cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A042941 Convolution of Catalan numbers A000108 with A038845.

Original entry on oeis.org

1, 13, 110, 765, 4746, 27314, 149052, 781725, 3975730, 19730150, 95973956, 459145778, 2165937060, 10095323460, 46566906872, 212857023069, 965208806082, 4345780250270, 19442667426420, 86489687956518
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A018218(n+1), n >= 0, with A000302 (powers of 4); also convolution of A000346 with A002697.

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 16 2014 *)

Formula

a(n) = binomial(n+3, 2)*(4^(n+1) - A000984(n+3)/A000984(2)) / 2.
G.f.: c(x)/(1-4*x)^3, where c(x) is the g.f. for Catalan numbers.
Recurrence: (n+1)*a(n) = 128*(1-2*n)*a(n-4) + 32*(8*n-1)*a(n-3) - 24*(4*n+1)*a(n-2) + 2*(8*n+5)*a(n-1). - Fung Lam, Apr 13 2014
a(n) ~ 2^(2*n)*(n^2 - 8*n^(3/2)/(3*sqrt(Pi))). - Fung Lam, Apr 13 2014
Recurrence: n*(n+1)*a(n) = 2*n*(4*n+9)*a(n-1) - 8*(n+2)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Apr 16 2014

A041001 Convolution of A000108(n+1), n >= 0, (Catalan numbers) with A038845 (3-fold convolution of powers of 4).

Original entry on oeis.org

1, 14, 125, 906, 5810, 34364, 191901, 1026610, 5312230, 26767940, 131990066, 639210404, 3048892740, 14354652152, 66828135005, 308078809794, 1408022619806, 6385966846580, 28765327498278, 128777533131500
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A038836 with A000984 (central binomial coefficients); also convolution of A001791(n+1), n >= 0, with A002802; also convolution of A008549(n+1), n >= 0, with A002697; also convolution of A029760 with A002457; also convolution of A038806(n+1), n >= 0, with A000302 (powers of 4).

Formula

a(n) = (n+3)*(3*(n+6)*2^(2*n+3)-(n+4)*binomial(2*n+7, n+3))/12; G.f. (c(x)^2)/(1-4*x)^3, where c(x) = g.f. for Catalan numbers.

A001788 a(n) = n*(n+1)*2^(n-2).

Original entry on oeis.org

0, 1, 6, 24, 80, 240, 672, 1792, 4608, 11520, 28160, 67584, 159744, 372736, 860160, 1966080, 4456448, 10027008, 22413312, 49807360, 110100480, 242221056, 530579456, 1157627904, 2516582400, 5452595200, 11777605632, 25367150592, 54492397568, 116769423360, 249644974080, 532575944704
Offset: 0

