A084326
a(0)=0, a(1)=1; for n>1, a(n) = 6*a(n-1)-4*a(n-2).
Original entry on oeis.org
0, 1, 6, 32, 168, 880, 4608, 24128, 126336, 661504, 3463680, 18136064, 94961664, 497225728, 2603507712, 13632143360, 71378829312, 373744402432, 1956951097344, 10246728974336, 53652569456640, 280928500842496, 1470960727228416, 7702050360000512, 40328459251089408
Offset: 0
a(5) = 6 * a(4) - 4 * a(3) = 6*168 - 4*32 = 880.
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
- Yuhan Jiang, The doubly asymmetric simple exclusion process, the colored Boolean process, and the restricted random growth model, arXiv:2312.09427 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (6,-4).
-
[n le 2 select (n-1) else 6*Self(n-1)-4*Self(n-2): n in [1..25]]; // Vincenzo Librandi, May 15 2015
-
Join[{a = 0, b = 1}, Table[c = 6 * b - 4 * a; a = b; b = c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
LinearRecurrence[{6, -4}, {0, 1}, 30] (* Vincenzo Librandi, May 15 2015 *)
-
a(n)=(1/2)*sum(k=0,n,binomial(n,k)*fibonacci(3*k))
-
a(n)={2^(n-1)*fibonacci(2*n)} \\ Andrew Howroyd, Oct 27 2020
-
[lucas_number1(n,6,4) for n in range(0, 22)] # Zerinvary Lajos, Apr 22 2009
A093129
Binomial transform of Fibonacci(2n-1) (A001519).
Original entry on oeis.org
1, 2, 5, 15, 50, 175, 625, 2250, 8125, 29375, 106250, 384375, 1390625, 5031250, 18203125, 65859375, 238281250, 862109375, 3119140625, 11285156250, 40830078125, 147724609375, 534472656250, 1933740234375, 6996337890625
Offset: 0
-
a:=[1,2];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # G. C. Greubel, Dec 27 2019
-
I:=[1,2]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Dec 27 2019
-
a:= n-> (<<0|1>, <-5|5>>^n. <<1,2>>)[1,1]:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 29 2015
-
LinearRecurrence[{5, -5}, {1, 2}, 25] (* Jean-François Alcover, May 11 2019 *)
Table[If[EvenQ[n], 5^(n/2)*Fibonacci[n-1], 5^((n-1)/2)*LucasL[n-1]], {n,0,30}] (* G. C. Greubel, Dec 27 2019 *)
-
my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+5*x^2)) \\ G. C. Greubel, Dec 27 2019
-
[lucas_number2(n,5,5) for n in range(-1,25)] # Zerinvary Lajos, Jul 08 2008
A057085
a(n) = 9*a(n-1) - 9*a(n-2) for n>1, with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 9, 72, 567, 4455, 34992, 274833, 2158569, 16953624, 133155495, 1045816839, 8213952096, 64513217313, 506693386953, 3979621526760, 31256353258263, 245490585583527, 1928108090927376, 15143557548094641, 118939045114505385, 934159388097696696
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=-9.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=9.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (9,-9).
-
[3^(n-1)*Fibonacci(2*n): n in [0..30]]; // G. C. Greubel, May 02 2022
-
f[n_]:= Fibonacci[2n]*3^(n-1); Table[f@n, {n, 0, 20}] (* or *)
a[0]=0; a[1]=1; a[n_]:= a[n]= 9(a[n-1] -a[n-2]); Table[a[n], {n, 0, 20}] (* or *)
CoefficientList[Series[x/(1-9x +9x^2), {x, 0, 20}], x] (* Robert G. Wilson v Sep 21 2006 *)
-
a(n)=(1/3)*sum(k=0,n,binomial(n,k)*fibonacci(4*k)) \\ Benoit Cloitre
-
concat(0, Vec(x/(1-9*x+9*x^2) + O(x^30))) \\ Colin Barker, Jun 14 2015
-
[lucas_number1(n,9,9) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
A057086
Scaled Chebyshev U-polynomials evaluated at sqrt(10)/2.
Original entry on oeis.org
1, 10, 90, 800, 7100, 63000, 559000, 4960000, 44010000, 390500000, 3464900000, 30744000000, 272791000000, 2420470000000, 21476790000000, 190563200000000, 1690864100000000, 15003009000000000, 133121449000000000, 1181184400000000000, 10480629510000000000
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=10, q=-10.
