. Heinz, Sep 06 2014
From Antti Karttunen, Apr 18 & 19 2017: (Start)
Because a(n) toggles the parity of n there are neither fixed points nor any cycles of odd length.
Conjecture: there are no finite cycles of any length. My grounds for this conjecture: any finite cycle in this sequence, if such cycles exist at all, must have at least one member that occurs somewhere in A285319, the terms that seem already to be quite rare. Moreover, any such a number n should satisfy in addition to A019565(n) < n also that A048675^{k}(n) is squarefree, not just for k=0, 1 but for all k >= 0. As there is on average a probability of only 6/(Pi^2) = 0.6079... that any further term encountered on the trajectory of A048675 is squarefree, the total chance that all of them would be squarefree (which is required from the elements of A019565-cycles) is soon minuscule, especially as A048675 is not very tightly bounded (many trajectories seem to skyrocket, at least initially). I am also assuming that usually there is no significant correlation between the binary expansions of n and A048675(n) (apart from their least significant bits), or, for that matter, between their prime factorizations.
See also the slightly stronger conjecture in A285320, which implies that there would neither be any two-way infinite cycles.
If either of the conjectures is false (there are cycles), then certainly neither sequence A285332 nor its inverse A285331 can be a permutation of natural numbers. (End)
The conjecture made in A087207 (see also A288569) implies the two conjectures mentioned above. A further constraint for cycles is that in any A019565-trajectory which starts from a squarefree number (A005117), every other term is of the form 4k+2, while every other term is of the form 6k+3. - Antti Karttunen, Jun 18 2017
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever x and y do not have a 1-bit in the same position, i.e., when A004198(x,y) = 0. See also A283475. - Antti Karttunen, Oct 31 2019
The above identity becomes unconditional if binary exclusive OR, A003987(.,.), is substituted for addition, and A059897(.,.), a multiplicative equivalent of A003987, is substituted for multiplication. This gives us a(A003987(x,y)) = A059897(a(x), a(y)). - Peter Munn, Nov 18 2019
Also the Heinz number of the binary indices of n, where the Heinz number of a sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k), and a number's binary indices (A048793) are the positions of 1's in its reversed binary expansion. - Gus Wiseman, Dec 28 2022

Examples

			5 = 2^2+2^0, e_1 = 2, e_2 = 0, prime(2+1) = prime(3) = 5, prime(0+1) = prime(1) = 2, so a(5) = 5*2 = 10.
From _Philippe Deléham_, Jun 03 2015: (Start)
This sequence regarded as a triangle withs rows of lengths 1, 1, 2, 4, 8, 16, ...:
   1;
   2;
   3,  6;
   5, 10, 15, 30;
   7, 14, 21, 42, 35,  70, 105, 210;
  11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310;
  ...
(End)
From _Peter Munn_, Jun 14 2020: (Start)
The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
   n     a(n)
   0     1 = .
   1     2 = 2.
   2     3 = 3.
   3     6 = 3*2.
   4     5 = 5.
   5    10 = 5*2.
   6    15 = 5*3.
   7    30 = 5*3*2.
   8     7 = 7.
   9    14 = 7*2.
  10    21 = 7*3.
  11    42 = 7*3*2.
  12    35 = 7*5.
(End)
		

Crossrefs

Row 1 of A285321.
Equivalent sequences for k-th-power-free numbers: A101278 (k=3), A101942 (k=4), A101943 (k=5), A054842 (k=10).
Cf. A109162 (iterates).
Cf. also A048675 (a left inverse), A087207, A097248, A260443, A054841.
Cf. A285315 (numbers for which a(n) < n), A285316 (for which a(n) > n).
Cf. A276076, A276086 (analogous sequences for factorial and primorial bases), A334110 (terms squared).
For partial sums see A288570.
A003961, A003987, A004198, A059897, A089913, A331590, A334747 are used to express relationships between sequence terms.
Column 1 of A329332.
Even bisection (which contains the odd terms): A332382.
A160102 composed with A052330, and subsequence of the latter.
Related to A000079 via A225546, to A057335 via A122111, to A008578 via A336322.
Least prime index of a(n) is A001511.
Greatest prime index of a(n) is A029837 or A070939.
Taking prime indices gives A048793, reverse A272020, row sums A029931.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Haskell
    a019565 n = product $ zipWith (^) a000040_list (a030308_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= proc(n) local i, m, r; m:=n; r:=1;
          for i while m>0 do if irem(m,2,'m')=1
            then r:=r*ithprime(i) fi od; r
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 06 2014
  • Mathematica
    Do[m=1;o=1;k1=k;While[ k1>0, k2=Mod[k1, 2];If[k2\[Equal]1, m=m*Prime[o]];k1=(k1-k2)/ 2;o=o+1];Print[m], {k, 0, 55}] (* Lei Zhou, Feb 15 2005 *)
    Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 55}]  (* Michael De Vlieger, Aug 27 2016 *)
    b[0] := {1}; b[n_] := Flatten[{ b[n - 1], b[n - 1] * Prime[n] }];
      a = b[6] (* Fred Daniel Kline, Jun 26 2017 *)
  • PARI
    a(n)=factorback(vecextract(primes(logint(n+!n,2)+1),n))  \\ M. F. Hasler, Mar 26 2011, updated Aug 22 2014, updated Mar 01 2018
    
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    def A019565(n):
        return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
    # Chai Wah Wu, Dec 25 2014
    
  • Scheme
    (define (A019565 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; (Requires only the implementation of A000040 for prime numbers.) - Antti Karttunen, Apr 20 2017

