cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A000588 a(n) = 7*binomial(2n,n-3)/(n+4).

Original entry on oeis.org

0, 0, 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, 2187185, 8351070, 31865925, 121580760, 463991880, 1771605360, 6768687870, 25880277150, 99035193894, 379300783092, 1453986335186, 5578559816632, 21422369201800, 82336410323440, 316729578421620
Offset: 0

Views

Author

Keywords

Comments

a(n-5) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 6 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=3. Example: For n=3 there is only one path EEENNN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+3,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 7*x^4 + 35*x^5 + 154*x^6 + 637*x^7 + 2548*x^8 + 9996*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026014.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    a[n_] := 7*Binomial[2n, n-3]/(n + 4); Table[a[n],{n,0,27}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    A000588(n)=7*binomial(2*n,n-3)/(n+4) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    my(x='x+O('x^50)); concat([0, 0, 0], Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^7)) \\ Altug Alkan, Nov 01 2015

Formula

Expansion of x^3*C^7, where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. for the Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=6, a(n-3)=(-1)^(n-6)*coeff(charpoly(A,x),x^6). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/6)*x^3*1F1(7/2; 8; 4*x).
a(n) ~ 7*4^n/(sqrt(Pi)*n^(3/2)). (End)
0 = a(n)*(+1456*a(n+1) - 87310*a(n+2) + 132834*a(n+3) - 68068*a(n+4) + 9724*a(n+5)) + a(n+1)*(+8918*a(n+1) - 39623*a(n+2) + 51726*a(n+3) - 299*a(n+4) - 1573*a(n+5)) + a(n+2)*(-24696*a(n+2) - 1512*a(n+3) + 1008*a(n+4)) for all n in Z. - Michael Somos, Jan 22 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 27/14 - 26*Pi/(63*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 11364*log(phi)/(175*sqrt(5)) - 4583/350, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^(n)*W(x)dx, n>=0, where W(x) = sqrt(4/x - 1)*(x^3 - 5*x^2 + 6*x - 1)/(2*Pi). The function W(x) for x->0 tends to -infinity (which is its absolute minimum), and W(4) = 0. W(x) is a signed function on the interval x = (0, 4) where it has two maxima separated by one local minimum. - Karol A. Penson, Jun 17 2024
D-finite with recurrence -(n+4)*(n-3)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 30 2024
a(n) = A000108(n+3) - 5*A000108(n+2) + 6*A000108(n+1) - A000108(n). - Taras Goy, Dec 21 2024

Extensions

More terms from N. J. A. Sloane, Jul 13 2010

A001392 a(n) = 9*binomial(2n,n-4)/(n+5).

Original entry on oeis.org

1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, 6216210, 24582285, 96768360, 379629720, 1485507600, 5801732460, 22626756594, 88152205554, 343176898988, 1335293573130, 5193831553416, 20198233818840, 78542105700240, 305417807763705
Offset: 4

Views

Author

Keywords

Comments

Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. Zoran Sunic reference) - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+4,n-4). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026015.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

Formula

Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jun 20 2013
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x).
a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270.
Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Harvey P. Dale, Mar 03 2011

A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).

Original entry on oeis.org

1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640, 160878516023680, 622147386185325
Offset: 3

Views

Author

Keywords

Comments

a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [8*Binomial(2*n+1,n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
    CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
  • PARI
    {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
    

Formula

G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e.: a(n+3) = Integral_{x=0..4} x^n*W(x) dx, n >= 0, with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Jon E. Schoenfield, May 06 2010

A003519 a(n) = 10*C(2n+1, n-4)/(n+6).

