cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A201279 a(n) = 6n^2 + 10n + 5.

Original entry on oeis.org

5, 21, 49, 89, 141, 205, 281, 369, 469, 581, 705, 841, 989, 1149, 1321, 1505, 1701, 1909, 2129, 2361, 2605, 2861, 3129, 3409, 3701, 4005, 4321, 4649, 4989, 5341, 5705, 6081, 6469, 6869, 7281, 7705, 8141, 8589, 9049, 9521, 10005, 10501, 11009, 11529, 12061
Offset: 0

Views

Author

Keywords

Comments

Numbers n where 6n-5 is a square of a number type 6n-1.
Also sequence found by reading the line from 5, in the direction 5, 21,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
The spiral mentioned above naturally appears on a "graphene" like lattice (planar net 6^3). The opposite diagonal is A080859. - Yuriy Sibirmovsky, Oct 04 2016
First differences of A048395. - Leo Tavares, Nov 24 2021 [Corrected by Omar E. Pol, Dec 26 2021]

Crossrefs

Programs

  • Magma
    [6*n^2 + 10*n + 5: n in [0..60]]; // Vincenzo Librandi, Dec 01 2011
  • Mathematica
    LinearRecurrence[{3,-3,1},{5,21,49},50] (* Vincenzo Librandi, Dec 01 2011 *)
    Table[6 n^2 + 10 n + 5, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 + x) (5 + x)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
  • PARI
    a(n)=6*n^2+10*n+5 \\ Charles R Greathouse IV, Nov 29 2011
    

Formula

G.f.: (1+x)*(5+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 1 + A033579(n+1). - Omar E. Pol, Jul 18 2012
a(n) = (n+1)*A001844(n+1)-n*A001844(n). [Bruno Berselli, Jan 15 2013]
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A003154(n+2) - A022144(n+1). See Diamond Frame Stars illustration.
a(n) = A016754(n) + A046092(n+1). (End)

A202804 a(n) = n*(6*n+4).

Original entry on oeis.org

0, 10, 32, 66, 112, 170, 240, 322, 416, 522, 640, 770, 912, 1066, 1232, 1410, 1600, 1802, 2016, 2242, 2480, 2730, 2992, 3266, 3552, 3850, 4160, 4482, 4816, 5162, 5520, 5890, 6272, 6666, 7072, 7490, 7920, 8362, 8816, 9282, 9760, 10250, 10752, 11266, 11792, 12330
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022

Crossrefs

Programs

  • Maple
    A202804:=n->n*(6*n+4): seq(A202804(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[n(6n+4),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,10,32},50] (* Harvey P. Dale, Dec 28 2015 *)
  • PARI
    x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
a(n) = A003154(n+1) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024

A087348 a(n) = 10*n^2 - 6*n + 1.

Original entry on oeis.org

5, 29, 73, 137, 221, 325, 449, 593, 757, 941, 1145, 1369, 1613, 1877, 2161, 2465, 2789, 3133, 3497, 3881, 4285, 4709, 5153, 5617, 6101, 6605, 7129, 7673, 8237, 8821, 9425, 10049, 10693, 11357, 12041, 12745, 13469, 14213, 14977, 15761, 16565, 17389, 18233, 19097
Offset: 1

Views

Author

Charlie Marion, Oct 20 2003

Keywords

Comments

Sequence found by reading the line from 5, in the direction 5, 29, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

Examples

			a(3)=73 since 73^2 = 48^2 + 55^2 = (4*12)^2 + (48 + 7)^2. See 1st formula.
		

Crossrefs

Programs

Formula

a(n)^2 = A033579(n)^2 + A033567(n)^2 = (4*A000326(n))^2 + (A033579(n) + A056220(n-1))^2.
From Colin Barker, Jun 30 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(5 + 14*x + x^2)/(1-x)^3. (End)
a(n) = 1 + A153784(n). - Omar E. Pol, Jul 18 2012
E.g.f.: exp(x)*(10*x^2 + 4*x + 1) - 1. - Elmo R. Oliveira, Oct 31 2024

Extensions

More terms from Ray Chandler, Oct 22 2003

A153792 12 times pentagonal numbers: a(n) = 6*n*(3*n-1).

