cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 75 results. Next

A189834 a(n) = n^2 + 9.

Original entry on oeis.org

9, 10, 13, 18, 25, 34, 45, 58, 73, 90, 109, 130, 153, 178, 205, 234, 265, 298, 333, 370, 409, 450, 493, 538, 585, 634, 685, 738, 793, 850, 909, 970, 1033, 1098, 1165, 1234, 1305, 1378, 1453, 1530, 1609, 1690, 1773, 1858, 1945
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A154533(n+1). - R. J. Mathar, May 16 2011
G.f.: ( -9+17*x-10*x^2 ) / (x-1)^3 . - R. J. Mathar, Aug 31 2011
E.g.f.: (9 + x + x^2)*exp(x). - G. C. Greubel, Jan 13 2018
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/18.
Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/18. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (2/3)*sqrt(2)*sinh(2*sqrt(2)*Pi)/sinh(3*Pi).
Product_{n>=0} (1 + 1/a(n)) = (sqrt(10)/3)*sinh(sqrt(10)*Pi)/sinh(3*Pi). (End)

A290743 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 2.

Original entry on oeis.org

2, 3, 4, 6, 8, 11, 14, 18, 22, 27, 32, 38, 44, 51, 58, 66, 74, 83, 92, 102, 112, 123, 134, 146, 158, 171, 184, 198, 212, 227, 242, 258, 274, 291, 308, 326, 344, 363, 382, 402, 422, 443, 464, 486, 508, 531, 554, 578, 602, 627, 652, 678, 704, 731, 758
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2017

Keywords

Comments

See theorem 1 of reference for formula.

Crossrefs

Cf. A290744, A290745, A290746, A014206 (bisection), A059100 (bisection).

Programs

  • Magma
    [Binomial(n+1,2)-(2-(n-2*Floor(n/2)))*Binomial(Floor(n/2)+1,2)-(n-2*Floor(n/2))*Binomial(Floor(n/2)+2,2)+2: n in [1..60]]; // Vincenzo Librandi, Oct 04 2017
  • Mathematica
    Table[(Binomial[n+1,2] - (2-(n - 2 Floor[n/2])) Binomial[Floor[n/2]+1, 2] - (n-2 Floor[n/2]) Binomial[Floor[n/2]+2, 2] + 2), {n, 60}] (* Vincenzo Librandi, Oct 04 2017 *)
  • PARI
    a(n)=(s->my(m=n\s,p=n%s); binomial(n+1,2)-(s-p)*binomial(m+1,2)-p*binomial(m+2,2)+s)(2); \\ Andrew Howroyd, Aug 14 2017
    

Formula

a(n) = binomial(n+1,2) - (s-p)*binomial(m+1,2) - p*binomial(m+2,2) + s where s=2, m=floor(n/s), p=n-m*s. - Andrew Howroyd, Aug 14 2017
From Colin Barker, Oct 03 2017: (Start)
G.f.: x*(2 - x - 2*x^2 + 2*x^3) / ((1 - x)^3*(1 + x)).
a(n) = (2*n^2 + 16) / 8 for n even.
a(n) = (2*n^2 + 14) / 8 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 4. (End)
E.g.f.: ((8 + x + x^2)*cosh(x) + (7 + x + x^2)*sinh(x) - 8)/4. - Stefano Spezia, Jul 06 2021
Sum_{n>=1} 1/a(n) = coth(sqrt(2)*Pi)*Pi/(2*sqrt(2)) + tanh(sqrt(7)*Pi/2)*Pi/sqrt(7) - 1/4. - Amiram Eldar, Sep 16 2022

Extensions

a(11)-a(55) from Andrew Howroyd, Aug 14 2017

A102305 a(n) = n^2 + 2*n + 3.

Original entry on oeis.org

6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403
Offset: 1

Views

Author

Ralf Stephan, Jan 03 2005

Keywords

Comments

Essentially a duplicate of A059100.