Original entry on oeis.org

1, 10, 65, 350, 1700, 7752, 33915, 144210, 600875, 2466750, 10015005, 40320150, 161280600, 641886000, 2544619500, 10056336264, 39645171810, 155989499540, 612815891050, 2404551645100, 9425842448792, 36921502679600, 144539291740025, 565588532895750, 2212449261033375
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n+5,n-4). - Emeric Deutsch, May 30 2004
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly twice. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly twice. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [10*Binomial(2*n+1, n-4)/(n+6): n in [4..35]]; // Vincenzo Librandi, Feb 03 2016
  • Maple
    seq(10*binomial(2*n+1,n-4)/(n+6), n=4..50); # Robert Israel, Feb 02 2016
  • Mathematica
    Table[10 Binomial[2 n + 1, n - 4]/(n + 6), {n, 4, 28}] (* Michael De Vlieger, Feb 03 2016 *)
  • PARI
    a(n) = 10*binomial(2*n+1, n-4)/(n+6); \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: x^4*C(x)^10, where C(x)=[1-sqrt(1-4x)]/(2x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=9, a(n-5)=(-1)^(n-9)*coeff(charpoly(A,x),x^9). [Milan Janjic, Jul 08 2010]
a(n) = A214292(2*n,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
From Robert Israel, Feb 02 2016: (Start)
D-finite with recurrence a(n+1) = 2*(n+1)*(2n+3)/((n+7)*(n-3)) * a(n).
a(n) ~ 20 * 4^n/sqrt(Pi*n^3). (End)
E.g.f.: 5*BesselI(5,2*x)*exp(2*x)/x. - Ilya Gutkovskiy, Jan 23 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 34*Pi/(45*sqrt(3)) - 44/175.
Sum_{n>=4} (-1)^n/a(n) = 53004*log(phi)/(125*sqrt(5)) - 79048/875, where phi is the golden ratio (A001622). (End)

A071724 a(n) = 3*binomial(2n, n-1)/(n+2), n > 0, with a(0)=1.

Original entry on oeis.org

1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

Number of standard tableaux of shape (n+1,n-1) (n>=1). - Emeric Deutsch, May 30 2004
From Gus Wiseman, Apr 12 2019: (Start)
Also the number of integer partitions (of any positive integer) such that n is the maximum number of unit steps East or South in the Young diagram starting from the upper-left square and ending in a boundary square in the lower-right quadrant. Also the number of integer partitions fitting in a triangular partition of length n but not of length n - 1. For example, the a(0) = 1 through a(4) = 9 partitions are:
() (1) (2) (3)
(11) (22)
(21) (31)
(32)
(111)
(211)
(221)
(311)
(321)
(End)
The sequence (-1)^(n+1)*a(n), for n >= 1 and +1 for n = 0, is the so-called Z-sequence of the Riordan triangle A158909. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. - Wolfdieter Lang, Oct 22 2019

Crossrefs

Number of times n appears in A065770.
Column sums of A325189.
Row sums of A030237.

Programs

  • Magma
    [1] cat [3*Binomial(2*n,n-1)/(n+2): n in [1..29]]; // Vincenzo Librandi, Jul 12 2017
    
  • Maple
    A071724:= n-> 3*binomial(2*n, n-1)/(n+2); 1,seq(A071724(n), n=1..30); # G. C. Greubel, Mar 17 2021
  • Mathematica
    Join[{1}, Table[3Binomial[2n, n-1]/(n+2), {n,1,30}]] (* Vincenzo Librandi, Jul 12 2017 *)
    nn=7;
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    allip=Join@@Table[IntegerPartitions[n],{n,0,nn*(nn+1)/2}];
    Table[Length[Select[allip,otbmax[#]==n&]],{n,0,nn}] (* Gus Wiseman, Apr 12 2019 *)
  • PARI
    a(n)=if(n<1,n==0,3*(2*n)!/(n+2)!/(n-1)!)
    
  • Sage
    [1]+[3*n*catalan_number(n)/(n+2) for n in (1..30)] # G. C. Greubel, Mar 17 2021

Formula

a(n) = A000245(n), n>0.
G.f.: (C(x)-1)*(1-x)/x = (1 + x^2 * C(x)^3)*C(x), where C(x) is g.f. for Catalan numbers, A000108.
G.f.: ((1-sqrt(1-4*x))/(2*x)-1)*(1-x)/x = A(x) satisfies x^2*A(x)^2 + (x-1)*(2*x-1)*A(x) + (x-1)^2 = 0.
G.f.: 1 + x*C(x)^3, where C(x) is g.f. for the Catalan numbers (A000108). Sequence without the first term is the 3-fold convolution of the Catalan sequence. - Emeric Deutsch, May 30 2004
a(n) is the n-th moment of the function defined on the segment (0, 4) of x axis: a(n) = Integral_{x=0..4} x^n*(-x^(1/2)*cos(3*arcsin((1/2)*x^(1/2)))/Pi) dx, n=0, 1... . - Karol A. Penson, Sep 29 2004
D-finite with recurrence -(n+2)*(n-1)*a(n) + 2*n*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Jul 10 2017
a(n) ~ c*2^(2*n)*n^(-3/2), where c = 3/sqrt(Pi). - Stefano Spezia, Sep 23 2022
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 14*(Pi/(3*sqrt(3)) + 1)/9.
Sum_{n>=0} (-1)^n/a(n) = 18/25 - 164*log(phi)/(75*sqrt(5)), where phi is the golden ratio (A001622). (End)