Formula

G.f.: Product_{k>=0} (1 + prime(k+1)*x^2^k), where prime(k)=A000040(k). - Ralf Stephan, Jun 20 2003
a(n) = f(n, 1, 1) with f(x, y, z) = if x > 0 then f(floor(x/2), y*prime(z)^(x mod 2), z+1) else y. - Reinhard Zumkeller, Mar 13 2010
For all n >= 0: A048675(a(n)) = n; A013928(a(n)) = A064273(n). - Antti Karttunen, Jul 29 2015
a(n) = a(2^x)*a(2^y)*a(2^z)*... = prime(x+1)*prime(y+1)*prime(z+1)*..., where n = 2^x + 2^y + 2^z + ... - Benedict W. J. Irwin, Jul 24 2016
From Antti Karttunen, Apr 18 2017 and Jun 18 2017: (Start)
a(n) = A097248(A260443(n)), a(A005187(n)) = A283475(n), A108951(a(n)) = A283477(n).
A055396(a(n)) = A001511(n), a(A087207(n)) = A007947(n). (End)
a(2^n - 1) = A002110(n). - Michael De Vlieger, Jul 05 2017
a(n) = A225546(A000079(n)). - Peter Munn, Oct 31 2019
From Peter Munn, Mar 04 2022: (Start)
a(2n) = A003961(a(n)); a(2n+1) = 2*a(2n).
a(x XOR y) = A059897(a(x), a(y)) = A089913(a(x), a(y)), where XOR denotes bitwise exclusive OR (A003987).
a(n+1) = A334747(a(n)).
a(x+y) = A331590(a(x), a(y)).
a(n) = A336322(A008578(n+1)).
(End)

Extensions

Definition corrected by Klaus-R. Löffler, Aug 20 2014
New name from Peter Munn, Jun 14 2020

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A000523 a(n) = floor(log_2(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1

Views

Author

Keywords

Comments

Or, n >= 0 appears 2^n times. - Jon Perry, Sep 21 2002
a(n) + 1 = number of bits in binary expansion of n.
Largest power of 2 dividing lcm(1..n): A007814(A003418(n)).
log_2(0) = -infinity.
Also Max_{k=1..n} Omega(k), where Omega(n) = A001222(n), number of prime factors with repetition; see A080613. - Reinhard Zumkeller, Feb 25 2003
From Paul Weisenhorn, Sep 29 2010, updated Aug 11 2020: (Start)
Arithmetic mean: m(1,(c+1)/c) = (2*c+1)/(2*c); harmonic mean: h(1,(c+1)/c) = 2*(c+1)/(2*c+1);
a(n) is the number of means to reach (n+1)/n from 2/1; with m for 0 and h for 1, the inverse binary expansion of n, without the leading 1, gives the sequence of means.
For example, n=20; inverse binary expansion without the leading 1: 0010 ---> m m h m or m(1, m(1, h(1, m(1, 2)))) = 21/20.
The 4 twofold means for n from 4 to 7:
m(1,m(1,2)) = m(1,3/2) = 5/4,
h(1,m(1,2)) = h(1,3/2) = 6/5,
m(1,h(1,2)) = m(1,4/3) = 7/6,
h(1,h(1,2)) = h(1,4/3) = 8/7. (End) [Edited by Petros Hadjicostas, Jul 23 2020]
As function of the absolute value, defines the minimal Euclidean function v on Z\{0}. A ring R is Euclidean if for some function v : R\{0}->N a division by nonzero b can be defined with remainder r satisfying either r=0 or v(r) < v(b). For the integers taking v(n)=|n| works, but v(n) = floor(log_2(|n|)) works as well; moreover it is the possibility with smallest possible values. For division by b>0 one can always choose |r| <= floor(b/2); this sequence satisfies a(1) = 0 and recursively a(n) = 1 + max(a(1), ..., a(floor(n/2))) for n > 1. - Marc A. A. van Leeuwen, Feb 16 2011
Maximum number of guesses required to find any k in a range of 1..n, with 'higher', 'lower' and 'correct' as answers. - Jon Perry, Nov 02 2013
Number of powers of 2 <= n. - Ralph-Joseph Tatt, Apr 23 2018
a(n) + 1 is the minimum number of pairwise disjoint subsets of an n-element set such that for each k from 1 to n there is a set with cardinality k which is the union of some of those subsets. - Wojciech Raszka, Apr 15 2019
Minimum height of an n-node binary tree. - Yuchun Ji, Mar 22 2021

Examples

			a(5)=2 because the binary expansion of 5 (=101) has three bits.
		

References

  • Rüdeger Baumann, Computer-Knobelei, LOG IN Heft 159 (2009), 74-77. - Paul Weisenhorn, Sep 29 2010
  • G. H. Hardy, Note on Dr. Vacca's series for gamma, Quart. J. Pure Appl. Math., Vol. 43 (1912), pp. 215-216.
  • Ernst Jacobsthal, Über die Eulersche konstante, Mathematisch-Naturwissenschaftliche Blätter, Vol. 3, No. 9 (1906), pp. 153-154.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, p. 400.
  • Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589. - From N. J. A. Sloane, Aug 03 2012

Crossrefs

Programs

  • Haskell
    a000523 1 = 0
    a000523 n = 1 + a000523 (div n 2)
    a000523_list = 0 : f [0] where
       f xs = ys ++ f ys where ys = map (+ 1) (xs ++ xs)
    -- Reinhard Zumkeller, Dec 31 2012, Feb 04 2012, Mar 18 2011
    
  • Magma
    [Ilog2(n) : n in [1..130] ];
    
  • Maple
    A000523 := proc(n)
        ilog2(n) ;
    end proc: # R. J. Mathar, Nov 28 2016
    seq(A000523(n), n=1..90);
  • Mathematica
    Floor[Log[2,Range[110]]] (* Harvey P. Dale, Jul 16 2012 *)
    a[ n_] := If[ n < 1, 0, BitLength[n] - 1]; (* Michael Somos, Jul 10 2018 *)
  • PARI
    {a(n) = floor(log(n) / log(2))} \\ Likely to yield incorrect results for many if not almost all n. Better use most recent code.
    
