cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 104 results. Next

A197070 Decimal expansion of the Dirichlet eta-function at 3.

Original entry on oeis.org

9, 0, 1, 5, 4, 2, 6, 7, 7, 3, 6, 9, 6, 9, 5, 7, 1, 4, 0, 4, 9, 8, 0, 3, 6, 2, 1, 1, 3, 3, 5, 8, 7, 4, 9, 3, 0, 7, 3, 7, 3, 9, 7, 1, 9, 2, 5, 5, 3, 7, 4, 1, 6, 1, 3, 4, 4, 2, 0, 3, 6, 6, 6, 5, 0, 6, 3, 7, 8, 6, 5, 4, 3, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Oct 09 2011

Keywords

Comments

This constant is irrational by Apéry's theorem. - Charles R Greathouse IV, Feb 11 2024

Examples

			0.9015426773696957140498036211335874930737...
		

Crossrefs

Cf. A002117 (zeta(3)), A058312, A058313, A072691, A136675, A233090 (5*zeta(3)/8), A233091 (7*zeta(3)/8), A334582.

Programs

Formula

Equals 3*zeta(3)/4 = 3*A002117/4.
Also equals the integral over the unit cube [0,1]x[0,1]x[0,1] of 1/(1+x*y*z) dx dy dz. - Jean-François Alcover, Nov 24 2014
Equals Sum_{n>=1} (-1)^(n+1)/n^3. - Terry D. Grant, Aug 03 2016
Equals Lim_{n -> infinity} A136675(n)/A334582(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{n>=1} AH(2*n)/n^2, where AH(n) = Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n) is the n-th alternating harmonic number (Stewart, 2020). - Amiram Eldar, Oct 04 2021
Equals -int_0^1 log(x)log(1+x)/x dx [Barbieri] - R. J. Mathar, Jun 07 2024

A033634 OddPowerSigma(n) = sum of odd power divisors of n.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 11, 4, 18, 12, 12, 14, 24, 24, 11, 18, 12, 20, 18, 32, 36, 24, 44, 6, 42, 31, 24, 30, 72, 32, 43, 48, 54, 48, 12, 38, 60, 56, 66, 42, 96, 44, 36, 24, 72, 48, 44, 8, 18, 72, 42, 54, 93, 72, 88, 80, 90, 60, 72, 62, 96, 32, 43, 84, 144, 68, 54, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Odd power divisors of n are all the terms of A268335 (numbers whose prime power factorization contains only odd exponents) that divide n. - Antti Karttunen, Nov 23 2017
The Mobius transform is 1, 2, 3, 0, 5, 6, 7, 8, 0, 10, 11, 0, 13, 14, 15, 0, 17, 0, 19, 0, 21, 22, 23, 24, 0, 26, ..., where the places of zeros seem to be listed in A072587. - R. J. Mathar, Nov 27 2017

Examples

			The divisors of 7 are 1^1 and 7^1, which have only odd exponents (=1), so a(8) = 1+7 = 8. The divisors of 8 are 1^1, 2^1, 2^2 and 2^3; 2^2 has an even prime power and does not count, so a(8) = 1+2+8=11. The divisors of 12 are 1^1, 2^1, 3^1, 2^2, 2^1*3^1 and 2^2*3; 2^2 and 2^2*3 don't count because they have prime factors with even powers, so a(12) = 1+2+3+6 = 12.
		

Crossrefs

Programs

  • Maple
    A033634 := proc(n)
        a := 1 ;
        for d in ifactors(n)[2] do
            if type(op(2,d),'odd') then
                s := op(2,d) ;
            else
                s := op(2,d)-1 ;
             end if;
            p := op(1,d) ;
            a := a*(1+(p^(s+2)-p)/(p^2-1)) ;
        end do:
        a;
    end proc: # R. J. Mathar, Nov 20 2010
  • Mathematica
    f[e_] := If[OddQ[e], e+2, e+1]; fun[p_,e_] := 1 + (p^f[e] - p)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A295316(n) = factorback(apply(e -> (e%2), factorint(n)[, 2]));
    A033634(n) = sumdiv(n,d,A295316(d)*d); \\ Antti Karttunen, Nov 23 2017