A047072 Array A read by diagonals: A(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no step touches the line y=x unless x=0 or x=h.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 2, 3, 1, 1, 4, 5, 4, 5, 4, 1, 1, 5, 9, 5, 5, 9, 5, 1, 1, 6, 14, 14, 10, 14, 14, 6, 1, 1, 7, 20, 28, 14, 14, 28, 20, 7, 1, 1, 8, 27, 48, 42, 28, 42, 48, 27, 8, 1, 1, 9, 35, 75, 90, 42, 42, 90, 75, 35, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Array, A(n, k), begins as:
  1, 1,  1,  1,  1,   1,   1,   1, ...;
  1, 2,  1,  2,  3,   4,   5,   6, ...;
  1, 1,  2,  2,  5,   9,  14,  20, ...;
  1, 2,  2,  4,  5,  14,  28,  48, ...;
  1, 3,  5,  5, 10,  14,  42,  90, ...;
  1, 4,  9, 14, 14,  28,  42, 132, ...;
  1, 5, 14, 28, 42,  42,  84, 132, ...;
  1, 6, 20, 48, 90, 132, 132, 264, ...;
Antidiagonals, T(n, k), begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  1,  1,  1;
  1,  2,  2,  2,  1;
  1,  3,  2,  2,  3,  1;
  1,  4,  5,  4,  5,  4,  1;
  1,  5,  9,  5,  5,  9,  5,  1;
  1,  6, 14, 14, 10, 14, 14,  6,  1;
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >;
    function A(n,k)
      if k eq n then return b(n);
      elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1);
      else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1);
      end if; return A;
    end function;
    // [[A(n,k): k in [0..12]]: n in [0..12]];
    T:= func< n,k | A(n-k, k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 13 2022
    
  • Mathematica
    A[, 0]= 1; A[0, ]= 1; A[h_, k_]:= A[h, k]= If[(k-1>h || k-1Jean-François Alcover, Mar 06 2019 *)
  • SageMath
    def A(n,k):
        if (k==n): return 2*catalan_number(n-1) + 2*int(n==0)
        elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1)
        else: return binomial(n+k-1, k) - binomial(n+k-1, k-1)
    def T(n,k): return A(n-k, k)
    # [[A(n,k) for k in range(12)] for n in range(12)]
    flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 13 2022

Formula

A(n, n) = 2*[n=0] - A002420(n),
A(n, n+1) = 2*A000108(n-1), n >= 1.
From G. C. Greubel, Oct 13 2022: (Start)
T(n, n-1) = A000027(n-2) + 2*[n<3], n >= 1.
T(n, n-2) = A000096(n-4) + 2*[n<5], n >= 2.
T(n, n-3) = A005586(n-6) + 4*[n<7] - 2*[n=3], n >= 3.
T(2*n, n) = 2*A000108(n-1) + 3*[n=0].
T(2*n-1, n-1) = T(2*n+1, n+1) = A000180(n).
T(3*n, n) = A025174(n) + [n=0]
Sum_{k=0..n} T(n, k) = 2*A063886(n-2) + [n=0] - 2*[n=1]
Sum_{k=0..n} (-1)^k * T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n, k) = A047079(n). (End)

A130020 Triangle T(n,k), 0<=k<=n, read by rows given by [1,0,0,0,0,0,0,...] DELTA [0,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 14, 0, 1, 5, 14, 28, 42, 42, 0, 1, 6, 20, 48, 90, 132, 132, 0, 1, 7, 27, 75, 165, 297, 429, 429, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 0
Offset: 0

Views

Author

Philippe Deléham, Jun 16 2007

Keywords

Comments

Reflected version of A106566.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  2,   0;
  1, 3,  5,   5,   0;
  1, 4,  9,  14,  14,    0;
  1, 5, 14,  28,  42,   42,    0;
  1, 6, 20,  48,  90,  132,  132,    0;
  1, 7, 27,  75, 165,  297,  429,  429,    0;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430,    0;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862,  0;
  ...
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A047072, A059365, A099039, A106566, this sequence.
Cf. A000108 (Catalan numbers), A106566 (row reversal), A210736.

