cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A063503 Continued fraction for e^Pi - Pi^e (A063504 = A039661 - A059850).

Original entry on oeis.org

0, 1, 2, 7, 7, 6, 2, 1, 6, 2, 5, 7, 1, 3, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1, 11, 5, 6, 2, 1, 124, 1, 4, 2, 1, 1, 3, 18, 1, 1, 1, 1, 17, 1, 2, 10, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 4, 84, 1, 1, 1, 4, 1, 1, 15, 2, 1, 1, 17, 1, 1, 8, 1, 1, 10, 1, 3, 1, 2, 2, 1, 2, 1, 2, 4, 22, 4, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 9
Offset: 0

Views

Author

Robert G. Wilson v, Jul 30 2001

Keywords

Examples

			0.6815349144182235323019341634048123526710...
		

Crossrefs

Cf. A063504 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[E^Pi - Pi^E, 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); e=exp(1); x=contfrac(e^Pi - Pi^e); for (n=1, 20000, write("b063503.txt", n-1, " ", x[n])) } \\ Harry J. Smith, Aug 24 2009

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A042972 Decimal expansion of i^(-i), where i = sqrt(-1).

Original entry on oeis.org

4, 8, 1, 0, 4, 7, 7, 3, 8, 0, 9, 6, 5, 3, 5, 1, 6, 5, 5, 4, 7, 3, 0, 3, 5, 6, 6, 6, 7, 0, 3, 8, 3, 3, 1, 2, 6, 3, 9, 0, 1, 7, 0, 8, 7, 4, 6, 6, 4, 5, 3, 4, 9, 4, 0, 0, 2, 0, 8, 1, 5, 4, 8, 9, 2, 4, 2, 5, 5, 1, 9, 0, 4, 8, 9, 1, 5, 8, 2, 1, 3, 6, 7, 4, 8, 7, 0, 4, 7, 6, 6, 5, 8, 3, 8, 8, 3, 3, 5, 4
Offset: 1

Views

Author

Keywords

Comments

Square root of Gelfond's constant (A039661). Since Gelfond's constant e^Pi is transcendental, e^(Pi/2) is transcendental. - Daniel Forgues, Apr 15 2011
The complex sequence (...((((i)^i)^i)^i)^...) (n pairs of brackets) is periodic with period 4 and the first four entries are i, e^(-Pi/2), -i, e^(+Pi/2). See A049006 for e^(-Pi/2). - Wolfdieter Lang, Apr 27 2013
A solution of x^i + x^(-i) = 0. In fact, x = Exp(Pi/2 + k*Pi), where k is any integer. - Robert G. Wilson v, Feb 04 2014

Examples

			4.81047738096535165547303566670383312639017087466453494002...
		

Crossrefs

Cf. A049006.

Programs

Formula

Equals i^(-i) = i^(1/i) = e^(Pi/2).
Also (((i)^i)^i)^i. See a comment above on such powers. - Wolfdieter Lang, Apr 27 2013

Extensions

a(100) corrected by Nathaniel Johnston, Apr 15 2011

A073244 Decimal expansion of Pi - e.

Original entry on oeis.org

4, 2, 3, 3, 1, 0, 8, 2, 5, 1, 3, 0, 7, 4, 8, 0, 0, 3, 1, 0, 2, 3, 5, 5, 9, 1, 1, 9, 2, 6, 8, 4, 0, 3, 8, 6, 4, 3, 9, 9, 2, 2, 3, 0, 5, 6, 7, 5, 1, 4, 6, 2, 4, 6, 0, 0, 7, 9, 7, 6, 9, 6, 4, 5, 8, 3, 7, 3, 9, 7, 7, 5, 9, 3, 2, 6, 6, 1, 4, 0, 4, 0, 5, 6, 6, 5, 2, 6, 4, 6, 8, 1, 6, 9, 5, 0, 6, 4, 0, 5, 5, 4, 6, 8
Offset: 0

Views

Author

Rick L. Shepherd, Jul 21 2002

Keywords

Examples

			0.42331082513074800310235591192...
		

