cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A084101 Expansion of (1+x)^2/((1-x)*(1+x^2)).

Original entry on oeis.org

1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Partial sums of A084099. Inverse binomial transform of A000749 (without leading zeros).
From Klaus Brockhaus, May 31 2010: (Start)
Periodic sequence: Repeat 1, 3, 3, 1.
Interleaving of A010684 and A176040.
Continued fraction expansion of (7 + 5*sqrt(29))/26.
Decimal expansion of 121/909.
a(n) = A143432(n+3) + 1 = 2*A021913(n+1) + 1 = 2*A133872(n+3) + 1.
a(n) = A165207(n+1) - 1.
First differences of A047538.
Binomial transform of A084102. (End)
From Wolfdieter Lang, Feb 09 2012: (Start)
a(n) = A045572(n+1) (Modd 5) := A203571(A045572(n+1)), n >= 0.
For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the five residue classes Modd 5, called [m] for m=0,1,...,4, are shown in the array A090298 if there the last row is taken as class [0] after inclusion of 0.
(End)

Examples

			From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 5 of nonnegative odd numbers restricted mod 5:
A045572: 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, ...
Modd 5:  1, 3, 3, 1,  1,  3,  3,  1,  1,  3, ...
(End)
		

Crossrefs

Cf. A084102.
Cf. A010684 (repeat 1, 3), A176040 (repeat 3, 1), A178593 (decimal expansion of (7+5*sqrt(29))/26), A143432 (expansion of (1+x^4)/((1-x)*(1+x^2))), A021913 (repeat 0, 0, 1, 1), A133872 (repeat 1, 1, 0, 0), A165207 (repeat 2, 2, 4, 4), A047538 (congruent to 0, 1, 4 or 7 mod 8), A084099 (expansion of (1+x)^2/(1+x^2)), A000749 (expansion of x^3/((1-x)^4-x^4)). - Klaus Brockhaus, May 31 2010

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x)^2/((1-x)*(1+x^2)) )); // G. C. Greubel, Feb 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^2/((1-x)(1+x^2)),{x,0,110}],x] (* or *) PadRight[{},110,{1,3,3,1}] (* Harvey P. Dale, Nov 21 2012 *)
  • PARI
    x='x+O('x^100); Vec((1+x)^2/((1-x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    ((1+x)^2/((1-x)*(1+x^2))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Feb 28 2019

Formula

a(n) = binomial(3, n mod 4). - Paul Barry, May 25 2003
From Klaus Brockhaus, May 31 2010: (Start)
a(n) = a(n-4) for n > 3; a(0) = a(3) = 1, a(1) = a(2) = 3.
a(n) = (4 - (1+i)*i^n - (1-i)*(-i)^n)/2 where i = sqrt(-1). (End)
E.g.f.: 2*exp(x) + sin(x) - cos(x). - Arkadiusz Wesolowski, Nov 04 2017
a(n) = 2 - (-1)^(n*(n+1)/2). - Guenther Schrack, Feb 26 2019

A105115 Numbers k such that the decimal representation of 1/k is neither terminating nor purely repeating.

Original entry on oeis.org

6, 12, 14, 15, 18, 22, 24, 26, 28, 30, 34, 35, 36, 38, 42, 44, 45, 46, 48, 52, 54, 55, 56, 58, 60, 62, 65, 66, 68, 70, 72, 74, 75, 76, 78, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 98, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 118, 120, 122, 124, 126, 130, 132, 134
Offset: 1

Views

Author

David Wasserman, Apr 07 2005

Keywords

Comments

k is in this sequence iff 1) k is divisible by 2 or 5 and 2) k is also divisible by some prime other than 2 and 5. Contains the numbers that are in neither A003592 nor A045572.
The asymptotic density of this sequence is 3/5. - Amiram Eldar, Mar 26 2021

Examples

			22 is a member because 1/22 = .045454545..., which has a 0 before the repeating 45.
		