Crossrefs

Programs

Formula

a(n) = (1/5) * A027578(n-1).
a(n) = 2*n + a(n-1) + 1 (with a(1)=6). - Vincenzo Librandi, Nov 16 2010
a(n) = A059100(n+1). - Reinhard Zumkeller, Mar 21 2008
a(n) = A010000(n+1) for n >= 1. - Georg Fischer, Nov 02 2018
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi * coth(sqrt(2)*Pi)/(2*sqrt(2)) - 7/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(sqrt(2)*Pi)*Pi/(2*sqrt(2)) + 1/12. (End)
From G. C. Greubel, Feb 03 2024: (Start)
G.f.: (3 - 3*x + 2*x^2)/(1-x)^3.
E.g.f.: (3 + 3*x + x^2)*exp(x). (End)

A114964 a(n) = n^2 + 30.

Original entry on oeis.org

30, 31, 34, 39, 46, 55, 66, 79, 94, 111, 130, 151, 174, 199, 226, 255, 286, 319, 354, 391, 430, 471, 514, 559, 606, 655, 706, 759, 814, 871, 930, 991, 1054, 1119, 1186, 1255, 1326, 1399, 1474, 1551, 1630, 1711, 1794, 1879, 1966, 2055, 2146, 2239, 2334, 2431, 2530
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

x^2 + 30 != y^n for all x,y and n > 1, so this is a subsequence of A007916.
From Bruno Berselli, May 12 2014: (Start)
This is the case k=5 of the identity n^2 + k*(k+1) = (Sum_{i=-k..k} (n+i)^3)/((2*k+1)*n).
Similar sequences: A059100 (k=1), A114949 (k=2), A241748 (k=3), A241850 (k=4). (End)
The old name of this sequence was: Numbers of the form x^2 + 30. Also numbers that are not a perfect power.

Examples

			11*4*a(4) = (-1)^3 + 0^3 + 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 = 2024. - _Bruno Berselli_, May 12 2014
		

Crossrefs

Programs

  • Mathematica
    Range[0,60]^2+30 (* Harvey P. Dale, Oct 17 2022 *)
  • PARI
    g(n,p) = for(x=0,n,y=x^2+p;print1(y","));
    
  • PARI
    a(n) = n^2 + 30; \\ Altug Alkan, Apr 30 2018

Formula

From Amiram Eldar, Nov 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(30)*Pi*coth(sqrt(30)*Pi))/60.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(30)*Pi*cosech(sqrt(30)*Pi))/60. (End)
From Elmo R. Oliveira, Dec 30 2024: (Start)
G.f.: (30 - 59*x + 31*x^2)/(1 - x)^3.
E.g.f.: (30 + x + x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

New name from Shawn A. Broyles and Altug Alkan, Apr 30 2018

A189833 a(n) = n^2 + 8.

Original entry on oeis.org

8, 9, 12, 17, 24, 33, 44, 57, 72, 89, 108, 129, 152, 177, 204, 233, 264, 297, 332, 369, 408, 449, 492, 537, 584, 633, 684, 737, 792, 849, 908, 969, 1032, 1097, 1164, 1233, 1304, 1377, 1452, 1529, 1608, 1689, 1772, 1857, 1944, 2033
Offset: 0

Views

Author

Keywords

Comments

From César Eliud Lozada, Mar 29 2021: (Start)
Numbers a(n) such that sqrt( a(n) + 4*n*sqrt(2) ) = n + 2*sqrt(2). Examples:
For n=1: sqrt( 9 + 4*sqrt(2)) = 1 + 2*sqrt(2),
For n=2: sqrt(12 + 8*sqrt(2)) = 2 + 2*sqrt(2),
For n=3: sqrt(17 + 12*sqrt(2)) = 3 + 2*sqrt(2). (End)