  • PARI
    {a(n) = if( n<1, 0, #binary(n) - 1)}; /* Michael Somos, May 28 2014 */
    
  • PARI
    a(n)=logint(n,2) \\ Charles R Greathouse IV, Sep 01 2015
    
  • PARI
    a(n)=exponent(n) \\ Charles R Greathouse IV, Nov 09 2017
    
  • Python
    def A000523(n):
        return len(bin(n))-3 # Chai Wah Wu, Jul 09 2020
    
  • Python
    def a(n): return n.bit_length() - 1
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Apr 18 2023

Formula

a(n) = A070939(n) - 1 for n >= 1.
a(n) = if n > 1, then a(floor(n / 2)) + 1; else 0. - Reinhard Zumkeller, Oct 29 2001
G.f.: (1/(1 - x)) * Sum_{k>=1} x^2^k. - Ralf Stephan, Apr 13 2002
a(n+1) = number of digits of n-th number with no 0 in ternary representation = A081604(A032924(n)); A107680(n) = A003462(a(n+1)). - Reinhard Zumkeller, May 20 2005
a(n) = A152487(n-1,0) = A152487(n,1). - Reinhard Zumkeller, Dec 06 2008
a(n) = k with 2^k <= n < 2^(k+1); a(n) = floor(log_2(n)). - Paul Weisenhorn, Sep 29 2010
a(n) = Max_{k=1..n} A240857(n,k). - Reinhard Zumkeller, Apr 14 2014
a(n) = A113473(n) - 1. - Filip Zaludek, Oct 29 2016
Sum_{n>=2} (-1)^n*a(n)/n = gamma = A001620 (Jacobsthal, 1906; Vacca, 1910). - Amiram Eldar, Jun 12 2021
a(n) = floor(Sum_{k=1..n-1} (n+1)^(n-2^k)) mod n. - Joseph M. Shunia, Jul 19 2024

Extensions

Error in 4th term, pointed out by Joe Keane (jgk(AT)jgk.org), has been corrected.
More terms from Michael Somos, Aug 02 2002

A209229 Characteristic function of powers of 2, cf. A000079.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 06 2012

Keywords

Comments

Essentially the same as A036987 (the Fredholm-Rueppel sequence).
Completely multiplicative with a(2^e) = 1, a(p^e) = 0 for odd primes p. - Mitch Harris, Apr 19 2005
Moebius transform of A001511. - R. J. Mathar, Jun 20 2014

Examples

			x + x^2 + x^4 + x^8 + x^16 + x^32 + x^64 + x^128 + x^256 + x^512 + x^1024 + ...
		

References

  • Michel Dekking, Michel Mendes France and Alf van der Poorten, "Folds", The Mathematical Intelligencer, Vol. 4, No. 3 (1982), pp. 130-138 & front cover, and Vol. 4, No. 4 (1982), pp. 173-181 (printed in two parts).
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A001511, A029837 (partial sums), A087003 (moebius transform), A090678, A104977, A154955 (Dirichlet inverse).

Programs

  • C
    int a (unsigned long n) { return n & !(n & (n-1)); } /* Charles R Greathouse IV, Sep 15 2012 */
    
  • Haskell
    a209229 n | n < 2 = n
              | n > 1 = if m > 0 then 0 else a209229 n'
              where (n',m) = divMod n 2
    
  • Maple
    A209229 := proc(n)
        if n <= 0 then
            0 ;
        elif n = 1 then
            1;
        elif type (n,'odd') or A001221(n) > 1 then
            0 ;
        else
            1;
        end if;
    end proc:
    seq(A209229(n),n=0..40) ; # R. J. Mathar, Jan 07 2021
  • Mathematica
    a[n_] := Boole[n == 2^IntegerExponent[n, 2]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, May 06 2014 *)
    Table[If[IntegerQ[Log[2,n]],1,0],{n,0,100}] (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    a(n)=n==1<Charles R Greathouse IV, Mar 07 2012
    
  • PARI
    {a(n) = if( n<2 || n%2, n==1, isprimepower(n) > 0)} \\ Michael Somos, Jan 03 2013
    
  • Python
    def A209229(n): return int(not(n&-n)^n) if n else 0 # Chai Wah Wu, Jul 08 2022

Formula

a(A000079(n)) = 1; a(A057716(n)) = 0.
a(n+1) = A036987(n).
a(n) = if n < 2 then n else (if n is even then a(n/2) else 0).
The generating function g(x) satisfies g(x) - g(x^2) = x. - Joerg Arndt, May 11 2010
Dirichlet g.f.: 1/(1 - 2^(-s)). - R. J. Mathar, Mar 07 2012
G.f.: x / (1 - x / (1 + x / (1 + x / (1 - x / (1 + x / (1 - x / ...)))))) = x / (1 + b(1) * x / (1 + b(2) * x / (1 + b(3) * x / ...))) where b(n) = (-1)^ A090678(n+1). - Michael Somos, Jan 03 2013
With a(0) = 0 removed is convolution inverse of A104977. - Michael Somos, Jan 03 2013
From Antti Karttunen, Nov 19 2017: (Start)
a(n) = abs(A154269(n)).
For n > 1, a(n) = A069517(n)/2 = 2 - A201219(n). (End)
a(n) = A048298(n)/n. - R. J. Mathar, Jan 07 2021
a(n) = floor((2^n)/n) - floor((2^n - 1)/n), for n>=1. - Ridouane Oudra, Oct 15 2021

A036378 Number of primes p between powers of 2, 2^n < p <= 2^(n+1).