Programs

  • Magma
    A130020:= func< n,k | n eq 0 select 1 else (n-k)*Binomial(n+k-1, k)/n >;
    [A130020(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2022
    
  • Mathematica
    T[n_, k_]:= (n-k)Binomial[n+k-1, k]/n; T[0, 0] = 1;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 14 2019 *)
  • PARI
    {T(n, k) = if( k<0 || k>=n, n==0 && k==0, binomial(n+k, n) * (n-k)/(n+k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    @CachedFunction
    def A130020(n, k):
        if n==k: return add((-1)^j*binomial(n, j) for j in (0..n))
        return add(A130020(n-1, j) for j in (0..k))
    for n in (0..10) :
        [A130020(n, k) for k in (0..n)]  # Peter Luschny, Nov 14 2012
    

Formula

T(n, k) = A106566(n, n-k).
Sum_{k=0..n} T(n,k) = A000108(n).
T(n, k) = (n-k)*binomial(n+k-1, k)/n with T(0, 0) = 1. - Jean-François Alcover, Jun 14 2019
Sum_{k=0..floor(n/2)} T(n-k, k) = A210736(n). - G. C. Greubel, Jun 14 2022
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - z*c(x*z)) where c(z) = g.f. of A000108.

A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums are generalized Catalan numbers A064310. Diagonal sums are 0^n+(-1)^n*A030238(n-2). Inverse is A026729, as number triangle. Columns have g.f. (xc(-x))^k=((sqrt(1+4x)-1)/2)^k.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. - Philippe Deléham, May 31 2005

Examples

			Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ...
Triangle begins
  1;
  0,    1;
  0,   -1,    1;
  0,    2,   -2,   1;
  0,   -5,    5,  -3,    1;
  0,   14,  -14,   9,   -4,   1;
  0,  -42,   42, -28,   14,  -5,  1;
  0,  132, -132,  90,  -48,  20, -6,  1;
  0, -429,  429, -297, 165, -75, 27, -7, 1;
Production matrix is
  0,  1,
  0, -1,  1,
  0,  1, -1,  1,
  0, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1, -1,  1
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Cf. A106566 (unsigned version), A059365
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]];  Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    {T(n,k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))};
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017

Formula

T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005

A239903 List of Restricted-Growth Strings a_{k-1}a_{k-2}...a_{2}a_{1}, with k=2 and a_1 in {0,1} or k>2, a_{k-1}=1 and a_{j+1}>=1+a_j, for k-1>j>0.

Original entry on oeis.org

0, 1, 10, 11, 12, 100, 101, 110, 111, 112, 120, 121, 122, 123, 1000, 1001, 1010, 1011, 1012, 1100, 1101, 1110, 1111, 1112, 1120, 1121, 1122, 1123, 1200, 1201, 1210, 1211, 1212, 1220, 1221, 1222, 1223, 1230, 1231, 1232, 1233, 1234, 10000, 10001, 10010, 10011
Offset: 0