Crossrefs

Programs

Formula

From G. C. Greubel, Jan 13 2018: (Start)
G.f.: (8 - 15*x + 9*x^2)/(1 - x)^3.
E.g.f.: (8 + x + x^2)*exp(x). (End)
From Amiram Eldar, Jul 04 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*sqrt(2)*Pi*coth(2*sqrt(2)*Pi))/16.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*sqrt(2)*Pi*cosech(2*sqrt(2)*Pi))/16. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (sqrt(7/2)/2)*sinh(sqrt(7)*Pi)/sinh(2*sqrt(2)*Pi).
Product_{n>=0} (1 + 1/a(n)) = (3/(2*sqrt(2)))*sinh(3*Pi)/sinh(2*sqrt(2)*Pi). (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Apr 29 2011

A246453 Lucas numbers (A000204) of the form n^2 + 2.

Original entry on oeis.org

3, 11, 18, 123, 843, 5778, 39603, 271443, 1860498, 12752043, 87403803, 599074578, 4106118243, 28143753123, 192900153618, 1322157322203, 9062201101803, 62113250390418, 425730551631123, 2918000611027443, 20000273725560978, 137083915467899403, 939587134549734843
Offset: 1

Views

Author

Michel Lagneau, Aug 26 2014

Keywords

Comments

a(n) = {11} union {A000204(2+4*n)} for n=0,1,...
Intersection of A000204 and A059100. - Michel Marcus, Aug 26 2014

Crossrefs

Cf. A000204 (Lucas), A059100 (n^2+2).
Cf. quadrisection of A000032: A056854 (first), A056914 (second), this sequence (third, without 11), A288913 (fourth).

Programs

  • Magma
    I:=[3,11,18,123]; [n le 4 select I[n] else 7*Self(n-1)-Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Maple
    with(combinat,fibonacci):lst:={}:lst1:={}:nn:=5000:
      for n from 1 to nn do:
        lst:=lst union {2*fibonacci(n-1)+fibonacci(n)}:
      od:
       for m from 1 to nn do:
        if {m^2+2} intersect lst = {m^2+2}
        then
        lst1:=lst1 union {m^2+2}:
        else
        fi:
       od:
       print(lst1):
  • Mathematica
    CoefficientList[Series[x*(3-10*x-56*x^2+8*x^3)/(1-7*x+x^2), {x,0,50}], x] (* or *) LinearRecurrence[{7,-1}, {3, 11, 18, 123}, 30] (* G. C. Greubel, Dec 21 2017 *)
    Select[LucasL[Range[100]],IntegerQ[Sqrt[#-2]]&] (* Harvey P. Dale, Dec 31 2018 *)
  • PARI
    lista(nn) = for (n=0, nn, luc = fibonacci(n+1) + fibonacci(n-1); if (issquare(luc-2), print1(luc, ", "))); \\ Michel Marcus, Mar 29 2016
    
  • PARI
    Vec(x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2) + O(x^30)) \\ Colin Barker, Jun 20 2017
    

Formula

From Colin Barker, Jun 20 2017: (Start)
G.f.: x*(3 - 10*x - 56*x^2 + 8*x^3) / (1 - 7*x + x^2).
a(n) = (2^(-n)*((7+3*sqrt(5))^n*(-20+9*sqrt(5)) + (7-3*sqrt(5))^n*(20+9*sqrt(5)))) / sqrt(5) for n>2.
a(n) = 7*a(n-1) - a(n-2) for n>4. (End)
E.g.f.: 2*exp(7*x/2)*(9*cosh(3*sqrt(5)*x/2) - 4*sqrt(5)*sinh(3*sqrt(5)*x/2)) + 4*x^2 - 18. - Stefano Spezia, Apr 14 2025

Extensions

Corrected by Michel Marcus, Mar 29 2016

A085554 Greater of twin primes of the form x^2+2, x^2+4.