Views

Author

Keywords

Comments

Number of 2-dimensional faces in (n+1)-dimensional hypercube; also number of 4-cycles in the (n+1)-dimensional hypercube. - Henry Bottomley, Apr 14 2000
Also the number of edges in the (n+1)-halved cube graph. - Eric W. Weisstein, Jun 21 2017
From Philippe Deléham, Apr 28 2004: a(n) is the sum, over all nonempty subsets E of {1, 2, ..., n}, of all elements of E. E.g., a(3) = 24: the nonempty subsets are {1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3} and 1 + 2 + 3 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 2 + 3 = 24.
Equivalently, sum of all nodes (except the last one, equal to n+1) of all integer compositions of n+1. - Olivier Gérard, Oct 22 2011
The inverse binomial transform of a(n-k) for k=-1..4 gives A001844, A000290, A000217(n-1), A002620(n-1), A008805(n-4), A000217 interspersed with 0's. - Michael Somos, Jul 18 2003
Take n points on a finite line. They all move with the same constant speed; they instantaneously change direction when they collide with another; and they fall when they quit the line. a(n-1) is the total number of collisions before falling when the initials directions are the 2^n possible. The mean number of collisions is then n(n-1)/8. E.g., a(1)=0 before any collision is possible. a(2)=1 because there is a collision only if the initials directions are, say, right-left. - Emmanuel Moreau, Feb 11 2006
Also number of pericondensed hexagonal systems with n hexagons. For example, if n=5 then the number of pericondensed hexagonal systems with n hexagons is 24. - Parthasarathy Nambi, Sep 06 2006
If X_1,X_2,...,X_n is a partition of a 2n-set X into 2-blocks then, for n>1, a(n-1) is equal to the number of (n+2)-subsets of X intersecting each X_i (i=1,2,...,n). - Milan Janjic, Jul 21 2007
Number of n-permutations of 3 objects u,v,w, with repetition allowed, containing exactly two u's. Example: a(2)=6 because we have uuw, uuv, uwu, uvu, wuu and vuu. - Zerinvary Lajos, Dec 29 2007
For n>0 where [0]={}, the empty set, and [n]={1,2,...n} a(n) is the number of ways to separate [n-1] into three non-overlapping intervals (allowed to be empty) and then choose a subset from each interval. - Geoffrey Critzer, Feb 07 2009
Form an array with m(n,0) = m(0,n) = n^2 and m(i,j) = m(i-1,j-1) + m(i-1,j). Then m(1,n) = A001844(n) and m(n,n) = a(n). - J. M. Bergot, Nov 07 2012
The sum of the number of inversions of all sequences of zeros and ones with length n+1. - Evan M. Bailey, Dec 09 2020
a(n) is the number of strings of length n defined on {0,1,2,3} that contain at most one 2, exactly one 3, and have no restriction on the number of 0s and 1s. For example, a(3)=24 since the strings are 321 (6 of this type), 320 (6 of this type), 310 (6 of this type), 300 (3 of this type) and 311 (3 of this type). - Enrique Navarrete, May 04 2025

Examples

			The nodes of an integer composition are the partial sums of its elements, seen as relative distances between nodes of a 1-dimensional polygon. For a composition of 7 such as 1+2+1+3, the nodes are 0,1,3,4,7. Their sum (without the last node) is 8. The sum of all nodes of all 2^(7-1)=64 integer compositions of 7 is 672.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 282.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000079, A001787, A001789, A001793 (sum of all nodes of integer compositions, n included).
Cf. A001844, A038207, A290031 (6-cycles).
Row sums of triangle A094305.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), this sequence (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • GAP
    List([0..30], n-> n*(n+1)*2^(n-2)); # G. C. Greubel, Aug 27 2019
  • Haskell
    a001788 n = if n < 2 then n else n * (n + 1) * 2 ^ (n - 2)
    a001788_list = zipWith (*) a000217_list $ 1 : a000079_list
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    [n*(n+1)*2^(n-2): n in [0..30]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    A001788 := n->n*(n+1)*2^(n-2);
    A001788:=-1/(2*z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
  • Mathematica
    CoefficientList[Series[x/(1-2x)^3, {x,0,30}], x]
    Table[n*(n+1)*2^(n-2), {n,0,30}]
    With[{n = 30}, Join[{0}, Times @@@ Thread[{Accumulate[Range[n]], 2^Range[0, n - 1]}]]] (* Harvey P. Dale, Jul 16 2013 *)
    LinearRecurrence[{6, -12, 8}, {0, 1, 6}, 30] (* Harvey P. Dale, Jul 16 2013 *)
  • PARI
    a(n)=if(n<0,0,2^n*n*(n+1)/4)
    
  • PARI
    A001788_upto(n)=Vec(x/(1-2*x)^3+O(x^n),-n) \\ for illustration. - M. F. Hasler, Oct 05 2024
    
  • Sage
    [n if n < 2 else n * (n + 1) * 2**(n - 2) for n in range(28)] # Zerinvary Lajos, Mar 10 2009
    