Crossrefs

Cf. A059742 (Pi+e), A000796 (Pi), A001113 (e), A019609 (Pi*e), A061382 (Pi/e), A061360 (e/Pi), A039661 (e^Pi), A059850 (Pi^e), A073233 (Pi^Pi), A073226 (e^e), A049006 (i^i = e^(-Pi/2)).
Cf. A110564 for continued fraction for Pi - e.

Programs

A093580 Decimal expansion of e^(-Pi).

Original entry on oeis.org

0, 4, 3, 2, 1, 3, 9, 1, 8, 2, 6, 3, 7, 7, 2, 2, 4, 9, 7, 7, 4, 4, 1, 7, 7, 3, 7, 1, 7, 1, 7, 2, 8, 0, 1, 1, 2, 7, 5, 7, 2, 8, 1, 0, 9, 8, 1, 0, 6, 3, 3, 0, 8, 2, 9, 8, 0, 7, 1, 9, 6, 8, 7, 4, 0, 1, 0, 5, 0, 7, 6, 5, 7, 5, 7, 0, 1, 7, 9, 6, 7, 6, 9, 8, 1, 3, 9, 9, 5, 9, 9, 6, 1, 9, 0, 1, 0, 8, 4, 3, 8, 7, 0, 1, 6
Offset: 0

Views

Author

Mohammad K. Azarian, May 14 2004

Keywords

Comments

Also, decimal expansion of (-1)^i. - Rick L. Shepherd, Jul 09 2013
Also, the greatest real value of z that minimizes z^i + z^(-i). - Colin Linzer, Nov 21 2024

Examples

			0.04321391826377224977441773717172801127572810981...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[E^-Pi, 10, 105][[1]]] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    { default(realprecision, 20080); x=10*exp(-Pi); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b093580.txt", n, " ", d)); } \\ Harry J. Smith, Jun 19 2009

Formula

Equals 1/A039661 = A049006^2. - Hugo Pfoertner, Nov 22 2024

A063504 Decimal expansion of e^Pi - Pi^e.

Original entry on oeis.org

6, 8, 1, 5, 3, 4, 9, 1, 4, 4, 1, 8, 2, 2, 3, 5, 3, 2, 3, 0, 1, 9, 3, 4, 1, 6, 3, 4, 0, 4, 8, 1, 2, 3, 5, 2, 6, 7, 6, 7, 9, 1, 1, 0, 8, 6, 0, 3, 5, 1, 9, 7, 4, 4, 2, 4, 2, 0, 4, 3, 8, 5, 5, 4, 5, 7, 4, 1, 6, 3, 1, 0, 2, 9, 1, 3, 3, 4, 8, 7, 1, 1, 9, 8, 4, 5, 2, 2, 4, 4, 3, 4, 0, 4, 0, 6, 1, 8, 8, 1, 4, 4, 5, 0, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jul 30 2001

Keywords

Comments

A classic calculus analysis problem is to discover whether e^Pi or Pi^e is the greater without the use of a calculator.

Examples

			0.681534914418223532301934163404812352676791108603519744242043855457416... - _Harry J. Smith_, Aug 24 2009
		

References

  • Paul J. Nahin, When Least Is Best, How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible, Princeton University Press, Princeton NJ, 2004, Page 144.
  • Alfred S. Posamentier & Ingmar Hehmann, Pi: A Biography of the World's Most Mysterious Number, Prometheus Books, NY 2002, pages 146, 301-304.

Crossrefs

Equals A039661 - A059850.
Cf. A063503.

Programs

  • Mathematica
    RealDigits[N[E^Pi - Pi^E, 100]][[1]]
  • PARI
    { default(realprecision, 20080); e=exp(1); x=10*(e^Pi - Pi^e); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b063504.txt", n, " ", d)) } \\ Harry J. Smith, Aug 24 2009

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A058287 Continued fraction for e^Pi.