Views

Author

N. J. A. Sloane, Apr 06 2014

Keywords

Comments

We write the nonnegative integers as restricted growth strings (so called by J. Arndt in his book fxtbook.pdf, p. 325) in such a way that the Catalan numbers (cf. A000108) are expressed: 1=1, 10=2, 100=5, 1000=14, etc., 10...0 (with k zeros) = the k-th Catalan number. Once the entries of a restricted-growth string grow above 9, one would need commas or parentheses, say, to separate those entries. See Dejter (2017) for the precise definition.
In the paper "A system of numeration for middle-levels", restricted growth strings (RGSs) are defined as sequences that begin with either 0 or 1, with each successive number to the right being at least zero and at most one greater than its immediate left neighbor. Moreover, apart from case a(0), the RGSs are finite integer sequences of restricted growth which always start with 1 as their first element b_1 in position 1, and from then on, each successive element b_{i+1} in the sequence is restricted to be in range [0,(b_i)+1].
This sequence gives all such finite sequences in size-wise and lexicographic order, represented as decimal numbers by concatenating the integers of such finite sequences (e.g., from [1,2,0,1] we get 1201). The 58784th such sequence is [1, 2, 3, 4, 5, 6, 7, 8, 9, 9], thus a(58784) = 1234567899, after which comes the first RGS, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], where an element larger than 9 is present, which means that the decimal system employed here is unambiguous only up to n=58784. Note that 58785 = A000108(11)-1.
Also, if one considers Stanley's interpretation (u) of Catalan numbers, "sequences of a_1, a_2, ..., a_n of integers such that a_1 = 0 and 0 <= a_{i+1} <= a_{i} + 1" (e.g., 000, 001, 010, 011, 012 for C_3), and discards their initial zero, then one has a bijective correspondence with Dejter's RGSs of one element shorter length, which in turn are in bijective correspondence with the first C_n terms of this sequence (by discarding any leading zeros), from a(0) to a(C_n - 1). From this follows that the k-th Catalan number, A000108(k) (k>0), is represented in this system as 1 followed by k-1 zeros: a(1)=1, a(2)=10, a(5)=100, a(14)=1000, etc., and also that there exist exactly A000245(k) RGSs of length k.
Note how this differs from other number representations utilizing Catalan numbers, A014418 and A244159, in that while the latter are base-systems, where a simple weighted Sum_{k} digit(k)*C(k) recovers the natural number n (which the n-th numeral of such system represents), in contrast here it is the sum of appropriate terms in Catalan's Triangle (A009766, A030237), obtained by unranking a unique instance of a certain combinatorial structure (one of the Catalan interpretations), that gives a correspondence with a unique natural number. (Cf. also A014486.)
This sequence differs from "Semigreedy Catalan Representation", A244159, for the first time at n=10, where a(10) = 120, while A244159(10) = 121. That is also the first position where A244158(a(n)) <> n.
Please see Dejter's preprint for a more formal mathematical definition and how this number system is applied in relation to Havel's Conjecture on the existence of Hamiltonian cycles in the middle-levels graphs.
a(n) is given by the concatenation (with leading zeros removed) of the terms of row n + 23714 of A370222. - Paolo Xausa, Feb 17 2024

Examples

			Catalan's Triangle T(row,col) = A009766 begins with row n=0 and 0<=col<=n as:
  Row 0: 1
  Row 1: 1, 1
  Row 2: 1, 2,  2
  Row 3: 1, 3,  5,  5
  Row 4: 1, 4,  9, 14, 14
  Row 5: 1, 5, 14, 28, 42,  42
  Row 6: 1, 6, 20, 48, 90, 132, 132
  (the leftmost diagonal of 1s is "column 0").
  ...
For example, for n=38, we find that A081290(38)=14, which occurs on row A081288(n)-1 = 4, in columns A081288(n)-1 and A081288(n)-2, i.e., as T(4,4) and T(4,3). Thus we subtract 38-14 to get 24, and we see that the next term downward on the same diagonal, 28, is too large to accommodate into the same sum, so we go one diagonal up, starting now from T(3,2) = 5. This fits in, so we now have 24 - 5 = 19, and also the next term on the same diagonal, T(4,2) = 9, fits in, so we now have 19-9 = 10. The next term on the same diagonal, T(5,2) = 14, would not fit in anymore, so we rewind ourselves back to penultimate column, but one step up from where we started on this diagonal, so T(2,1) = 2, which fits in, 10 - 2 = 8, also the next one T(3,1) = 3, 8 - 3 = 5, and the next one T(4,1) = 4, 5 - 4 = 1, after which comes T(5,1) = 5 > 1, thus we jump to T(1,0) = 1, 1-1 = 0, and T(2,0)=1 would not fit anymore, thus next time the row would be zero, and the algorithm is ready with 1 (14), 2 (5+9), 3 (2+3+4) and 1 (1) terms collected, whose total sum 14+5+9+2+3+4+1 = 38, thus a(38) = 1231.
For n=20, the same algorithm results in 1 (14), 1 (5), 0 (not even the first tentative term T(2,1) = 2 from the column 1 would fit, so it is skipped), and from one row higher we get the needed 1 (1), so the total sum of these is 14+5+0+1 = 20, thus a(20) = 1101.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, third edition, Addison-Wesley, 1977, p. 192.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999, Exercise 19, interpretation (u).

Crossrefs

Cf. A000108 (Catalan numbers), A000245 (their first differences), A009766 (Catalan's triangle), A236855 (the sum of elements in k-th RGS), A236859 (for n>=1, gives the length of the initial ascent 123... in term a(n)), A244159 (different kinds of Catalan number systems).
Other Catalan combinatorial structures represented as integer sequences: A014486/A063171: Dyck words, parenthesizations, etc., A071156/A071158: Similar restricted words encoded with help of A007623 (Integers written in factorial base), A071153/A079436 (Łukasiewicz words).

