cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 228 results. Next

A059905 Index of first half of decomposition of integers into pairs based on A000695.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7, 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12, 13, 14, 15, 14, 15, 12, 13, 12, 13, 14
Offset: 0

Views

Author

Marc LeBrun, Feb 07 2001

Keywords

Comments

One coordinate of a recursive non-self-intersecting walk on the square lattice Z^2.

Examples

			A000695(a(14)) + 2*A000695(A059906(14)) = A000695(2) + 2*A000695(3) = 4 + 2*5 = 14.
If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = b_0 + b_2*2 + b_4*2^2 = 5. - _Vladimir Shevelev_, Nov 13 2008
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L; L:= convert(n,base,2); add(L[2*i+1]*2^i,i=0..floor((nops(L)-1)/2)) end;
    map(f, [$0..256]); # Robert Israel, Aug 12 2015
  • Mathematica
    a[n_] := Module[{P}, (P = Partition[IntegerDigits[2n, 2]//Reverse, 2][[All, 2]]).(2^(Range[Length[P]]-1))]; Array[a, 100, 0] (* Jean-François Alcover, Apr 24 2019 *)
  • PARI
    A059905(n) = { my(t=1,s=0); while(n>0, s += (n%2)*t; n \= 4; t *= 2); (s); }; \\ Antti Karttunen, Apr 14 2018
  • Python
    def a(n): return sum([(n>>2*i&1)<Indranil Ghosh, Jun 25 2017, after Ruby code by Peter Kagey
    
  • Python
    def A059905(n): return int(bin(n)[:1:-2][::-1],2) # Chai Wah Wu, Jun 30 2022
    
  • Ruby
    def a(n)
      (0..n.bit_length/2).to_a.map { |i| (n >> 2 * i & 1) << i}.reduce(:+)
    end # Peter Kagey, Aug 12 2015
    

Formula

n = A000695(a(n)) + 2*A000695(A059906(n)).
To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_(2j)*2^j. - Vladimir Shevelev, Nov 13 2008
a(n) = Sum_{k>=0} A030308(n,k)*A077957(k). - Philippe Deléham, Oct 18 2011
G.f.: (1-x)^(-1) * Sum_{j>=0} 2^j*x^(2^j)/(1+x^(2^j)). - Robert Israel, Aug 12 2015
a(n) = A059906(2*n). - Velin Yanev, Dec 01 2016

A047208 Numbers that are congruent to {0, 4} mod 5.

Original entry on oeis.org

0, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 64, 65, 69, 70, 74, 75, 79, 80, 84, 85, 89, 90, 94, 95, 99, 100, 104, 105, 109, 110, 114, 115, 119, 120, 124, 125, 129, 130, 134, 135, 139, 140, 144, 145, 149
Offset: 1

Keywords

Comments

Also solutions to 3^x + 5^x == 2 (mod 11). - Cino Hilliard, May 18 2003

Crossrefs

Cf. A001622, A010674, A010685 (first differences), A274406.

Programs

  • Magma
    [(5*(n-1) + 3*((n-1) mod 2))/2: n in [1..100]]; // G. C. Greubel, Nov 23 2021
    
  • Mathematica
    {#,#+4}&/@(5*Range[0,30])//Flatten (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    forstep(n=0,200,[4,1],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • Sage
    [(5*(n-1) +3*((n-1)%2))/2 for n in (1..100)] # G. C. Greubel, Nov 23 2021

Formula

From R. J. Mathar, Jan 24 2009: (Start)
G.f.: x^2*(4+x)/((1-x)^2*(1+x)).
a(n) = a(n-2) + 5. (End)
a(n) = 5*n - 6 - a(n-1) (with a(1)=0). - Vincenzo Librandi, Nov 18 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0)=4 and b(k) = A020714(k-1) = 5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = ceiling((5/3)*ceiling(3*n/2)). - Clark Kimberling, Jul 04 2012
a(n) = (5*(n-1) + 3*(n-1 mod 2))/2 = (5*(n-1) + A010674(n-1))/2. - G. C. Greubel, Nov 23 2021
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + log(phi)/(2*sqrt(5)) - sqrt(1+2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 1 + ((5*x - 7/2)*exp(x) + (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022

A175046 Write n in binary, then increase each run of 0's by one 0, and increase each run of 1's by one 1. a(n) is the decimal equivalent of the result.