Original entry on oeis.org

0, 12, 60, 144, 264, 420, 612, 840, 1104, 1404, 1740, 2112, 2520, 2964, 3444, 3960, 4512, 5100, 5724, 6384, 7080, 7812, 8580, 9384, 10224, 11100, 12012, 12960, 13944, 14964, 16020, 17112, 18240, 19404, 20604, 21840, 23112, 24420
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Comments

For n>=1, a(n) is the first Zagreb index of the triangular grid graph T[n] (see the West reference, p. 390). The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 10 2016
The M-polynomial of the triangular grid graph T[n] is M(T[n], x, y) = 6*x^2*y^4 + 3*(n-1)*x^4*y^4 +6*(n-2)*x^4*y^6+3*(n-2)*(n-3)*x^6*y^6/2. - Emeric Deutsch, May 09 2018
This is the number of overlapping six sphinx tiled shapes in the sphinx tessellated hexagon described in A291582. - Craig Knecht, Sep 13 2017
a(n) is the number of words of length 3n over the alphabet {a,b,c}, where the number of b's plus the number of c's is 2. - Juan Camacho, Mar 03 2021
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Mar 12 2021

References

  • D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 6*n = 12*A000326(n) = 6*A049450(n) = 4*A062741(n) = 3*A033579(n) = 2*A152743(n).
a(n) = 36*n + a(n-1) - 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 12*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(0)=0, a(1)=12, a(2)=60; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 11 2012
E.g.f.: 6*x*(2 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016
a(n) = A291582(n) - A195321(n) for n > 0. - Craig Knecht, Sep 13 2017
a(n) = A195321(n) - A008588(n). - Omar E. Pol, Mar 12 2021
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(3)/4 - Pi/(12*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. (End)

A330707 a(n) = ( 3*n^2 + n - 1 + (-1)^floor(n/2) )/4.

Original entry on oeis.org

0, 1, 3, 7, 13, 20, 28, 38, 50, 63, 77, 93, 111, 130, 150, 172, 196, 221, 247, 275, 305, 336, 368, 402, 438, 475, 513, 553, 595, 638, 682, 728, 776, 825, 875, 927, 981, 1036, 1092, 1150, 1210, 1271, 1333, 1397, 1463
Offset: 0

Views

Author

Paul Curtz, Dec 27 2019

Keywords

Comments

Essentially four odds followed by four evens.
Last digit is neither 4 nor 9.
Essentially twice or twin sequences in the hexagonal spiral from A002265.
21 21 21 22 22 22 22
21 14 14 14 14 15 15 23
20 13 8 8 8 9 9 15 23
20 13 8 4 4 4 4 9 15 23
20 13 7 3 1 1 1 5 9 16 23
20 13 7 3 1 0 0 2 5 10 16 24
19 12 7 3 0 0 2 5 10 16 24
19 12 7 3 2 2 5 10 16 24
19 12 6 6 6 6 10 17 24
19 12 11 11 11 11 17 25
18 18 18 18 17 17 25
.
There are 12 twin sequences. 6 of them (A001859, A006578, A077043, A231559, A024219, A281026) are in the OEIS. a(n) is the seventh.
0, 1, 3, 7, 13, 20, 28, 38, 50, ...
1, 2, 4, 6, 7, 8, 10, 12, 13, ...
1, 2, 2, 1, 1, 2, 2, 1, 1, ... period 4. See A014695.

Crossrefs

Programs

  • Magma
    [(3*n^2+n-1+ (-1)^Floor(n/2))/4: n in [0..60]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq((3*n^2+n-1+sqrt(2)*sin((2*n+1)*Pi/4))/4, n = 0..60); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{3,-4,4,-3,1}, {0,1,3,7,13}, 60] (* Amiram Eldar, Dec 27 2019 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x^2) / ((1 - x)^3*(1 + x^2)) + O(x^60))) \\ Colin Barker, Dec 27 2019
    
  • Sage
    [(3*n^2+n-1+(-1)^floor(n/2))/4 for n in (0..60)] # G. C. Greubel, Dec 30 2019