Original entry on oeis.org

23, 7, 9, 3, 1, 1, 591, 2, 9, 1, 2, 34, 1, 16, 1, 30, 1, 1, 4, 1, 2, 108, 2, 2, 1, 3, 1, 7, 1, 2, 2, 2, 1, 2, 3, 2, 166, 1, 2, 1, 4, 8, 10, 1, 1, 7, 1, 2, 3, 566, 1, 2, 3, 3, 1, 20, 1, 2, 19, 1, 3, 2, 1, 2, 13, 2, 2, 11, 3, 1, 2, 1, 7, 2, 1, 1, 1, 2, 1, 19, 1, 1, 12, 11, 1, 4, 1, 6, 1, 2, 18, 1, 2
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

"The transcendentality of e^{Pi} was proved in 1929." (Wells)

Examples

			e^Pi = 23.140692632779269005... = 23 + 1/(7 + 1/(9 + 1/(3 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 19 2009
		

References

  • Jan Gullberg, "Mathematics, From the Birth of Numbers," W. W. Norton and Company, NY and London, 1997, page 86.
  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 81.

Crossrefs

Cf. A039661.

Programs

  • Maple
    with(numtheory): cfrac(evalf((exp(1))^(evalf(Pi)),2560),256,'quotients');
  • Mathematica
    ContinuedFraction[ E^Pi, 100]
  • PARI
    \p 300 contfrac(exp(1)^Pi)
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(exp(1)^Pi); for (n=0, 20000, write("b058287.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Apr 19 2009

Extensions

More terms from Jason Earls, Jun 21 2001

A175314 Decimal expansion of exp(Pi) + exp(-Pi).

Original entry on oeis.org

2, 3, 1, 8, 3, 9, 0, 6, 5, 5, 1, 0, 4, 3, 0, 4, 1, 2, 5, 5, 5, 0, 3, 5, 0, 4, 1, 0, 5, 1, 2, 0, 2, 7, 5, 3, 9, 1, 5, 4, 1, 8, 3, 4, 3, 5, 2, 4, 1, 0, 8, 4, 5, 0, 7, 6, 4, 2, 5, 7, 6, 6, 0, 9, 6, 9, 2, 5, 3, 9, 3, 1, 1, 6, 4, 4, 7, 4, 7, 0, 7, 5, 1, 2, 1, 5, 1, 1, 1, 9, 5, 7, 0, 2, 9, 4, 5, 0, 3, 0, 4, 0, 6, 2, 9
Offset: 2

Views

Author

R. J. Mathar, Apr 01 2010

Keywords

Examples

			23.1839065510430412555035041051202753...
		

Crossrefs

Cf. A039661 (exp(Pi)), A093580 (exp(-Pi)), A175315, A334402 (cosh(Pi)).

Programs

Formula

Equals A039661 + A093580.
Equals 2*cosh(Pi).
Equals 10 * Product_{k>=1} (1 + 4/(2*k+1)^2). - Amiram Eldar, Aug 09 2020

A166748 E.g.f.: exp(6*arcsin(x)).

Original entry on oeis.org

1, 6, 36, 222, 1440, 9990, 74880, 609390, 5391360, 51798150, 539136000, 6060383550, 73322496000, 951480217350, 13198049280000, 195053444556750, 3061947432960000, 50908949029311750, 894088650424320000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(6*arcsin(1/2)) is Aleksandr Gelfond's constant exp(Pi).

Crossrefs

Programs

  • Mathematica
    Round[Table[3*2^(n-1)*(E^(3*Pi)-(-1)^n*E^(-3*Pi))*Abs[Gamma[n/2+3*I]]^2/Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
    CoefficientList[Series[Exp[6*ArcSin[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    A166748(n)=round(norm(gamma(n/2+3*I))/Pi*if(n%2,cosh(3*Pi),sinh(3*Pi))*3<M. F. Hasler, Oct 25 2009
    
  • PARI
    a(n)=polcoeff(exp(6*asin(x)),n)*n!
    