Original entry on oeis.org

5, 13, 229, 1093, 2029, 3253, 13693, 21613, 59053, 65029, 91813, 140629, 178933, 199813, 205213, 227533, 328333, 567013, 700573, 804613, 815413, 1071229, 2241013, 3629029, 4223029, 4347229, 4809253, 5212093, 5919493, 6185173
Offset: 1

Views

Author

Cino Hilliard, Jul 04 2003

Keywords

Comments

Except for the first term, all a(n)=13 (mod 72) with x=3 (mod 6). The lesser of the twin prime pair is given by A253639, the x-values in A086381. - M. F. Hasler, Jan 18 2015

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Table[x^2+{2,4},{x,5000}],AllTrue[#,PrimeQ]&]][[2]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 15 2015 *)
  • PARI
    is_A086381(x)=ispseudoprime(x^2+2)&&ispseudoprime(x^2+4) \\ or is_A067201(x)&&is_A007591(x)
    A085554 = apply(A087475,select(is_A086381,vector(9999,n,n))) \\ A087475=x->x^2+4.
    write(f="b085554.txt",c=1," 5"); forstep(x=3,1e6,6,is_A086381(x)&&write(f,c++" "x^2+4))
    \\ M. F. Hasler, Jan 18 2015

Formula

A085554 = A087475 o A086381 = A020725^2 o A253639, i.e., a(n) = A087475(A086381(n)) = A253639(n)+2. - M. F. Hasler, Jan 18 2015

Extensions

Edited by Don Reble, May 03 2006
Definition corrected by Harvey P. Dale and Franklin T. Adams-Watters, Jan 15 2015

A117938 Triangle, columns generated from Lucas Polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 4, 1, 4, 11, 14, 7, 1, 5, 18, 36, 34, 11, 1, 6, 27, 76, 119, 82, 18, 1, 7, 38, 140, 322, 393, 198, 29, 1, 8, 51, 234, 727, 1364, 1298, 478, 47, 1, 9, 66, 364, 1442, 3775, 5778, 4287, 1154, 76, 1, 10, 83, 536, 2599, 8886, 19602, 24476, 14159, 2786, 123
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Companion triangle using Fibonacci polynomial generators = A073133. Inverse binomial transforms of the columns defines rows of A117937 (with some adjustments of offset).
A309220 is another version of the same triangle (except it omits the last diagonal), and perhaps has a clearer definition. - N. J. A. Sloane, Aug 13 2019

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  6,   4;
  1, 4, 11,  14,   7;
  1, 5, 18,  36,  34,  11;
  1, 6, 27,  76, 119,  82,  18;
  1, 7, 38, 140, 322, 393, 198, 29;
  ...
For example, T(7,4) = 76 = f(4), x^3 + 3*x = 64 + 12 = 76.
		

Crossrefs

Cf. A000204 (diagonal), A059100 (column 3), A061989 (column 4).

Programs

  • Maple
    Lucas := proc(n,x) # see A114525
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
        expand(%) ;
    end proc:
    A117938 := proc(n::integer,k::integer)
        if k = 1 then
            1;
        else
            subs(x=n-k+1,Lucas(k-1,x)) ;
        end if;
    end proc:
    seq(seq(A117938(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    T[n_, k_]:= LucasL[k-1, n-k+1] - Boole[k==1];
    Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 28 2021 *)
  • Sage
    def A117938(n,k): return 1 if (k==1) else round(2^(1-k)*( (n-k+1 + sqrt((n-k)*(n-k+2) + 5))^(k-1) + (n-k+1 - sqrt((n-k)*(n-k+2) + 5))^(k-1) ))
    flatten([[A117938(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 28 2021

Formula

Columns are f(x), x = 1, 2, 3, ..., of the Lucas Polynomials: (1, defined different from A034807 and A114525); (x); (x^2 + 2); (x^3 + 3*x); (x^4 + 4*x^2 + 2); (x^5 + 5*x^3 + 5*x); (x^6 + 6*x^4 + 9*x^2 + 2); (x^7 + 7*x^5 + 14*x^3 + 7*x); ...

Extensions

Terms a(51) and a(52) corrected by G. C. Greubel, Oct 28 2021

A164897 a(n) = 4*n*(n+1) + 3.