Original entry on oeis.org

1, 1, 2, 2, 5, 7, 13, 23, 43, 75, 137, 255, 464, 872, 1612, 3030, 5709, 10749, 20390, 38635, 73586, 140336, 268216, 513708, 985818, 1894120, 3645744, 7027290, 13561907, 26207278, 50697537, 98182656, 190335585, 369323305, 717267168, 1394192236, 2712103833
Offset: 0

Views

Author

Keywords

Comments

Number of primes whose binary order (A029837) is n+1, i.e., those with ceiling(log_2(p)) = n+1. [corrected by Jon E. Schoenfield, May 13 2018]
First differences of A007053. This sequence illustrates how far the Bertrand postulate is oversatisfied.
Scaled for Ramanujan primes as in A190501, A190502.
This sequence appears complete such that any nonnegative number can be written as a sum of distinct terms of this sequence. The sequence has been checked for completeness up to the gap between 2^46 and 2^47. Assuming that after 2^46 the formula x/log(x) is a good approximation to primepi(x), it can be proved that 2*a(n) > a(n+1) for all n >= 46, which is a sufficient condition for completeness. [Frank M Jackson, Feb 02 2012]

Examples

			The 7 primes for which A029837(p)=6 are 37, 41, 43, 47, 53, 59, 61.
		

Crossrefs

Programs

  • Magma
    [1,1] cat [#PrimesInInterval(2^n, 2^(n+1)): n in [2..29]]; // Vincenzo Librandi, Nov 18 2014
  • Mathematica
    t = Table[PrimePi[2^n], {n, 0, 20}]; Rest@t - Most@t (* Robert G. Wilson v, Mar 20 2006 *)
  • PARI
    a(n) = primepi(1<<(n+1))-primepi(1<
    				

Formula

a(n) = primepi(2^(n+1)) - primepi(2^n).
a(n) = A095005(n)+A095006(n) = A095007(n) + A095008(n) = A095013(n) + A095014(n) = A095015(n) + A095016(n) (for n > 1) = A095021(n) + A095022(n) + A095023(n) + A095024(n) = A095019(n) + A095054(n) = A095020(n) + A095055(n) = A095060(n) + A095061(n) = A095063(n) + A095064(n) = A095094(n) + A095095(n).

Extensions

More terms from Labos Elemer, May 13 2004
Entries checked by Robert G. Wilson v, Mar 20 2006

A272020 Irregular triangle read by rows: strictly decreasing sequences of positive numbers given in lexicographic order.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 3, 2, 3, 2, 1, 4, 4, 1, 4, 2, 4, 2, 1, 4, 3, 4, 3, 1, 4, 3, 2, 4, 3, 2, 1, 5, 5, 1, 5, 2, 5, 2, 1, 5, 3, 5, 3, 1, 5, 3, 2, 5, 3, 2, 1, 5, 4, 5, 4, 1, 5, 4, 2, 5, 4, 2, 1, 5, 4, 3, 5, 4, 3, 1, 5, 4, 3, 2, 5, 4, 3, 2, 1, 6, 6, 1, 6, 2, 6, 2, 1
Offset: 0

Views

Author

Peter Kagey, Apr 17 2016

Keywords

Comments

Length of n-th row given by A000120(n);
Min of n-th row given by A001511(n);
Sum of n-th row given by A029931(n);
Product of n-th row given by A096111(n);
Max of n-th row given by A113473(n);
Numerator of sum of reciprocals of n-th row given by A116416(n);
Denominator of sum of reciprocals of n-th row given by A116417(n);
LCM of n-th row given by A271410(n).
The first appearance of n is at A001787(n - 1).
n-th row begins at index A000788(n - 1) for n > 0.
Also the reversed positions of 1's in the reversed binary expansion of n. Also the reversed partial sums of the n-th composition in standard order (row n of A066099). Reversing rows gives A048793. - Gus Wiseman, Jan 17 2023

Examples

			Row n is given by the exponents in the binary expansion of 2*n. For example, row 5 = [3, 1] because 2*5 = 2^3 + 2^1.
Row 0: []
Row 1: [1]
Row 2: [2]
Row 3: [2, 1]
Row 4: [3]
Row 5: [3, 1]
Row 6: [3, 2]
Row 7: [3, 2, 1]
		

Crossrefs

Cf. A048793 gives the rows in reverse order.
Cf. A272011.
Lasts are A001511.
Heinz numbers of the rows are A019565.
Firsts are A029837 or A070939 or A113473.
Row sums are A029931.
A066099 lists standard comps, partial sums A358134, weighted sum A359042.

Programs

  • Maple
    T:= proc(n) local i, l, m; l:= NULL; m:= n;
          if n=0 then return [][] fi; for i while m>0 do
          if irem(m, 2, 'm')=1 then l:=i, l fi od; l
        end:
    seq(T(n), n=0..35);  # Alois P. Heinz, Nov 27 2024
  • Mathematica
    Table[Reverse[Join@@Position[Reverse[IntegerDigits[n,2]],1]],{n,0,100}] (* Gus Wiseman, Jan 17 2023 *)

A007306 Denominators of Farey tree fractions (i.e., the Stern-Brocot subtree in the range [0,1]).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19, 17, 18, 21, 19, 14, 13, 17, 18, 15, 13, 14, 11, 7, 8, 13, 17, 16, 19, 23, 22, 17, 19, 26, 29, 25, 24
Offset: 0