Original entry on oeis.org

3, 12, 7, 24, 51, 28, 15, 48, 99, 204, 103, 56, 115, 60, 31, 96, 195, 396, 199, 408, 819, 412, 207, 112, 227, 460, 231, 120, 243, 124, 63, 192, 387, 780, 391, 792, 1587, 796, 399, 816, 1635, 3276, 1639, 824, 1651, 828, 415, 224, 451, 908, 455, 920, 1843, 924
Offset: 1

Author

Leroy Quet, Dec 02 2009

Keywords

Comments

A318921 expands the runs in a similar way, and A318921(a(n)) = A001477(n). - Andrew Weimholt, Sep 08 2018
From Chai Wah Wu, Nov 18 2018: (Start)
Let f(k) = Sum_{i=2^k..2^(k+1)-1} a(i), i.e., the sum ranges over all numbers with a (k+1)-bit binary expansion. Thus f(0) = a(1) = 3 and f(1) = a(2) + a(3) = 19.
Then f(k) = 20*6^(k-1) - 2^(k-1) for k > 0.
Proof: by summing over the recurrence relations for a(n) (see formula section), we get f(k+2) = Sum_{i=2^k..2^(k+1)-1} (f(4i) + f(4i+1) + f(4i+2) + f(4i+3)) = Sum_{i=2^k..2^(k+1)-1} (6*a(2i) + 6*a(2i+1) + 4) = 6*f(k+1) + 2^(k+2). Solving this first-order recurrence relation with the initial condition f(1) = 19 shows that f(k) = 20*6^(k-1)-2^(k-1) for k > 0.
(End)

Examples

			6 in binary is 110. Increase each run by one digit to get 11100, which is 28 in decimal. So a(6) = 28.
		

Crossrefs

Cf. A175047, A175048, A324127 (partial sums).
For records see A319422, A319423, A319424.

Programs

  • Haskell
    import Data.List (group)
    a175046 = foldr (\b v -> 2 * v + b) 0 .
              concatMap (\bs@(b:_) -> b : bs) . group . a030308_row
    -- Reinhard Zumkeller, Jul 05 2013
    
  • Mathematica
    a[n_] := (Append[#, #[[1]]]& /@ Split[IntegerDigits[n, 2]]) // Flatten // FromDigits[#, 2]&;
    Array[a, 60] (* Jean-François Alcover, Nov 12 2018 *)
  • PARI
    A175046(n)={for(i=2,#n=binary (n*2+bittest (n,0)),n[i]!=n[i-1]&&n[i-1]*=[1,1]);fromdigits(concat(n),2)} \\ M. F. Hasler, Sep 08 2018
    
  • Python
    from re import split
    def A175046(n):
        return int(''.join(d+'1' if '1' in d else d+'0' for d in split('(0+)|(1+)',bin(n)[2:]) if d != '' and d != None),2) # Chai Wah Wu, Sep 24 2018
    
  • Python
    def a(n):
        b = bin(n)[2:]
        return int(b.replace("01", "001").replace("10", "110") + b[-1], 2)
    print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Dec 07 2021