Original entry on oeis.org

3, 11, 27, 51, 83, 123, 171, 227, 291, 363, 443, 531, 627, 731, 843, 963, 1091, 1227, 1371, 1523, 1683, 1851, 2027, 2211, 2403, 2603, 2811, 3027, 3251, 3483, 3723, 3971, 4227, 4491, 4763, 5043, 5331, 5627, 5931, 6243, 6563, 6891, 7227, 7571, 7923, 8283, 8651, 9027, 9411
Offset: 0

Views

Author

Paul Curtz, Aug 30 2009

Keywords

Comments

One-fourth the sum of the three terms produced by the division of complex numbers (2*n-3+(2*n-1)*i)/(2*n+1+(2*n+3)*i). For (b+c*i)/(d+e*i) the three terms in parentheses are ((b*d+c*e)+(c*d-b*e)*i)/(d^2+e^2). By substituting b=2*n-3, c=2*n-1, d=2*n+1, and e=2*n+3 one gets a(n). - J. M. Bergot, Sep 10 2015
The continued fraction expansion of sqrt(a(n)) is [2n+1; {2n+1, 4n+2}]. - Magus K. Chu, Sep 08 2022

Crossrefs

Odd-indexed terms of A059100.

Programs

Formula

a(n) = A000124(2*n) + A000124(2*n+1) = A069894(n)+1.
a(n+1) - a(n) = 8n+8 = A008590(n+1) (first differences).
a(n+1) - 2*a(n) + a(n-1) = 8 = A010731(n) (second differences).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>2.
G.f.: (3+2*x+3*x^2) / (1-x)^3.
Sum_{k=n+1..2*n+1} a(k) - Sum_{k=0..n} a(k) = (2*n+2)^3. - Bruno Berselli, Jan 24 2011
E.g.f.: (4x^2 + 8x + 1)*exp(x). - G. C. Greubel, Sep 22 2015
a(n)^2 = A222465(n)*A222465(n+1) - 12. - Ezhilarasu Velayutham, Mar 18 2020
Sum_{n>=0} 1/a(n) = tanh(Pi/sqrt(2))*Pi/(4*sqrt(2)). - Amiram Eldar, Aug 21 2022
a(n) = A059100(2*n+1). - Dimitri Papadopoulos, Nov 21 2023

Extensions

Definition simplified by R. J. Mathar, Sep 16 2009

A188892 Numbers n such that there is no triangular n-gonal number greater than 1.

Original entry on oeis.org

11, 18, 38, 102, 198, 326, 486, 678, 902, 1158, 1446, 1766, 2118, 2918, 3366, 3846, 4358, 4902, 5478, 6086, 6726, 7398, 8102, 8838, 9606, 10406, 11238, 12102, 12998, 13926, 14886, 15878, 16902, 17958, 19046, 20166, 21318, 22502, 24966, 26246
Offset: 1

Views

Author

T. D. Noe, Apr 13 2011

Keywords

Comments

It is easy to find triangular numbers that are square, pentagonal, hexagonal, etc. So it is somewhat surprising that there are no triangular 11-gonal numbers other than 0 and 1. For these n, the equation x^2 + x = (n-2)*y^2 - (n-4)*y has no integer solutions x>1 and y>1.
Chu shows how to transform the equation into a generalized Pell equation. When n has the form k^2+2 (A059100), then the Pell equation has only a finite number of solutions and it is simple to select the n that produce no integer solutions greater than 1.
The general case is in A188950.

Crossrefs

Cf. A051682 (11-gonal numbers), A051870 (18-gonal numbers), A188891, A188896.

Programs

  • Maple
    filter:= n -> nops(select(t -> min(subs(t,[x,y]))>=2, [isolve(x^2 + x = (n-2)*y^2 - (n-4)*y)])) = 0:
    select(filter, [seq(t^2+2,t=3..200)]); # Robert Israel, May 13 2018
Previous Showing 21-30 of 75 results. Next