Views

Author

Keywords

Comments

Also number of odd entries in n-th row of triangle of Stirling numbers of the second kind (A008277). - Benoit Cloitre, Feb 28 2004
Apparently (except for the first term) the number of odd entries in the alternated diagonals of Pascal's triangle at 45 degrees slope. - Javier Torres (adaycalledzero(AT)hotmail.com), Jul 26 2009
The Kn3 and Kn4 triangle sums, see A180662 for their definitions, of Sierpiński's triangle A047999 equal a(n+1). - Johannes W. Meijer, Jun 05 2011
From Yosu Yurramendi, Jun 23 2014: (Start)
If the terms (n>1) are written as an array:
2,
3, 3,
4, 5, 5, 4,
5, 7, 8, 7, 7, 8, 7, 5,
6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9, 6,
7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19,17,18,
then the sum of the k-th row is 2*3^(k-2), each column is an arithmetic progression. The differences of the arithmetic progressions give the sequence itself (a(2^(m+1)+1+k) - a(2^m+1+k) = a(k+1), m >= 1, 1 <= k <= 2^m), because a(n) = A002487(2*n-1) and A002487 has these properties. A071585 also has these properties. Each row is a palindrome: a(2^(m+1)+1-k) = a(2^m+k), m >= 0, 1 <= k <= 2^m.
If the terms (n>0) are written in this way:
1,
2, 3,
3, 4, 5, 5,
4, 5, 7, 8, 7, 7, 8, 7,
5, 6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, 11, 9,
6, 7, 11, 14, 13, 15, 18, 17, 13, 14, 19, 21, 18, 17, 19, 16, 11, 11, 16, 19,
each column is an arithmetic progression and the steps also give the sequence itself (a(2^(m+1)+k) - a(2^m+k) = a(k), m >= 0, 0 <= k < 2^m). Moreover, by removing the first term of each column:
a(2^(m+1)+k) = A049448(2^m+k+1), m >= 0, 0 <= k < 2^m.
(End)
k > 1 occurs in this sequence phi(k) = A000010(k) times. - Franklin T. Adams-Watters, May 25 2015
Except for the initial 1, this is the odd bisection of A002487. The even bisection of A002487 is A002487 itself. - Franklin T. Adams-Watters, May 25 2015
For all m >= 0, max_{k=1..2^m} a(2^m+k) = A000045(m+3) (Fibonacci sequence). - Yosu Yurramendi, Jun 05 2016
For all n >= 2, max(m: a(2^m+k) = n, 1<=k<=2^m) = n-2. - Yosu Yurramendi, Jun 05 2016
a(2^m+1) = m+2, m >= 0; a(2^m+2) = 2m+1, m>=1; min_{m>=0, k=1..2^m} a(2^m+k) = m+2; min_{m>=2, k=2..2^m-1} a(2^m+k) = 2m+1. - Yosu Yurramendi, Jun 06 2016
a(2^(m+2) + 2^(m+1) - k) - a(2^(m+1) + 2^m-k) = 2*a(k+1), m >= 0, 0 <= k <= 2^m. - Yosu Yurramendi, Jun 09 2016
If the initial 1 is omitted, this is the number of nonzero entries in row n of the generalized Pascal triangle P_2, see A282714 [Leroy et al., 2017]. - N. J. A. Sloane, Mar 02 2017
Apparently, this sequence was introduced by Johann Gustav Hermes in 1894. His paper gives a strong connection between this sequence and the so-called "Gaussian brackets" ("Gauss'schen Klammer"). For an independent discussion about Gaussian brackets, see the relevant MathWorld article and the article by Herzberger (1943). Srinivasan (1958) gave another, more modern, explanation of the connection between this sequence and the Gaussian brackets. (Parenthetically, J. G. Hermes is the mathematician who completed or constructed the regular polygon with 65537 sides.) - Petros Hadjicostas, Sep 18 2019

Examples

			[ 0/1; 1/1; ] 1/2; 1/3, 2/3; 1/4, 2/5, 3/5, 3/4; 1/5, 2/7, 3/8, 3/7, 4/7, 5/8, 5/7, 4/5; ...
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 61.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 158.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [1] cat [&+[Binomial(n+k,2*k) mod 2: k in [0..n]]: n in [0..80]]; // Vincenzo Librandi, Jun 10 2019
  • Maple
    A007306 := proc(n): if n=0 then 1 else A002487(2*n-1) fi: end: A002487 := proc(m) option remember: local a, b, n; a := 1; b := 0; n := m; while n>0 do if type(n, odd) then b := a + b else a := a + b end if; n := floor(n/2); end do; b; end proc: seq(A007306(n),n=0..77); # Johannes W. Meijer, Jun 05 2011
  • Mathematica
    a[0] = 1; a[n_] := Sum[ Mod[ Binomial[n+k-1, 2k] , 2], {k, 0, n}]; Table[a[n], {n, 0, 77}] (* Jean-François Alcover, Dec 16 2011, after Paul Barry *)
    a[0] = 0; a[1] = 1;
    Flatten[{1,Table[a[2*n] = a[n]; a[2*n + 1] = a[n] + a[n + 1], {n, 0, 50}]}] (* Horst H. Manninger, Jun 09 2021 *)
  • PARI
    {a(n) = if( n<1, n==0, n--; sum( k=0, n, binomial( n+k, n-k)%2))};
    
  • PARI
    {a(n) = my(m); if( n<2, n>=0, m = 2^length( binary( n-1)); a(n - m/2) + a(m-n+1))}; /* Michael Somos, May 30 2005 */
    
  • Python
    from sympy import binomial
    def a(n):
        return 1 if n<1 else sum(binomial(n + k - 1, 2*k) % 2 for k in range(n + 1))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Mar 22 2017
    