Crossrefs

Programs

  • Mathematica
    f[n_, lim_] := Block[{g, a}, g[x_] := First /@ FactorInteger@ x; a = g@ n; Select[Range@ lim, And[1 < GCD[#, n] < #, Length@ Complement[g@ #, a] >= 1] &]]; f[10, 134] (* Michael De Vlieger, Jun 20 2015 *)

A162699 Odd numbers not divisible by 7.

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 79, 81, 83, 85, 87, 89, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 135, 137, 139, 141, 143, 145, 149
Offset: 1

Views

Author

Zak Seidov, Jul 11 2009

Keywords

Comments

Numbers coprime to 14. The asymptotic density of this sequence is 3/7. - Amiram Eldar, Oct 18 2020

Crossrefs

Cf. A045572 (odd numbers not divisible by 5).

Programs

Formula

a(n) = 2*n + 1 + 2*floor( (2*n-7)/12 ).
a(n) = a(n-1)+a(n-6)-a(n-7). G.f.: x*(x^2+1)*(x^4+2*x^3+x^2+2*x+1)/ ((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2). - R. J. Mathar, Jul 31 2009

A176553 Numbers m such that concatenations of divisors of m are noncomposites.

Original entry on oeis.org

1, 3, 7, 9, 13, 21, 31, 37, 67, 73, 79, 97, 103, 109, 121, 151, 163, 181, 183, 193, 219, 223, 229, 237, 277, 283, 307, 363, 367, 373, 381, 409, 433, 439, 471, 487, 489, 499, 511, 523, 571, 601, 603, 607, 613, 619, 657, 669, 709, 733, 787, 811, 817, 819, 823, 841, 867
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Comments

Do all primes p > 5 have a multiple in this sequence? This holds at least for p < 10^4. - Charles R Greathouse IV, Sep 23 2016
Conjecture: this sequence is a subsequence of A003136 (Loeschian numbers). - Davide Rotondo, Jan 02 2022
If m is not in A003136, there is a prime p == 2 (mod 3) such that the exponent of p in the factorization of m is odd, then we have 3 | 1+p | 1+p+p^2+...+p^(2*r-1) | sigma(m), sigma = A000203 is the sum of divisors, so the concatenation of the divisors of m is also divisible by 3. - Jianing Song, Aug 22 2022

Examples

			a(6) = 21: the divisors of 21 are 1,3,7,21, and their concatenation 13721 is noncomposite.
		

Crossrefs

Subsequence of A045572.

Programs

  • Mathematica
    Select[Range[10^3], ! CompositeQ@ FromDigits@ Flatten@ IntegerDigits@ Divisors@ # &] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    is(n)=my(d=divisors(n)); d[1]="1"; isprime(eval(concat(d))) || n==1 \\ Charles R Greathouse IV, Sep 23 2016
    
  • Python
    from sympy import divisors, isprime
    def ok(m): return m==1 or isprime(int("".join(str(d) for d in divisors(m))))
    print([m for m in range(1, 900) if ok(m)]) # Michael S. Branicky, Feb 05 2022

Extensions

Edited and extended by Charles R Greathouse IV, Apr 30 2010
Data corrected by Bill McEachen, Nov 03 2021

A082768 Numbers that begin with 1, 3, 7 or 9.

Original entry on oeis.org

1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Amarnath Murthy, Apr 18 2003

Keywords

Crossrefs

Cf. A082769, A082770, A045572 (Numbers that end with 1, 3, 7 or 9).

Programs

  • Maple
    isA082768 := proc(n)
        convert(n,base,10) ;
        if op(-1,%) in {1,3,7,9} then
            true;
        else
            false;
        end if;
    end proc:
    A082768 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+ 1 do
                if isA082768(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A082768(n),n=1..120) ; # R. J. Mathar, Aug 27 2025
  • Mathematica
    Select[Range[119], MemberQ[{1, 3, 7, 9}, First[IntegerDigits[#]]] &] (* Jayanta Basu, Jun 24 2013 *)

Extensions

More terms from David Wasserman, Jul 28 2005
Offset changed by Andrew Howroyd, Sep 29 2024

A178505 Decimal form of the period of 1/n for n such that gcd(n,10)=1. Leading zeros are suppressed.