Formula

a(n) = A231559(-n).
a(1+2*n) + a(2+2*n) = A033579(n+1).
a(40+n) - a(n) = 1210, 1270, 1330, 1390, 1450, ... . See 10*A016921(n).
From Colin Barker, Dec 27 2019: (Start)
G.f.: x*(1 + 2*x^2) / ((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4.
(End)
E.g.f.: (cos(x) + sin(x) + (-1 + 4*x + 3*x^2)*exp(x))/4. - Stefano Spezia, Dec 27 2019
a(n) = ( 3*n^2 + n - 1 + sqrt(2)*sin((2*n+1)*Pi/4) )/4 = ( 3*n^2 + n - 1 + (-1)^floor(n/2) )/4. - G. C. Greubel, Dec 30 2019

A174371 a(n) = (6*n-1)^2.

Original entry on oeis.org

1, 25, 121, 289, 529, 841, 1225, 1681, 2209, 2809, 3481, 4225, 5041, 5929, 6889, 7921, 9025, 10201, 11449, 12769, 14161, 15625, 17161, 18769, 20449, 22201, 24025, 25921, 27889, 29929, 32041, 34225, 36481, 38809, 41209, 43681, 46225, 48841, 51529
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Mar 17 2010

Keywords

Comments

Unit together with numbers of form (6*n+5)^2.
Sequence may be obtained by starting with the segment (1, 25) followed by the line from 25 in the direction 25, 121,... in the square spiral whose vertices are the generalized 20-gonal numbers. - Omar E. Pol, Jul 29 2016

Examples

			a(0)=1 because (6*0-1)^2=1, a(1)=25 because (6*1-1)^2=25.
		

Crossrefs

Programs

Formula

a(n) = A016970(n-1), n >= 1.
G.f.: (49*x^2 + 22*x + 1)/(1 - x)^3. - Vincenzo Librandi, Jan 27 2013
a(n) = 6*A033579(n) + 1. - Miquel Cerda, Jul 28 2016
a(n) = 36n^2 - 12n + 1. - Omar E. Pol, Jul 28 2016
E.g.f.: exp(x)*(1 + 24*x + 36*x^2). - Stefano Spezia, Aug 19 2023

Extensions

Offset and formula corrected by R. J. Mathar, Apr 16 2010

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A259160 Positive squares (A000290) that are octagonal numbers (A000567) divided by 2.

Original entry on oeis.org

4, 39204, 376437604, 3614553835204, 34706945549192004, 333256087548787788004, 3199924917936514791223204, 30725678728770327476537417604, 295027963953727766493197492611204, 2832858479158015285097354847515364004, 27201106821847298813777034752645032556004
Offset: 1

Views

Author

Colin Barker, Jun 19 2015

Keywords

Comments

Intersection of A000290 and A033579 (even octagonal numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			4 is in the sequence because 4 is the 2nd square, and 2*4 is the 2nd octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9603, -9603, 1}, {4, 39204, 376437604}, 20] (* Vincenzo Librandi, Jun 20 2015 *)
  • PARI
    Vec(-4*x*(x^2+198*x+1)/((x-1)*(x^2-9602*x+1)) + O(x^20))

Formula

G.f.: -4*x*(x^2+198*x+1) / ((x-1)*(x^2-9602*x+1)).

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A259079 Octagonal numbers (A000567) that are other octagonal numbers divided by 2.

Original entry on oeis.org

280, 373212840, 497012764340408, 661878856450449219400, 881433339438556519000044120, 1173817118196415977287174306335208, 1563188689740940473437573487667885475320, 2081720262768492984525248323578863263574296200
Offset: 1

Views

Author

Colin Barker, Jun 18 2015

Keywords

Comments

Intersection of A000567 and A033579 (even octagonal numbers divided by 2). - Michel Marcus, Jun 20 2015

Examples

			280 is in the sequence because 280 is the 10th octagonal number, and 2*280 is the 14th octagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1331715,-1331715,1},{280,373212840,497012764340408},20] (* Harvey P. Dale, Dec 04 2015 *)
  • PARI
    Vec(-8*x*(x^2+41580*x+35)/((x-1)*(x^2-1331714*x+1)) + O(x^20))

Formula

G.f.: -8*x*(x^2+41580*x+35) / ((x-1)*(x^2-1331714*x+1)).
Previous Showing 11-20 of 23 results. Next