  • Python
    from functools import reduce
    def A007306(n): return sum(reduce(lambda x,y:(x[0],sum(x)) if int(y) else (sum(x),x[1]),bin((n<<1)-1)[-1:2:-1],(1,0))) if n else 1 # Chai Wah Wu, May 18 2023
    
  • R
    maxrow <- 6 # by choice
    a <- c(1,2)
    for(m in 0:maxrow) for(k in 1:2^m){
      a[2^(m+1)+k  ] <- a[2^m+k] + a[k]
      a[2^(m+1)-k+1] <- a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jan 05 2015
    
  • R
    # Given n, compute directly a(n)
    # by taking into account the binary representation of n-1
    # aa <- function(n){
      b <- as.numeric(intToBits(n))
      l <- sum(b)
      m <- which(b == 1)-1
      d <- 1
      if(l > 1) for(j in 1:(l-1)) d[j] <- m[j+1]-m[j]+1
      f <- c(1,m[1]+2) # In A002487: f <- c(0,1)
      if(l > 1) for(j in 3:(l+1)) f[j] <- d[j-2]*f[j-1]-f[j-2]
      return(f[l+1])
    }
    # a(0) = 1, a(1) = 1, a(n) = aa(n-1)   n > 1
    #
    # Example
    n <- 73
    aa(n-1)
    #
    # Yosu Yurramendi, Dec 15 2016
    
  • Sage
    @CachedFunction
    def a(n):
        return a((odd_part(n-1)+1)/2)+a((odd_part(n)+1)/2) if n>1 else 1
    [a(n) for n in (0..77)] # after Alessandro De Luca, Peter Luschny, May 20 2014
    
  • Sage
    def A007306(n):
        if n == 0: return 1
        M = [1, 1]
        for b in (n-1).bits():
            M[b] = M[0] + M[1]
        return M[1]
    print([A007306(n) for n in (0..77)]) # Peter Luschny, Nov 28 2017
    
  • Scheme
    (define (A007306 n) (if (zero? n) 1 (A002487 (+ n n -1)))) ;; Code for A002487 given in that entry. - Antti Karttunen, Mar 21 2017
    

Formula

Recurrence: a(0) to a(8) are 1, 1, 2, 3, 3, 4, 5, 5, 4; thereafter a(n) = a(n-2^p) + a(2^(p+1)-n+1), where 2^p < n <= 2^(p+1). [J. Hermes, Math. Ann., 1894; quoted by Dickson, Vol. 1, p. 158] - N. J. A. Sloane, Mar 24 2019
a(4*n) = -a(n)+2*a(2*n); a(4*n+1) = -a(n)+a(2*n)+a(2*n+1); a(4*n+2)=a(n)-a(2*n)+2*a(2*n+1); a(4*n+3) = 4*a(n)-4*a(2*n)+3*a(2*n+1). Thus a(n) is a 2-regular sequence. - Jeffrey Shallit, Dec 26 2024
For n > 0, a(n) = A002487(n-1) + A002487(n) = A002487(2*n-1).
a(0) = 1; a(n) = Sum_{k=0..n-1} C(n-1+k, n-1-k) mod 2, n > 0. - Benoit Cloitre, Jun 20 2003
a(n+1) = Sum_{k=0..n} binomial(2*n-k, k) mod 2; a(n) = 0^n + Sum_{k=0..n-1} binomial(2(n-1)-k, k) mod 2. - Paul Barry, Dec 11 2004
a(n) = Sum_{k=0..n} C(n+k,2*k) mod 2. - Paul Barry, Jun 12 2006
a(0) = a(1) = 1; a(n) = a(A003602(n-1)) + a(A003602(n)), n > 1. - Alessandro De Luca, May 08 2014
a(n) = A007305(n+(2^m-1)), m=A029837(n), n=1,2,3,... . - Yosu Yurramendi, Jul 04 2014
a(n) = A007305(2^(m+1)-n) - A007305(2^m-n), m >= (A029837(n)+1), n=1,2,3,... - Yosu Yurramendi, Jul 05 2014
a(2^m) = m+1, a(2^m+1) = m+2 for m >= 0. - Yosu Yurramendi, Jan 01 2015
a(n+2) = A007305(n+2) + A047679(n) n >= 0. - Yosu Yurramendi, Mar 30 2016
a(2^m+2^r+k) = a(2^r+k)(m-r+1) - a(k), m >= 2, 0 <= r <= m-1, 0 <= k < 2^r. Example: a(73) = a(2^6+2^3+1) = a(2^3+1)*(6-3+1) - a(1) = 5*4 - 1 = 19 . - Yosu Yurramendi, Jul 19 2016
From Antti Karttunen, Mar 21 2017 & Apr 12 2017: (Start)
For n > 0, a(n) = A001222(A277324(n-1)) = A001222(A260443(n-1)*A260443(n)).
The following decompositions hold for all n > 0:
a(n) = A277328(n-1) + A284009(n-1).
a(n) = A283986(n) + A283988(n) = A283987(n) + 2*A283988(n).
a(n) = 2*A284265(n-1) + A284266(n-1).
a(n) = A284267(n-1) + A284268(n-1).
a(n) = A284565(n-1) + A284566(n-1).
a(n) = A285106(n-1) + A285108(n-1) = A285107(n-1) + 2*A285108(n-1). (End)
a(A059893(n)) = a(n+1) for n > 0. - Yosu Yurramendi, May 30 2017
a(n) = A287731(n) + A287732(n) for n > 0. - I. V. Serov, Jun 09 2017
a(n) = A287896(n) + A288002(n) for n > 1.
a(n) = A287896(n-1) + A002487(n-1) - A288002(n-1) for n > 1.
a(n) = a(n-1) + A002487(n-1) - 2*A288002(n-1) for n > 1. - I. V. Serov, Jun 14 2017
From Yosu Yurramendi, May 14 2019: (Start)
For m >= 0, M >= m, 0 <= k < 2^m,
a((2^(m+1) + A119608(2^m+k+1))*2^(M-m) - A000035(2^m+k)) =
a((2^(m+2) - A119608(2^m+k+1))*2^(M-m) - A000035(2^m+k)-1) =
a(2^(M+2) - (2^m+k)) = a(2^(M+1) + (2^m+k) + 1) =
a(2^m+k+1)*(M-m) + a(2^(m+1)+2^m+k+1). (End)
a(k) = sqrt(A007305(2^(m+1)+k)*A047679(2^(m+1)+k-2) - A007305(2^m+k)*A047679(2^m+k-2)), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jun 09 2019
G.f.: 1 + x * (1 + x) * Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Jul 19 2019
Conjecture: a(n) = a(n-1) + b(n-1) - 2*(a(n-1) mod b(n-1)) for n > 1 with a(0) = a(1) = 1 where b(n) = a(n) - b(n-1) for n > 1 with b(1) = 1. - Mikhail Kurkov, Mar 13 2022