Original entry on oeis.org

3, 142857, 1, 9, 76923, 588235294117647, 52631578947368421, 47619, 434782608695652173913, 37, 344827586206896551724137931, 32258064516129, 3, 27, 25641, 2439, 23255813953488372093
Offset: 1

Views

Author

Michel Lagneau, May 29 2010

Keywords

Comments

The numbers n are A045572, and the corresponding periods are A002329.

Examples

			3 is in the sequence because 1/3 = 0.3333...
142857 is in the sequence because 1/7 = 0.142857 142857 ...
1 is in the sequence because 1/9 = 0.1111....
		

Crossrefs

Programs

  • Maple
    with(numtheory): nn:= 100: T:=array(1..nn):k:=1: U:=array(1..nn):k:=1: for n from 2 to 200 do:x:=1/n:for p from 1 to 200 while(irem(10^p,n)<>1 or gcd(n,10)<> 1) do:od: if irem(10^p,n) = 1 and gcd(n,10) = 1 then y:=floor(x*10^p): T[k]:=y: U[k]:=n : k:=k+1:else fi:od:print(T):

Formula

a(n) = A060284(A045572(n+1)). [R. J. Mathar, Jun 26 2010]

Extensions

Name corrected by T. D. Noe, Jul 07 2010

A072182 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives x's for Wallis pairs with x < y (ordered by values of x, then y).

Original entry on oeis.org

4, 12, 28, 36, 44, 52, 68, 76, 84, 92, 108, 116, 124, 132, 148, 156, 164, 172, 188, 196, 204, 212, 228, 236, 244, 252, 268, 276, 284, 292, 308, 316, 324, 326, 332, 348, 356, 364, 372, 388, 396, 404, 406, 412, 428, 436, 444, 452, 468, 476, 484, 492, 508, 516
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2002

Keywords

Comments

4*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002
D. Johnson remarks that some terms are repeated, e.g., a(139)=a(140)=1284 forms a Wallis pair with A072186(139)=1528 and also with A072186(140)=1605. - M. F. Hasler, Sep 15 2013

Examples

			The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
		

References

  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a072182 n = a072182_list !! (n-1)
    (a072182_list, a072186_list) = unzip wallisPairs
      wallisPairs = [(x, y) | (y, sy) <- tail ws,
                              (x, sx) <- takeWhile ((< y) . fst) ws, sx == sy]
                    where ws = zip [1..] $ map a000203 $ tail a000290_list
    -- Reinhard Zumkeller, Sep 17 2013
  • Mathematica
    w = {}; m = 550;
    Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x+1, sq}], {x, 1, m}];
    w[[All, 1]] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {w=[]; m=550; for(x=1,m,q=sigma(x^2); sq=sqrtint(q); for(y=x+1,sq,if(q==sigma(y^2), w=concat(w,[[x,y]])))); for(j=1,matsize(w)[2],print1(w[j][1],","))}
    

Extensions

Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002

A072186 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for Wallis pairs with x < y (ordered by values of x).

Original entry on oeis.org

5, 15, 35, 45, 55, 65, 85, 95, 105, 115, 135, 145, 155, 165, 185, 195, 205, 215, 235, 245, 255, 265, 285, 295, 305, 315, 335, 345, 355, 365, 385, 395, 405, 407, 415, 435, 445, 455, 465, 485, 495, 505, 489, 515, 535, 545, 555, 565, 585, 595, 605, 615, 635
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2002

Keywords

Comments

5*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002

Examples

			The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
		

References

  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a072186 n = a072186_list !! (n-1)
    -- a072186_list defined in A072182.  -- Reinhard Zumkeller, Sep 18 2013
  • Mathematica
    w = {}; m = 550;
    Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x + 1, sq}], {x, 1, m}];
    w[[All, 2]] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {w=[]; m=550; for(x=1,m,q=sigma(x^2); sq=sqrtint(q); for(y=x+1,sq,if(q==sigma(y^2), w=concat(w,[[x,y]])))); for(j=1,matsize(w)[2],print1(w[j][2],","))}
    

Extensions

Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002

A075607 a(1) = 1, a(n) = smallest number not occurring earlier such that the concatenation a(n-1) and a(n) is a prime.