Formula

2n+1 <= a(n) < 2*(n+1/n)^2; a(n) mod 4 = 3*(n mod 2). - M. F. Hasler, Sep 08 2018
a(n) <= (9*n^2 + 12*n)/5, with equality iff n = (2/3)*(4^k-1) = A182512(k) for some k, i.e., n = 10101...10 in binary. - Conjectured by N. J. A. Sloane, Sep 09 2018, proved by M. F. Hasler, Sep 12 2018
From M. F. Hasler, Sep 12 2018: (Start)
Proof of N. J. A. Sloane's formula: For given (binary) length L(n) = floor(log_2(n)+1), the length of a(n) is maximal, L(a(n)) = 2*L(n), if and only if n's bits are alternating, i.e., n in A020988 (if even) or in A002450 (if odd).
For n = A020988(k) (= k times '10' in base 2) = (4^k - 1)*2/3, one has a(n) = A108020(k) (= k times '1100' in base 2) = (16^k - 1)*4/5. This yields a(n)/n = (4^k + 1)*6/5 = (n*9 + 12)/5, i.e., the given upper bound.
For n = A002450(k) = (4^k - 1)/3, one gets a(n) = A182512(k) = (16^k - 1)/5, whence a(n)/n = (4^k + 1)*3/5 = (n*9 + 6)/5, smaller than the bound.
If L(a(n)) < 2 L(n) - 1, then log_2(a(n)) < floor(log_2(a(n))+1) = L(a(n)) <= 2*L(n) - 2 = 2*floor(log_2(n)+1)-2 = 2*floor(log_2(n)) <= 2*log_2(n), whence a(n) < n^2.
It remains to consider the case L(a(n)) = 2 L(n) - 1. There are two possibilities:
If n = 10..._2, then n >= 2^(L(n)-1) and a(n) = 1100..._2 < 1101_2 * 2^(L(a(n))-4) = 13*2^(2*L(n)-5), so a(n)/n^2 < 13*2^(-5+2) = 13/8 = 1.625 < 9/5 = 1.8.
If n = 11..._2, then n >= 3*2^(L(n)-2) and a(n) = 111..._2 < 2^L(a(n)) = 2^(2*L(n)-1), so a(n)/n^2 < 2^(-1+4)/9 = 8/9 < 1 < 9/5.
This shows that a(n)/n^2 <= 9/5 + 12/(5*n) always holds, with equality iff n is in A020988; and a(n)/n^2 < 13/8 if n is not in A020988 or A002450. (End)
From M. F. Hasler, Sep 10 2018: (Start)
Right inverse of A318921: A318921 o A175046 = id (= A001477).
a(A020988(k)) = A108020(k); a(A002450(k)) = A182512(k); a(A000225(k)) = A000225(k+1) (achieves the lower bound a(n) >= 2n + 1) for all k >= 0. (End)
From David A. Corneth, Sep 20 2018: (Start)
a(4*k) = 2*a(2*k).
a(4*k+1) = 4*a(2*k) + 3.
a(4*k+2) = 4*a(2*k+1).
a(4*k+3) = 2*a(2*k+1) + 1. (End)

Extensions

Extended by Ray Chandler, Dec 18 2009

A059906 Index of second half of decomposition of integers into pairs based on A000695.

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 6
Offset: 0

Author

Marc LeBrun, Feb 07 2001

Keywords

Comments

One coordinate of a recursive non-self-intersecting walk on the square lattice Z^2.

Examples

			A000695(A059905(14)) + 2*A000695(a(14)) = A000695(2) + 2*A000695(3) = 4 + 2*5 = 14.
If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = b_1 + b_3*2 = 3. - _Vladimir Shevelev_, Nov 13 2008
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{P}, (P = Partition[IntegerDigits[n, 2]//Reverse, 2][[All, 2]]).(2^(Range[Length[P]]-1))]; Array[a, 105, 0] (* Jean-François Alcover, Apr 24 2019 *)
  • PARI
    A059906(n) = { my(t=1,s=0); while(n>0, s += ((n%4)>=2)*t; n \= 4; t *= 2); (s); }; \\ Antti Karttunen, Apr 14 2018
  • Python
    def a(n):
        x=[int(t) for t in list(bin(n)[2:])[::-1]]
        return sum(x[2*i + 1]*2**i for i in range(int(len(x)//2)))
    print([a(n) for n in range(105)]) # Indranil Ghosh, Jun 25 2017
    