Formula

G.f.: x/(1-2*x)^3.
E.g.f.: x*(1 + x)*exp(2*x).
a(n) = 2*a(n-1) + n*2^(n-1) = 2*a(n-1) + A001787(n).
a(n) = A038207(n+1,2).
a(n) = A055252(n, 2).
a(n) = Sum_{i=1..n} i^2 * binomial(n, i): binomial transform of A000290. - Yong Kong, Dec 26 2000
a(n) = Sum_{j=0..n} binomial(n+1,j)*(n+1-j)^2. - Zerinvary Lajos, Aug 22 2006
If the leading 0 is deleted, the binomial transform of A001844: (1, 5, 13, 25, 41, ...); = double binomial transform of [1, 4, 4, 0, 0, 0, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = Sum_{1<=i<=k<=n} (-1)^(i+1)*i^2*binomial(n+1,k+i)*binomial(n+1,k-i). - Mircea Merca, Apr 09 2012
a(0)=0, a(1)=1, a(2)=6, a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 16 2013
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k+1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*(1-log(2)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 12*log(3/2) - 4. (End)

A027472 Third convolution of the powers of 3 (A000244).

Original entry on oeis.org

1, 9, 54, 270, 1215, 5103, 20412, 78732, 295245, 1082565, 3897234, 13817466, 48361131, 167403915, 573956280, 1951451352, 6586148313, 22082967873, 73609892910, 244074908070, 805447196631, 2646469360359, 8661172452084, 28242953648100, 91789599356325, 297398301914493, 960825283108362, 3095992578904722
Offset: 3

Views

Author

Keywords

Comments

Third column of A027465.
With offset = 2, a(n) is the number of length n words on alphabet {u,v,w,z} such that each word contains exactly 2 u's. - Zerinvary Lajos, Dec 29 2007

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), this sequence (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [3^(n-3)*Binomial(n-1, 2): n in [3..40]]; // G. C. Greubel, May 12 2021
  • Mathematica
    nn=41; Drop[Range[0,nn]!CoefficientList[Series[Exp[x]^3 x^2/2!,{x,0,nn}],x],2] (* Geoffrey Critzer, Oct 03 2013 *)
    LinearRecurrence[{9,-27,27}, {1,9,54}, 40] (* G. C. Greubel, May 12 2021 *)
    Abs[Take[CoefficientList[Series[1/(1+3x^2)^3,{x,0,60}],x],{1,-1,2}]] (* Harvey P. Dale, Mar 03 2022 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 27,-27,9]^(n-3)*[1;9;54])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [3^(n-3)*binomial(n-1,2) for n in range(3, 40)] # Zerinvary Lajos, Mar 10 2009
    

Formula

Numerators of sequence a[3,n] in (b^2)[i,j]) where b[i,j] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
From Wolfdieter Lang: (Start)
a(n) = 3^(n-3)*binomial(n-1, 2).
G.f.: (x/(1-3*x))^3. (Third convolution of A000244, powers of 3.) (End)
a(n) = |A075513(n, 2)|/9, n >= 3.
a(n) = A152818(n-3,2)/2 = A006043(n-3)/2. - Paul Curtz, Jan 07 2009
The sequence 0, 1, 9, 54, ... has e.g.f.: (x + 3*x^2/2)*exp(3*x)/. - Paul Barry, Jul 23 2003
E.g.f.: E(0) where E(k) = 1 + 3*(2*k+3)*x/((2*k+1)^2 - 3*x*(k+2)*(2*k+1)^2/(3*x*(k+2) + 2*(k+1)^2/E(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
With offset=2 e.g.f.: x^2*exp(3*x)/2. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=3} 1/a(n) = 6 - 12*log(3/2).
Sum_{n>=3} (-1)^(n+1)/a(n) = 24*log(4/3) - 6. (End)

Extensions

Corrected by T. D. Noe, Nov 07 2006
Better name from Wolfdieter Lang
Terms a(23) onward added by G. C. Greubel, May 12 2021

A038846 4-fold convolution of A000302 (powers of 4); expansion of g.f. 1/(1-4*x)^4.