  • PARI
    a(n)=(1+5*(n%2))*prod(k=0,n\2-1,(2*k+n%2)^2+36) \\ Jaume Oliver Lafont, Oct 28 2009

Formula

Contribution from Alexander R. Povolotsky, Oct 24 2009: (Start)
a(n+2) = (n^2+36)*a(n), a(0)=1, a(1)=6.
The above recurrence leads to
a(n) = (3*2^n*gamma(-3*i+n/2)*gamma(3*i+n/2)*(cos((n*Pi)/2)+i*sin((n*Pi)/2))*sinh(((6-i*n)*Pi)/2))/Pi where "i" is imaginary unit. (End)
a(n) = 3*2^(n-1)*(exp(3*Pi)-(-1)^n*exp(-3*Pi))*|Gamma(n/2+3i)|^2/Pi. - R. J. Mathar and M. F. Hasler, Oct 25 2009
a(n) ~ 6 * (exp(3*Pi) - (-1)^n*exp(-3*Pi)) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 06 2014

Extensions

Minor edits by Vaclav Kotesovec, Nov 06 2014

A175315 Decimal expansion of exp(Pi) - exp(-Pi).

Original entry on oeis.org

2, 3, 0, 9, 7, 4, 7, 8, 7, 1, 4, 5, 1, 5, 4, 9, 6, 7, 5, 5, 9, 5, 4, 6, 6, 8, 6, 3, 0, 7, 7, 6, 8, 1, 9, 3, 6, 8, 9, 9, 0, 3, 7, 8, 1, 3, 2, 7, 8, 9, 5, 7, 8, 9, 1, 0, 4, 6, 4, 3, 2, 6, 7, 2, 2, 1, 2, 3, 2, 9, 1, 5, 8, 4, 9, 3, 3, 4, 3, 4, 8, 1, 5, 8, 1, 8, 8, 3, 2, 0, 3, 7, 1, 0, 5, 6, 4, 8, 1, 3, 5, 2, 8, 8, 9
Offset: 2

Views

Author

R. J. Mathar, Apr 01 2010

Keywords

Examples

			23.0974787145154967559546686307...
		

Crossrefs

Cf. A039661 (exp(Pi)), A093580 (exp(-Pi)), A175314.

Programs

Formula

Equals A039661 - A093580.
Equals 2*sinh(Pi).

A194555 Decimal expansion of the real part of i^(e^Pi), where i = sqrt(-1).

Original entry on oeis.org

2, 1, 9, 2, 0, 4, 8, 9, 4, 9, 0, 0, 8, 7, 6, 1, 3, 2, 8, 9, 0, 7, 6, 7, 9, 4, 9, 7, 4, 4, 6, 5, 7, 2, 6, 5, 8, 7, 3, 6, 9, 2, 6, 4, 6, 1, 1, 9, 0, 7, 9, 6, 3, 9, 2, 6, 4, 8, 5, 0, 9, 2, 1, 7, 3, 8, 9, 3, 1, 7, 0, 7, 6, 5, 2, 1, 9, 9, 7, 4, 7, 2, 2, 3, 5, 3, 0, 1, 9, 5, 4, 0, 6, 1, 5, 3, 4, 6, 1, 0
Offset: 0

Views

Author

Jonathan Sondow, Aug 28 2011

Keywords

Comments

If Schanuel's Conjecture is true, then i^e^Pi is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			i^e^Pi = 0.2192048949... - 0.9756788478...*i
		

Crossrefs

Cf. A039661 (e^Pi), A194554 (imaginary part).
Cf. A194348 (sqrt(2)^(sqrt(2)^sqrt(2))).

Programs

  • Mathematica
    RealDigits[ Re[I^E^Pi], 10, 100] // First
  • PARI
    real(I^(exp(Pi))) \\ Michel Marcus, Aug 19 2018
Showing 1-10 of 38 results. Next