  • Python
    def A059906(n): return 0 if n < 2 else int(bin(n)[-2:1:-2][::-1],2) # Chai Wah Wu, Jun 30 2022
    

Formula

n = A000695(A059905(n)) + 2*A000695(a(n))
To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_(2j+1)*2^j. - Vladimir Shevelev, Nov 13 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=0 and b(k)=A077957(k-1) for k>0. - Philippe Deléham, Oct 18 2011
Conjecture: a(n) = n - (1/2)*Sum_{k=1..n} (sqrt(2)^A007814(k) + (-sqrt(2))^A007814(k)) = -Sum_{k=1..n} (-1)^k * 2^floor(k/2) * floor(n/2^k). - Velin Yanev, Dec 01 2016

A031235 Triangle T(n,k): write n in base 5, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 0, 4, 1, 4, 2, 4, 3, 4, 4, 4, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 4, 2, 1, 0
Offset: 0

Keywords

Crossrefs

Cf. A030308, A030341, A030386, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007091.

Programs

  • Haskell
    a031235 n k = a031235_tabf !! n !! k
    a031235_row n = a031235_tabf !! n
    a031235_tabf = iterate succ [0] where
       succ []     = [1]
       succ (4:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Mathematica
    Reverse[IntegerDigits[#,5]]&/@Range[0,40]//Flatten (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    A031235(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\5^k%5 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... - M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 0

Keywords

Comments

From M. F. Hasler, Oct 21 2008: (Start)
Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov)
Proof:
arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...)
= 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...)
= 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...),
and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End)

Crossrefs

Programs

Formula

contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.
a(-n) = -A047203(n+1). (End)
From Wesley Ivan Hurt, Sep 17 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + floor(n/4). (End)
a(n) = n + A002265(n). - Robert Israel, Sep 17 2015
E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

Extensions

More terms from James Sellers, Sep 19 2000

A001855 Sorting numbers: maximal number of comparisons for sorting n elements by binary insertion.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285
Offset: 1

Keywords

Comments

Equals n-1 times the expected number of probes for a successful binary search in a size n-1 list.
Piecewise linear: breakpoints at powers of 2 with values given by A000337.
a(n) is the number of digits in the binary representation of all the numbers 1 to n-1. - Hieronymus Fischer, Dec 05 2006
It is also coincidentally the maximum number of comparisons for merge sort. - Li-yao Xia, Nov 18 2015

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.3.1, Eq. (3); Sect. 6.2.1 (4).
  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 48.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Tianxing Tao, On optimal arrangement of 12 points, pp. 229-234 in Combinatorics, Computing and Complexity, ed. D. Du and G. Hu, Kluwer, 1989.

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a001855 n = a001855_list !! n
    a001855_list = 0 : zipWith (+) [1..] (zipWith (+) hs $ tail hs) where
       hs = concat $ transpose [a001855_list, a001855_list]
    -- Reinhard Zumkeller, Jun 03 2013
    
  • Maple
    a := proc(n) local k; k := ilog2(n) + 1; 1 + n*k - 2^k end; # N. J. A. Sloane, Dec 01 2007 [edited by Peter Luschny, Nov 30 2017]
  • Mathematica
    a[n_?EvenQ] := a[n] = n + 2a[n/2] - 1; a[n_?OddQ] := a[n] = n + a[(n+1)/2] + a[(n-1)/2] - 1; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 58}] (* Jean-François Alcover, Nov 23 2011, after Pari *)
    a[n_] := n IntegerLength[n, 2] - 2^IntegerLength[n, 2] + 1;
    Table[a[n], {n, 1, 58}] (* Peter Luschny, Dec 02 2017 *)
    Accumulate[BitLength[Range[0, 100]]] (* Paolo Xausa, Sep 30 2024 *)
  • PARI
    a(n)=if(n<2,0,n-1+a(n\2)+a((n+1)\2))
    
  • PARI
    a(n)=local(m);if(n<2,0,m=length(binary(n-1));n*m-2^m+1)
    