Original entry on oeis.org

1, 16, 160, 1280, 8960, 57344, 344064, 1966080, 10813440, 57671680, 299892736, 1526726656, 7633633280, 37580963840, 182536110080, 876173328384, 4161823309824, 19585050869760, 91396904058880, 423311976693760, 1947235092791296, 8901646138474496, 40462027902156800
Offset: 0

Views

Author

Keywords

Comments

Also minimal 3-covers of a labeled n-set that cover 3 points of that set uniquely (if offset is 3). Cf. A057524 for unlabeled case. - Vladeta Jovovic, Sep 02 2000
Also convolution of A020918 with A000984 (central binomial coefficients).
Let M=[1,0,0,i;0,1,i,0;0,i,1,0;i,0,0,1], i=sqrt(-1). Then 1/det(I-xM) = 1/(1-4x)^4. - Paul Barry, Apr 27 2005
With a different offset, number of n-permutations (n=4) of 5 objects u, v, w, z, x with repetition allowed, containing exactly three u's. Example: a(1)=16 because we have uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu and xuuu. - Zerinvary Lajos, May 19 2008
From A152818. a(n) = A006044/6. - Paul Curtz, Jan 07 2009
Also convolution of A000302 with A038845, also convolution of A002457 with A002802, also convolution of A002697. - Rui Duarte, Oct 08 2011

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+3,3) ) # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-3), j =i-3), i=3..33); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+3,3)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
  • Mathematica
    Table[4^n*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    Vec(1/(1-4*x)^4+O(x^30)) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,3)/2^6 for n in range(3, 33)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+3, 3)*4^n.
G.f.: 1/(1-4*x)^4.
a(n) = Sum_{a+b+c+d+e+f+g+h=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g)*f(h) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 108*log(4/3) - 30.
Sum_{n>=0} (-1)^n/a(n) = 300*log(5/4) - 66. (End)
E.g.f.: exp(4*x)*(3 + 36*x + 72*x^2 + 32*x^3)/3. - Stefano Spezia, Jan 01 2023

A081139 9th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 27, 486, 7290, 98415, 1240029, 14880348, 172186884, 1937102445, 21308126895, 230127770466, 2447722649502, 25701087819771, 266895911974545, 2745215094595320, 28001193964872264, 283512088894331673
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001019 (powers of 9).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), this sequence (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).
Cf. A001019.

Programs

  • Magma
    [9^n* Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    LinearRecurrence[{27,-243,729},{0,0,1},30] (* Harvey P. Dale, Jan 30 2018 *)

Formula

a(n) = 27*a(n-1) - 243*a(n-2) + 729*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 9^(n-2)*binomial(n, 2).
G.f.: x^2/(1-9*x)^3.
E.g.f.: (x^2/2)*exp(9*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 18 - 144*log(9/8).
Sum_{n>=2} (-1)^n/a(n) = 180*log(10/9) - 18. (End)

A081135 5th binomial transform of (0,0,1,0,0,0, ...).

Original entry on oeis.org

0, 0, 1, 15, 150, 1250, 9375, 65625, 437500, 2812500, 17578125, 107421875, 644531250, 3808593750, 22216796875, 128173828125, 732421875000, 4150390625000, 23345947265625, 130462646484375, 724792480468750
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, three-fold convolution of A000351 (powers of 5).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), this sequence (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [5^(n-2)*Binomial(n, 2): n in [0..30]]; // Vincenzo Librandi, Aug 06 2013
  • Maple
    seq(n*(n-1)*5^(n-2)/2, n=0..30); # Zerinvary Lajos, May 03 2007
  • Mathematica
    CoefficientList[Series[x^2/(1-5x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{15,-75,125},{0,0,1},30] (* Harvey P. Dale, Sep 13 2017 *)
  • Sage
    [5^(n-2)*binomial(n,2) for n in range(0, 30)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = 15*a(n-1) - 75*a(n-2) + 125*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 5^(n-2)*binomial(n, 2).
G.f.: x^2/(1-5*x)^3.
E.g.f.: (x^2/2)*exp(5*x). - G. C. Greubel, May 14 2021
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=2} 1/a(n) = 10 - 40*log(5/4).
Sum_{n>=2} (-1)^n/a(n) = 60*log(6/5) - 10. (End)

A081136 6th binomial transform of (0,0,1,0,0,0, ...).