Programs

  • Julia
    function CatalanNumerals(z)
        z == 0 && return 0
        f(n) = factorial(n)
        t(j, k) = div(f(k+j)*(k-j+1), f(j)*f(k+1))
        k, i = 2, 0
        while z >= t(i, i + 1) i += 1 end
        dig = fill(0, i); dig[1] = 1
        x = z - t(i - 1, i)
        m = i - 1
        while x > 0
            w, s, p = 0, 0, 0
            while w <= x
                p = w
                w += t(m - 1, m + s)
                s += 1
            end
            dig[k] = s - 1
            m -= 1; k += 1; x -= p
        end
        s = ""; for d in dig s *= string(d) end
        parse(Int, s)
    end
    [CatalanNumerals(n) for n in 0:42] |> println # Peter Luschny, Nov 10 2019
    
  • MATLAB
    function [ c ] = catrep(z)
    i=0; x=0; y=0; s=0;
    while z>=(factorial(2*i+1)*(2))/(factorial(i)*factorial(i+2))
    i=i+1;
    end
    y=(factorial(2*i-1)*(2))/(factorial(i-1)*factorial(i+1));
    a=zeros(1,i); a(1,1)=1; k=2; x=z-y; m=1;
    while x>0
    w=0; s=0; p=0;
    while w<=x
    p=w;
    w=w+(factorial(2*i-2*m+s-1)*(s+2))/(factorial(i-1-m)*factorial(i-m+s+1));
    s=s+1;
    end
    m=m+1; a(1,k)=s-1; k=k+1; x=x-p;
    end
    a
    end
    
  • Mathematica
    A239903full = With[{r = 2*Range[2, 11]-1}, Reverse[Map[FromDigits[r-#] &, Rest[Select[Subsets[Range[2, 21], {10}, 125477], Min[r-#] >= 0 &]]]]];
    A239903full[[;;100]] (* Paolo Xausa, Feb 17 2024 *)
  • Maxima
    define (t(j,k), (factorial(k+j)*(k-j+1))/(factorial(j)*factorial(k+1)));
    i:0;
    x:19;
    z:0;y:0;s:0;
    while x>=t(i,i+1) do (i:i+1);
    y:t(i-1,i);a:zeromatrix(1,i);a[1,1]:1;k:2;z:x-y;m:1;
    while (z>0) do (
    w:0,s:0,p=0,
    while (w<=z) do (
    p:w,
    w:w+t(i-1-m,i-m+s),
    s:s+1
    ),
    m:m+1,
    a[1,k]:s-1,k:k+1,
    z:z-p
    );
    print(a);
    
  • PARI
    \\ Valid for n<58786 (=A000108(11)).
    nxt(w)=if(w[1]==#w, vector(#w+1, i, i>#w), my(k=1); while(w[k]>w[k+1], w[k]=0; k++); w[k]++; w)
    seq(n)={my(a=vector(n), w=[1]); a[1]=0; for(i=2, #v, a[i]=fromdigits(Vecrev(w)); w=nxt(w)); a} \\ Andrew Howroyd, Jan 24 2023
  • Scheme
    (define (A239903_only_upto_16794 n) (if (zero? n) n (A235049 (A071159 (A081291 n))))) ;; Gives correct results only up to 16794.
    ;; The following gives correct results all the way up to n=58784.
    (define (A239903 n) (baselist-as-decimal (A239903raw n)))
    (definec (A239903raw n) (if (zero? n) (list) (let loop ((n n) (row (A244160 n)) (col (- (A244160 n) 1)) (srow (- (A244160 n) 1)) (catstring (list 0))) (cond ((or (zero? row) (negative? col)) (reverse! (cdr catstring))) ((> (A009766tr row col) n) (loop n srow (- col 1) (- srow 1) (cons 0 catstring))) (else (loop (- n (A009766tr row col)) (+ row 1) col srow (cons (+ 1 (car catstring)) (cdr catstring))))))))
    (define (baselist-as-decimal lista) (baselist->n 10 lista))
    (define (baselist->n base bex) (let loop ((bex bex) (n 0)) (cond ((null? bex) n) (else (loop (cdr bex) (+ (* n base) (car bex)))))))
    ;; From Antti Karttunen, Apr 14-19 2014
    