Original entry on oeis.org

1, 3, 7, 9, 11, 17, 21, 13, 19, 31, 37, 27, 29, 39, 23, 33, 43, 49, 51, 47, 59, 53, 81, 61, 63, 67, 79, 93, 41, 57, 83, 69, 71, 77, 89, 99, 73, 121, 97, 87, 103, 91, 127, 123, 113, 111, 109, 133, 117, 101, 107, 119, 129, 169, 151, 141, 131, 143, 137, 147, 139
Offset: 1

Views

Author

Amarnath Murthy, Sep 28 2002

Keywords

Comments

Almost certainly a permutation of A045572. - David W. Wilson, Jan 15 2005

Crossrefs

Programs

  • Mathematica
    a = {{1}}; Do[k = 2; While[Nand[! MemberQ[a, #], PrimeQ@ FromDigits@ Join[a[[n - 1]], #]] &@ Set[d, IntegerDigits@ k], k++]; AppendTo[a, d], {n, 2, 61}]; FromDigits /@ a (* Michael De Vlieger, May 08 2017 *)
  • PARI
    A075607(n,show=0,a=1,u=[])={for(n=2,n,show&&print1(a","); u=setunion(u,[a]); while(#u>1&&u[2]==u[1]+2,u=u[2..-1]); forstep(k=u[1]+2, 9e9, 2, setsearch(u,k)&&next; isprime(eval(Str(a,k))) && (a=k) && break)); a} \\ Use 2nd, 3rd or 4th optional arg to print intermediate terms, to use another starting value or to exclude some terms. - M. F. Hasler, Nov 25 2015

Extensions

More terms from Michel ten Voorde Jun 23 2003

A083754 a(1) = 1 and then smallest odd number not occurring earlier such that the concatenation a(1)a(2)a(3)... is a prime.

Original entry on oeis.org

1, 3, 7, 11, 9, 27, 63, 31, 53, 21, 13, 83, 33, 39, 49, 51, 77, 87, 307, 29, 229, 281, 151, 173, 481, 41, 99, 157, 177, 17, 357, 213, 231, 171, 271, 557, 67, 113, 463, 159, 119, 57, 247, 147, 563, 409, 353, 391, 179, 1051, 209, 19, 153, 621, 287, 567, 313, 117, 363
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003

Keywords

Comments

Conjecture: all odd numbers not of the type 10k+5 are members.
Some of the larger entries may only correspond to probable primes.
Values corresponding to a(6)=27 (A083755(5)) through a(59)=363 (A083755(58), a 149-digit value) have been certified prime with Primo. - Rick L. Shepherd, May 10 2003
Since we begin with 1 and thereafter have more than a single decimal digit, all terms must be in A045572, the sequence that contains all positive integers relatively prime to 10. - Michael De Vlieger, Oct 30 2020.

Examples

			13,137,13711, etc. are primes.(1379 is not a prime) hence 11 is the next member after 7.
		

Crossrefs

Programs

  • Mathematica
    Block[{c = 1, a = {1}, f, g}, f[m_, n_] := m*10^(1 + Floor[Log10[n]]) + n; g[n_] := (5 n + Mod[3 n + 2, 4] - 4)/2; Do[Block[{j = 2, k, d, t}, While[Nand[FreeQ[a, Set[k, g[j] ]], PrimeQ[Set[d, f[c, k]]]], j++]; c = d; AppendTo[a, k]], {i, 59}]; a] (* Michael De Vlieger, Oct 30 2020 *)
  • PARI
    {used_before(v, n) = for (l=1,matsize(v)[2], if(v[l]==n, return(1))); return(0)} {A083754=[1]; p=A083754[1]; A083755=[]; print1(A083754[1],","); for (m=2,151, k=1; while (used_before(A083754,k)||!isprime(tmp_p=p*(10^length(Str(k)))+k), k=k+2); p=tmp_p; A083755=concat(A083755,p); A083754=concat(A083754,k); print1(A083754[m],",")); A083755}

Extensions

More terms from Rick L. Shepherd, May 08 2003
Previous Showing 21-30 of 77 results. Next