Original entry on oeis.org

0, 0, 1, 18, 216, 2160, 19440, 163296, 1306368, 10077696, 75582720, 554273280, 3990767616, 28298170368, 198087192576, 1371372871680, 9403699691520, 63945157902336, 431629815840768, 2894458765049856, 19296391766999040
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, three-fold convolution of A000400 (powers of 6).
Number of n-permutations of 7 objects: p, u, v, w, z, x, y with repetition allowed, containing exactly two u's. - Zerinvary Lajos, May 23 2008

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), this sequence (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [6^n*Binomial(n+2,2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Maple
    seq(binomial(n, 2)*6^(n-2), n=0..19); # Zerinvary Lajos, May 23 2008
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[x^2/2! Exp[6x],{x,0,nn}],x] (* Geoffrey Critzer, Oct 03 2013 *)
    LinearRecurrence[{18,-108,216},{0,0,1},30] (* Harvey P. Dale, Apr 20 2022 *)
  • Sage
    [6^(n-2)*binomial(n,2) for n in range(0, 21)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 18*a(n-1) -108*a(n-2) +216*a(n-3), a(0)=a(1)=0, a(2)=1.
a(n) = 6^(n-2)*C(n, 2).
G.f.: x^2/(1-6*x)^3.
E.g.f.: exp(6*x) * x^2/2. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=2} 1/a(n) = 12 - 60*log(6/5).
Sum_{n>=2} (-1)^n/a(n) = 84*log(7/6) - 12. (End)

A027474 a(n) = 7^(n-2) * C(n,2).

Original entry on oeis.org

1, 21, 294, 3430, 36015, 352947, 3294172, 29647548, 259416045, 2219448385, 18643366434, 154231485954, 1259557135291, 10173346092735, 81386768741880, 645668365352248, 5084638377148953, 39779817891812397, 309398583602985310
Offset: 2

Views

Author

Keywords

Comments

7th binomial transform of (0,0,1,0,0,0,........). Starting at 1, the three-fold convolution of A000420 (powers of 7). - Paul Barry, Mar 08 2003

Crossrefs

Third column of A027466.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), this sequence (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

Formula

From Paul Barry, Mar 08 2003: (Start)
G.f.: x^2 / (1-7*x)^3.
a(n) = 21*a(n-1) - 147*a(n-2) + 343*a(n-3), a(0) = a(1) = 0, a(2) = 1. (End)
Numerators of sequence a[3,n] in (a[i,j])^3 where a[i,j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
E.g.f.: (x^2/2)*exp(7*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 14 - 84*log(7/6).
Sum_{n>=2} (-1)^n/a(n) = 112*log(8/7) - 14. (End)

Extensions

Edited by Ralf Stephan, Dec 30 2004

A081138 8th binomial transform of (0,0,1,0,0,0, ...).

Original entry on oeis.org

0, 0, 1, 24, 384, 5120, 61440, 688128, 7340032, 75497472, 754974720, 7381975040, 70866960384, 670014898176, 6253472382976, 57724360458240, 527765581332480, 4785074604081152, 43065671436730368, 385057768140177408
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001018 (powers of 8).

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), this sequence (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [8^n*Binomial(n+2, 2): n in [-2..20]]; // Vincenzo Librandi, Oct 16 2011
  • Mathematica
    LinearRecurrence[{24,-192,512},{0,0,1},30] (* Harvey P. Dale, Jun 08 2014 *)

Formula

a(n) = 24*a(n-1) - 192*a(n-2) + 512*a(n-3) for n>2, a(0)=a(1)=0, a(2)=1.
a(n) = 8^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 8*x)^3.
E.g.f.: (x^2/2)*exp(8*x). - G. C. Greubel, May 13 2021
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 16 - 112*log(8/7).
Sum_{n>=2} (-1)^n/a(n) = 144*log(9/8) - 16. (End)
Showing 1-10 of 34 results. Next