Extensions

Formula fixed and extended by Franklin T. Adams-Watters, Jul 07 2009
Incorrect Maple program removed by Johannes W. Meijer, Jun 05 2011

A080791 Number of nonleading 0's in binary expansion of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 4
Offset: 0

Views

Author

Cino Hilliard, Mar 25 2003

Keywords

Comments

In this version we consider the number zero to have no nonleading 0's, thus a(0) = 0. The variant A023416 has a(0) = 1.
Number of steps required to reach 1, starting at n + 1, under the operation: if x is even divide by 2 else add 1. This is the x + 1 problem (as opposed to the 3x + 1 problem).

Examples

			a(4) = 2 since 4 in binary is 100, which has two zeros.
a(5) = 1 since 5 in binary is 101, which has only one zero.
		

Crossrefs

Programs

  • Maple
    seq(numboccur(0, Bits[Split](n)), n=0..100); # Robert Israel, Oct 26 2017
  • Mathematica
    {0}~Join~Table[Last@ DigitCount[n, 2], {n, 120}] (* Michael De Vlieger, Mar 07 2016 *)
    f[n_] := If[OddQ@ n, f[n -1] -1, f[n/2] +1]; f[0] = f[1] = 0; Array[f, 105, 0] (* Robert G. Wilson v, May 21 2017 *)
    Join[{0}, Table[Count[IntegerDigits[n, 2], 0], {n, 1, 100}]] (* Vincenzo Librandi, Oct 27 2017 *)
  • PARI
    a(n)=if(n,a(n\2)+1-n%2)
    
  • PARI
    A080791(n)=if(n,logint(n,2)+1-hammingweight(n)) \\ M. F. Hasler, Oct 26 2017
    
  • Python
    def a(n): return bin(n)[2:].count("0") if n>0 else 0 # Indranil Ghosh, Apr 10 2017
  • Scheme
    ;; with memoizing definec-macro from Antti Karttunen's IntSeq-library)
    (define (A080791 n) (- (A029837 (+ 1 n)) (A000120 n)))
    ;; Alternative version based on a simple recurrence:
    (definec (A080791 n) (if (zero? n) 0 (+ (A080791 (- n 1)) (A007814 n) (A036987 (- n 1)) -1)))
    ;; from Antti Karttunen, Dec 12 2013
    

Formula

From Antti Karttunen, Dec 12 2013: (Start)
a(n) = A029837(n+1) - A000120(n).
a(0) = 0, and for n > 0, a(n) = (a(n-1) + A007814(n) + A036987(n-1)) - 1.
For all n >= 1, a(A054429(n)) = A048881(n-1) = A000120(n) - 1.
Equally, for all n >= 1, a(n) = A000120(A054429(n)) - 1.
(End)
Recurrence: a(2n) = a(n) + 1 (for n > 0), a(2n + 1) = a(n). - Ralf Stephan from Cino Hilliard's PARI program, Dec 16 2013. Corrected by Alonso del Arte, May 21 2017 after consultation with Chai Wah Wu and Ray Chandler, "n > 0" added by M. F. Hasler, Oct 26 2017
a(n) = A023416(n) for all n > 0. - M. F. Hasler, Oct 26 2017
G.f. g(x) satisfies g(x) = (1+x)*g(x^2) + x^2/(1-x^2). - Robert Israel, Oct 26 2017

A374629 Irregular triangle listing the leaders of maximal weakly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 3, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 20 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 58654th composition in standard order is (1,1,3,2,4,1,1,1,2), with maximal weakly increasing runs ((1,1,3),(2,4),(1,1,1,2)), so row 58654 is (1,2,1).
The nonnegative integers, corresponding compositions, and leaders of maximal weakly increasing runs begin:
    0:      () -> ()      15: (1,1,1,1) -> (1)
    1:     (1) -> (1)     16:       (5) -> (5)
    2:     (2) -> (2)     17:     (4,1) -> (4,1)
    3:   (1,1) -> (1)     18:     (3,2) -> (3,2)
    4:     (3) -> (3)     19:   (3,1,1) -> (3,1)
    5:   (2,1) -> (2,1)   20:     (2,3) -> (2)
    6:   (1,2) -> (1)     21:   (2,2,1) -> (2,1)
    7: (1,1,1) -> (1)     22:   (2,1,2) -> (2,1)
    8:     (4) -> (4)     23: (2,1,1,1) -> (2,1)
    9:   (3,1) -> (3,1)   24:     (1,4) -> (1)
   10:   (2,2) -> (2)     25:   (1,3,1) -> (1,1)
   11: (2,1,1) -> (2,1)   26:   (1,2,2) -> (1)
   12:   (1,3) -> (1)     27: (1,2,1,1) -> (1,1)
   13: (1,2,1) -> (1,1)   28:   (1,1,3) -> (1)
   14: (1,1,2) -> (1)     29: (1,1,2,1) -> (1,1)
		