Formula

To find an RGS corresponding to natural number n, one first finds a maximum row index k such that T(k,k-1) <= n in the Catalan Triangle (A009766) illustrated in the Example section. Note that as the last two columns of this triangle consist of Catalan numbers (that is, T(k,k-1) = T(k,k) = A000108(k)), it means that the first number to be subtracted from n is A081290(n) which occurs as a penultimate element of the row A081288(n)-1, in the column A081288(n)-2. The unranking algorithm then proceeds diagonally downwards, keeping the column index the same, and incrementing the row index, as long as it will encounter terms such that their total sum stays less than or equal to n.
If the total sum of encountered terms on that diagonal would exceed n, the algorithm jumps back to the penultimate column of the triangle, but one row higher from where it started the last time, and again starts summing the terms as long as the total sum stays <= n.
When the algorithm eventually reaches either row zero or column less than zero, the result will be a list of numbers, each element being the number of terms summed from each diagonal, so that the diagonal first traversed appears as the first 1 (as that first diagonal will never allow more than one term), and the number of terms summed from the last traversed diagonal appears the last number in the list. These lists of numbers are then concatenated together as decimal numbers.
These steps can also be played backwards in order to recover the corresponding decimal integer n from such a list of numbers, giving a "ranking function" which will be the inverse to this "unranking function".
For n=1..16794 (where 16794 = A000108(10)-2), a(n) = A235049(A071159(A081291(n))). - Antti Karttunen, Apr 14 2014
Alternative, simpler description of the algorithm from Antti Karttunen, Apr 21 2014: (Start)
Consider the following square array, which is Catalan triangle A009766 without its rightmost, "duplicate" column, appropriately transposed (cf. also tables A030237, A033184 and A054445):
Row| Terms on that row
---+--------------------------
1 | 1 1 1 1 1 ...
2 | 2 3 4 5 6 ...
3 | 5 9 14 20 27 ...
4 | 14 28 48 75 110 ...
5 | 42 90 165 275 429 ...
6 | 132 297 572 1001 1638 ...
To compute the n-th RGS, search first for the greatest Catalan number C_k which is <= n (this is A081290(n), found as the first term of row A081288(n)-1). Then, by a greedy algorithm, select from each successive row (moving towards the top of table) as many terms from the beginning of that row as will still fit into n, subtracting them from n as you go. The number of terms selected from the beginning of each row gives each element of the n-th RGS, so that the number of terms selected from the topmost row (all 1's) appears as its last element.
(End)

Extensions

Description, formula and examples edited/rewritten by Italo J Dejter, Apr 13 2014 and Antti Karttunen, Apr 18 2014

A055450 Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Examples

			Triangle begins as:
  1;
  1, 3;
  1, 2, 10;
  1, 3,  7, 36;
  1, 4,  5, 26, 137;
  1, 5,  9, 19, 101, 543;
  1, 6, 14, 14,  75, 406, 2219;
  1, 7, 20, 28,  56, 305, 1676, 9285;
  1, 8, 27, 48,  42, 230, 1270, 7066, 39587;
  ...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
		

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return A030237(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
    T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA030237(n-k+1,k)
        else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024

Formula

Initial values: T(i, 0)=1 for i >= 0. Recurrence: if 1 <= j < i/2, then T(i, j) = T(i-1, j-1) + T(i-1, j), if j = i/2 then T(2j, j) = T(2j-2, j-1) + T(2j-1, j-1), otherwise T(2j-k, j) = T(2j-k+1, j) + T(2j-k-1, j-1) for j=k, k+1, k+2, ..., for k=1, 2, 3, ...
T(2n, n) = A000108(n) for n >= 0 (Catalan numbers).
T(n, n) = A002212(n+1).
T(n, n-1) = A045868(n).
T(n, k) = A030237(n-k+1, k) for n >= 1, 0 <= k < n/2.
From G. C. Greubel, Jan 29 2024: (Start)
T(n, k) = (n-2*k+2)*binomial(n+1, k)/(n-k+2) for 0 <= k < n/2, otherwise Catalan(n-k +1)*Hypergeometric2F1([n-2*k, (3+2*(n-k))/2], [3+n-k], -4).
Sum_{k=0..n} T(n, k) = A055451(n). (End)
Previous Showing 11-20 of 25 results. Next