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=10.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (10,-10).
-
[(10)^n*Evaluate(DicksonSecond(n, 1/10), 1): n in [0..30]]; // G. C. Greubel, May 02 2022
-
Join[{a=1,b=10},Table[c=10*b-10*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 20 2011 *)
-
Vec(1/(1-10*x+10*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
-
[lucas_number1(n,10,10) for n in range(1, 20)] # Zerinvary Lajos, Apr 26 2009
A099453
Expansion of 1/(1 - 7*x + 11*x^2).
Original entry on oeis.org
1, 7, 38, 189, 905, 4256, 19837, 92043, 426094, 1970185, 9104261, 42057792, 194257673, 897167999, 4143341590, 19134543141, 88365044497, 408075336928, 1884511869029, 8702754376995, 40189650079646, 185597252410577, 857094615997933, 3958092535469184, 18278606972307025
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Dror Bar-Natan, The Rolfsen Knot Table.
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
- J. Pan, Multiple Binomial Transforms and Families of Integer Sequences , J. Int. Seq. 13 (2010), 10.4.2, F^(3).
- Index entries for linear recurrences with constant coefficients, signature (7,-11).
-
a:=[1,7];; for n in [3..30] do a[n]:=7*a[n-1]-11*a[n-2]; od; a; # G. C. Greubel, May 21 2019
-
I:=[1,7]; [n le 2 select I[n] else 7*Self(n-1) -11*Self(n-2): n in [1..30]]; // G. C. Greubel, May 21 2019
-
LinearRecurrence[{7,-11}, {1,7}, 30] (* G. C. Greubel, May 21 2019 *)
-
Vec(1/(1-7*x+11*x^2) + O(x^30)) \\ Michel Marcus, Sep 09 2017
-
[lucas_number1(n,7,11) for n in range(1, 30)] # Zerinvary Lajos, Apr 23 2009
A216219
Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=5 or if k-n>=5, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 0, 5, 10, 10, 5, 0, 0, 5, 15, 20, 15, 5, 0, 0, 0, 20, 35, 35, 20, 0, 0, 0, 0, 20, 55, 70, 55, 20, 0, 0, 0, 0, 0, 75, 125, 125, 75, 0, 0, 0, 0, 0, 0, 75, 200, 250, 200
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 20, 20, 0, 0, 0, 0, ...
1, 4, 10, 20, 35, 55, 75, 75, 0, 0, 0, ...
1, 5, 15, 35, 70, 125, 200, 275, 275, 0, 0, ...
0, 5, 20, 55, 125, 250, 450, 725, 1000, 1000, 0, ...
0, 0, 20, 75, 200, 450, 900, ...
A093131
Binomial transform of Fibonacci(2n).
Original entry on oeis.org
0, 1, 5, 20, 75, 275, 1000, 3625, 13125, 47500, 171875, 621875, 2250000, 8140625, 29453125, 106562500, 385546875, 1394921875, 5046875000, 18259765625, 66064453125, 239023437500, 864794921875, 3128857421875, 11320312500000, 40957275390625, 148184814453125
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1791
- G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
- S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
- M. Griffiths, Families of Sequences From a Class of Multinomial Sums, Journal of Integer Sequences, 15 (2012), #12.1.8.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- J. Pan, Multiple Binomial Transforms and Families of Integer Sequences, J. Int. Seq. 13 (2010), 10.4.2, F^(2) and absolute values of F^(-2).
- J. Pan, Some Properties of the Multiple Binomial Transform and the Hankel Transform of Shifted Sequences, J. Int. Seq. 14 (2011) # 11.3.4, remark 14.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Index entries for linear recurrences with constant coefficients, signature (5,-5).