  • Python
    def A001855(n):
        s, i, z = 0, n-1, 1
        while 0 <= i: s += i; i -= z; z += z
        return s
    print([A001855(n) for n in range(1, 59)]) # Peter Luschny, Nov 30 2017
    
  • Python
    def A001855(n): return n*(m:=(n-1).bit_length())-(1<Chai Wah Wu, Mar 29 2023

Formula

Let n = 2^(k-1) + g, 0 <= g <= 2^(k-1); then a(n) = 1 + n*k - 2^k. - N. J. A. Sloane, Dec 01 2007
a(n) = Sum_{k=1..n}ceiling(log_2 k) = n*ceiling(log_2 n) - 2^ceiling(log_2(n)) + 1.
a(n) = a(floor(n/2)) + a(ceiling(n/2)) + n - 1.
G.f.: x/(1-x)^2 * Sum_{k>=0} x^2^k. - Ralf Stephan, Apr 13 2002
a(1)=0, for n>1, a(n) = ceiling(n*a(n-1)/(n-1)+1). - Benoit Cloitre, Apr 26 2003
a(n) = n-1 + min { a(k)+a(n-k) : 1 <= k <= n-1 }, cf. A003314. - Vladeta Jovovic, Aug 15 2004
a(n) = A061168(n-1) + n - 1 for n>1. - Hieronymus Fischer, Dec 05 2006
a(n) = A123753(n-1) - n. - Peter Luschny, Nov 30 2017

Extensions

Additional comments from M. D. McIlroy (mcilroy(AT)dartmouth.edu)

A372433 Binary weight (number of ones in binary expansion) of the n-th squarefree number.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 5, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 5, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 4, 4, 5, 5, 6, 5, 6, 7, 2, 2, 3, 3, 3, 3, 3, 4, 4
Offset: 1

Author

Gus Wiseman, May 04 2024

Keywords

Crossrefs

Restriction of A000120 to A005117.
For prime instead of squarefree we have A014499, zeros A035103.
Counting zeros instead of ones gives A372472, cf. A023416, A372473.
For binary length instead of weight we have A372475.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A145037 counts ones minus zeros in binary expansion, cf. A031443, A031444, A031448, A097110.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.
A372516 counts ones minus zeros in binary expansion of primes, cf. A177718, A177796, A372538, A372539.

Programs

  • Mathematica
    DigitCount[Select[Range[100],SquareFreeQ],2,1]
    Total[IntegerDigits[#,2]]&/@Select[Range[200],SquareFreeQ] (* Harvey P. Dale, Feb 14 2025 *)
  • Python
    from math import isqrt
    from sympy import mobius
    def A372433(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m).bit_count() # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A000120(A005117(n)).
a(n) + A372472(n) = A372475(n) = A070939(A005117(n)).

A030386 Triangle T(n,k): write n in base 4, reverse order of digits.

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 1, 1, 2, 1, 3, 1, 0, 2, 1, 2, 2, 2, 3, 2, 0, 3, 1, 3, 2, 3, 3, 3, 0, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 0, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3, 3, 1, 0, 0, 2, 1, 0, 2, 2, 0, 2, 3, 0, 2, 0, 1, 2
Offset: 0

Keywords

Examples

			Triangle begins:
0
1
2
3
0, 1
1, 1
2, 1
3, 1
0, 2
1, 2
2, 2
3, 2
0, 3
1, 3
2, 3
3, 3
0, 0, 1
1, 0, 1 ... - _Philippe Deléham_, Oct 20 2011
		

Crossrefs

Cf. A030308, A030341, A031235, A030567, A031007, A031045, A031087, A031298 for the base-2 to base-10 analogs.
Cf. A007090.