Crossrefs

Row-leaders are A065120.
Row-lengths are A124766.
Row-sums are A374630.
Positions of constant rows are A374633, counted by A374631.
Positions of strict rows are A374768, counted by A374632.
For other types of runs we have A374251, A374515, A374683, A374740, A374757.
Positions of non-weakly decreasing rows are A375137.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Ranks of anti-run compositions are A333489, counted by A003242.
- Run-length transform is A333627, length A124767, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[First/@Split[stc[n],LessEqual],{n,0,100}]

A062383 a(0) = 1: for n>0, a(n) = 2^floor(log_2(n)+1) or a(n) = 2*a(floor(n/2)).

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128
Offset: 0

Views

Author

Antti Karttunen, Jun 19 2001

Keywords

Comments

Informally, write down 1 followed by 2^k 2^(k-1) times, for k = 1,2,3,4,... These are the denominators of the binary van der Corput sequence (see A030101 for the numerators). - N. J. A. Sloane, Dec 01 2019
a(n) is the denominator of the form 2^k needed to make the ratio (2n-1)/2^k lie in the interval [1-2], i.e. such ratios are 1/1, 3/2, 5/4, 7/4, 9/8, 11/8, 13/8, 15/8, 17/16, 19/16, 21/16, ... where the numerators are A005408 (The odd numbers).
Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the diagonal and 1 elsewhere. For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /. The order of this matrix as an element of GL(n,2) is a(n-1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 14 2001
A006257(n)/a(n) = (0, 0.1, 0.01, 0.11, 0.001, ...) enumerates all binary fractions in the unit interval [0, 1). - Fredrik Johansson, Aug 14 2006
a(n) = maximum of row n+1 in A240769. - Reinhard Zumkeller, Apr 13 2014
This is the discriminator sequence for the odious numbers. - N. J. A. Sloane, May 10 2016
From Jianing Song, Jul 05 2025: (Start)
a(n) is the period of {binomial(N,n) mod 2: N in Z}. For the general result, see A349593.
Since the modulus (2) is a prime, the remainder of binomial(N,n) is given by Lucas's theorem. (End)

Crossrefs

Apart from the initial term, equals 2 * A053644. MASKTRANSi(A062383) seems to give a signed form of A038712. (See identities at A053644). floor_log_2 given in A054429.
Equals A003817(n)+1. Cf. A002884.
Bisection of A065285. Cf. A076877.
Equals for n>=1 the r(n) sequence of A160464. - Johannes W. Meijer, May 24 2009
Equals the r(n) sequence of A162440 for n>=1. - Johannes W. Meijer, Jul 06 2009
Discriminator of the odious numbers (A000069). - Jeffrey Shallit, May 08 2016
Column 2 of A349593. A064235 (if offset 0), A385552, A385553, and A385554 are respectively columns 3, 5, 6, and 10.

Programs

  • Haskell
    import Data.List (transpose)
    a062383 n = a062383_list !! n
    a062383_list = 1 : zs where
       zs = 2 : (map (* 2) $ concat $ transpose [zs, zs])
    -- Reinhard Zumkeller, Aug 27 2014, Mar 13 2014
    
  • Magma
    [2^Floor(Log(2,2*n+1)): n in [0..70]]; // Bruno Berselli, Mar 04 2016
    
  • Maple
    [seq(2^(floor_log_2(j)+1),j=0..127)]; or [seq(coerce1st_octave((2*j)+1),j=0..127)]; or [seq(a(j),j=0..127)];
    coerce1st_octave := proc(r) option remember; if(r < 1) then coerce1st_octave(2*r); else if(r >= 2) then coerce1st_octave(r/2); else (r); fi; fi; end;
    A062383 := proc(n)
        option remember;
        if n = 0 then
            1 ;
        else
            2*procname(floor(n/2));
        end if;
    end proc:
    A062383 := n -> 1 + Bits:-Iff(n, n):
    seq(A062383(n), n=0..69); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[n_] := a[n] = 2 a[n/2 // Floor]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *)
    Table[2^Floor[Log2[n] + 1], {n, 0, 20}] (* Eric W. Weisstein, Nov 17 2017 *)
    2^Floor[Log2[Range[0, 20]] + 1] (* Eric W. Weisstein, Nov 17 2017 *)
    2^BitLength[Range[0, 100]] (* Paolo Xausa, Jan 29 2025 *)
  • PARI
    { a=1; for (n=0, 1000, write("b062383.txt", n, " ", a*=ceil((n + 1)/a)) ) } \\ Harry J. Smith, Aug 06 2009
    
  • PARI
    a(n)=1<<(log(2*n+1)\log(2)) \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def A062383(n): return 1 << n.bit_length() # Chai Wah Wu, Jun 30 2022

Formula

a(1) = 1 and a(n+1) = a(n)*ceiling(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1-x) * (1 + Sum_{k>=0} 2^k*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = A142151(2*n)/2 + 1. - Reinhard Zumkeller, Jul 15 2008
log(a(n))/log(2) = A029837(n+1). - Johannes W. Meijer, Jul 06 2009
a(n+1) = a(n) + A099894(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = A264619(n) - A264618(n). - Reinhard Zumkeller, Dec 01 2015
a(n) is the smallest power of 2 > n. - Chai Wah Wu, Nov 04 2016
a(n) = 2^ceiling(log_2(n+1)). - M. F. Hasler, Sep 20 2017
Previous Showing 21-30 of 262 results. Next