-
a:=[0,1];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # G. C. Greubel, Dec 27 2019
-
I:=[0,1]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // G. C. Greubel, Dec 27 2019
-
seq(coeff(series(x/(1-5*x+5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 27 2019
-
CoefficientList[Series[x/(1-5x+5x^2), {x,0,30}], x] (* Michael De Vlieger, Dec 22 2019 *)
Table[If[EvenQ[n], 5^(n/2)*Fibonacci[n], 5^((n-1)/2)*LucasL[n]], {n,0,30}] (* G. C. Greubel, Dec 27 2019 *)
LinearRecurrence[{5,-5},{0,1},30] (* Harvey P. Dale, Mar 21 2023 *)
-
my(x='x+O('x^30)); concat([0], Vec(x/(1-5*x+5*x^2))) \\ G. C. Greubel, Dec 27 2019
-
def A093131_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x/(1-5*x+5*x^2) ).list()
A093131_list(30) # G. C. Greubel, Dec 27 2019
A260585
Number of ways to place 2n rooks on an n X n board, with 2 rooks in each row and each column, multiple rooks in a cell allowed, and exactly 2 rooks below the main diagonal.
Original entry on oeis.org
1, 11, 72, 367, 1630, 6680, 26082, 98870, 368045, 1354850, 4953503, 18035279, 65499031, 237511321, 860471110, 3115667369, 11277816388, 40814611818, 147692103728, 534404499040, 1933597628291, 6996040095316, 25312367524557, 91581960107817, 331348634005165
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..1000
- Esther M. Banaian, Generalized Eulerian Numbers and Multiplex Juggling Sequences, (2016). All College Thesis Program. Paper 24.
- E. Banaian, S. Butler, C. Cox, J. Davis, J. Landgraf and S. Ponce A generalization of Eulerian numbers via rook placements, arXiv:1508.03673 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (12,-59,155,-236,209,-100,20).
-
CoefficientList[Series[-(5*x^4 - 3*x^3 - x^2 - x + 1)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 16 2015 *)
-
Vec(-(5*x^6 - 3*x^5 - x^4 - x^3 + x^2)/(20*x^7 - 100*x^6 + 209*x^5 - 236*x^4 + 155*x^3 - 59*x^2 + 12*x - 1) + O(x^40)) \\ Michel Marcus, Aug 17 2015
A129267
Triangle with T(n,k) = T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k) and T(0,0)=1 .
Original entry on oeis.org
1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -1, -3, -2, 1, 1, 0, -2, -5, -3, 1, 1, 1, 2, -2, -7, -4, 1, 1, 1, 5, 7, -1, -9, -5, 1, 1, 0, 3, 12, 15, 1, -11, -6, 1, 1, -1, -3, 3, 21, 26, 4, -13, -7, 1, 1, -1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1
Offset: 0
Triangle begins:
1;
1, 1;
0, 1, 1;
-1, -1, 1, 1;
-1, -3, -2, 1, 1;
0, -2, -5, -3, 1, 1;
1, 2, -2, -7, -4, 1, 1;
1, 5, 7, -1, -9, -5, 1, 1;
0, 3, 12, 15, 1, -11, -6, 1, 1;
-1, -3, 3, 21, 26, 4, -13, -7, 1, 1;
-1, -7, -15, -3, 31, 40, 8, -15, -8, 1, 1;
-
T:= proc(n, k) option remember;
if k<0 or k>n then 0
elif n=0 and k=0 then 1
else T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 14 2020
-
m = {{a, 1}, {-1, 1}}; v[0]:= {0, 1}; v[n_]:= v[n] = m.v[n-1]; Table[CoefficientList[v[n][[1]], a], {n, 0, 10}]//Flatten (* Roger L. Bagula, Nov 15 2009 *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n==0 && k==0, 1, T[n-1, k-1] + T[n-1, k] - T[n-2, k-1] - T[n-2, k] ]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 14 2020 *)
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (n==0 and k==0): return 1
else: return T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) - T(n-2,k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 14 2020
Riordan array definition corrected by
Ralf Stephan, Jan 02 2014
A147748
Row sums of Riordan array ((1-3x+x^2)/(1-4x+3x^2), x(1-2x)/(1-4x+3x^2)).
Original entry on oeis.org
1, 2, 6, 20, 70, 250, 900, 3250, 11750, 42500, 153750, 556250, 2012500, 7281250, 26343750, 95312500, 344843750, 1247656250, 4514062500, 16332031250, 59089843750, 213789062500, 773496093750, 2798535156250, 10125195312500
Offset: 0
-
with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):= add(B(n)[1,k], k=1..9); od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010
-
(1 - 3x + x^2)/(1 - 5x + 5x^2) + O[x]^25 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 05 2016 *)
Comments