Programs

  • Haskell
    a030386 n k = a030386_tabf !! n !! k
    a030386_row n = a030386_tabf !! n
    a030386_tabf = iterate succ [0] where
       succ []     = [1]
       succ (3:ts) = 0 : succ ts
       succ (t:ts) = (t + 1) : ts
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A030386_row := n -> op(convert(n, base, 4)):
    seq(A030386_row(n), n=0..36); # Peter Luschny, Nov 28 2017
  • Mathematica
    Flatten[Table[Reverse[IntegerDigits[n,4]],{n,0,50}]] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    A030386(n, k=-1)=/*k<0&&error("Flattened sequence not yet implemented.")*/n\4^k%4 \\ Assuming that columns are numbered starting with k=0 as in A030308, A030341, ... \\ M. F. Hasler, Jul 21 2013
    

Extensions

Initial 0 and better name by Philippe Deléham, Oct 20 2011

A053985 Replace 2^k with (-2)^k in binary expansion of n.

Original entry on oeis.org

0, 1, -2, -1, 4, 5, 2, 3, -8, -7, -10, -9, -4, -3, -6, -5, 16, 17, 14, 15, 20, 21, 18, 19, 8, 9, 6, 7, 12, 13, 10, 11, -32, -31, -34, -33, -28, -27, -30, -29, -40, -39, -42, -41, -36, -35, -38, -37, -16, -15, -18, -17, -12, -11, -14, -13, -24, -23, -26, -25, -20, -19
Offset: 0

Author

Henry Bottomley, Apr 03 2000

Keywords

Comments

Base 2 representation for n (in lexicographic order) converted from base -2 to base 10.
Maps natural numbers uniquely onto integers; within each group of positive values, maximum is in A002450; a(n)=n iff n can be written only with 1's and 0's in base 4 (A000695).
a(n) = A004514(n) - n. - Reinhard Zumkeller, Dec 27 2003
Schroeppel gives formula n = (a(n) + b) XOR b where b = binary ...101010, and notes this formula is reversible. The reverse a(n) = (n XOR b) - b is a bit twiddle to transform 1 bits to -1. Odd position 0 or 1 in n is flipped by "XOR b" to 1 or 0, then "- b" gives 0 or -1. Only odd position 1's are changed, so b can be any length sure to cover those. - Kevin Ryde, Jun 26 2020

Examples

			a(9)=-7 because 9 is written 1001 base 2 and (-2)^3 + (-2)^0 = -8 + 1 = -7.
Or by Schroeppel's formula, b = binary 1010 then a(9) = (1001 XOR 1010) - 1010 = decimal -7. - _Kevin Ryde_, Jun 26 2020
		

Programs

  • Mathematica
    f[n_Integer, b_Integer] := Block[{l = IntegerDigits[n]}, Sum[l[[ -i]]*(-b)^(i - 1), {i, 1, Length[l]}]]; a = Table[ FromDigits[ IntegerDigits[n, 2]], {n, 0, 80}]; b = {}; Do[b = Append[b, f[a[[n]], 2]], {n, 1, 80}]; b
    (* Second program: *)
    Array[FromDigits[IntegerDigits[#, 2], -2] &, 62, 0] (* Michael De Vlieger, Jun 27 2020 *)
  • PARI
    a(n) = fromdigits(binary(n), -2) \\ Rémy Sigrist, Sep 01 2018
    
  • Python
    def A053985(n): return  -(b:=int('10'*(n.bit_length()+1>>1),2)) + (n^b) if n else 0 # Chai Wah Wu, Nov 18 2022

Formula

From Ralf Stephan, Jun 13 2003: (Start)
G.f.: (1/(1-x)) * Sum_{k>=0} (-2)^k*x^2^k/(1+x^2^k).
a(0) = 0, a(2*n) = -2*a(n), a(2*n+1) = -2*a(n)+1. (End)
a(n) = Sum_{k>=0} A030308(n,k)*A122803(k). - Philippe Deléham, Oct 15 2011
a(n) = (n XOR b) - b where b = binary ..101010 [Schroeppel]. Any b of this form (A020988) with bitlength(b) >= bitlength(n) suits. - Kevin Ryde, Jun 26 2020
Previous Showing 61-70 of 228 results. Next