Formula

Let n = Product p(i)^r(i) then a(n) = Product (1+[p(i)^(s(i)+2)-p(i)]/[p(i)^2-1]), where si=ri when ri is odd, si=ri-1 when ri is even. Special cases:
a(p) = 1+p for primes p, subsequence A008864.
a(p^2) = 1+p for primes p.
a(p^3) = 1+p+p^3 for primes p, subsequence A181150.
a(n) = Sum_{d|n} A295316(d)*d. - Antti Karttunen, Nov 23 2017
a(n) <= A000203(n). - R. J. Mathar, Nov 27 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 - 1/(p*(p+1))) = A072691 * A065463 = 0.5793804... . - Amiram Eldar, Oct 27 2022

A222171 Decimal expansion of Pi^2/24.

Original entry on oeis.org

4, 1, 1, 2, 3, 3, 5, 1, 6, 7, 1, 2, 0, 5, 6, 6, 0, 9, 1, 1, 8, 1, 0, 3, 7, 9, 1, 6, 6, 1, 5, 0, 6, 2, 9, 7, 3, 0, 4, 7, 3, 7, 4, 7, 5, 3, 0, 1, 6, 9, 9, 6, 0, 9, 4, 3, 3, 8, 8, 9, 5, 5, 7, 3, 4, 2, 5, 0, 1, 8, 6, 7, 6, 0, 0, 8, 0, 0, 2, 1, 8, 4, 5, 8, 4, 0, 7, 2, 2, 5, 1, 5, 4, 9, 3, 9, 6, 7, 6, 3
Offset: 0

Views

Author

Jean-François Alcover, May 13 2013

Keywords

Examples

			0.411233516712056609118103791661506297304737475301699609433889557342501867600...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 242.
  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 3.45, p. 158 and 199-200.

Crossrefs

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^100*(pi)^2/24))); // Vincenzo Librandi, Sep 25 2015
    
  • Mathematica
    RealDigits[Pi^2/24, 10, 100] // First
  • PARI
    Pi^2/24 \\ Michel Marcus, Dec 10 2020

Formula

Equals Integral_{x=0..Pi/2} log(sec(x))/tan(x) dx.
Equals Sum_{k >= 1} 1/(2k)^2. - Geoffrey Critzer, Nov 02 2013
Equals (1/10) * Sum_{k>=1} d(k^2)/k^2, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 27 2020
Equals Sum_{n >= 0} 1/((2*n+1)*(6*n+3)). - Peter Bala, Feb 02 2022
Equals Sum_{n>=0} ((-1)^n * (Sum_{k>=n+1} (-1)^k/k)^2) (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Equals Sum_{n>=1} A369180(n)/n^2. - Friedjof Tellkamp, Jan 23 2025

Extensions

Leading 0 term removed (to make offset correct) by Rick L. Shepherd, Jan 01 2014

A173143 Partial sums of the squarefree numbers, A005117.

Original entry on oeis.org

1, 3, 6, 11, 17, 24, 34, 45, 58, 72, 87, 104, 123, 144, 166, 189, 215, 244, 274, 305, 338, 372, 407, 444, 482, 521, 562, 604, 647, 693, 740, 791, 844, 899, 956, 1014, 1073, 1134, 1196, 1261, 1327, 1394, 1463, 1533, 1604, 1677, 1751, 1828, 1906, 1985, 2067, 2150
Offset: 1

Views

Author

Jonathan Vos Post, Feb 10 2010

Keywords

Examples

			The first squarefree numbers are: 1, 2, 3,  5,  6,  7, 10, ...
So, the first partial sums are:   1, 3, 6, 11, 17, 24, 34, ...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Range[100],SquareFreeQ]] (* Harvey P. Dale, Jan 09 2016 *)
  • PARI
    lista(nn)=s = 0; for (n=1, nn, if (issquarefree(n), s += n; print1(s, ", "););); \\ Michel Marcus, Oct 01 2015
    
  • PARI
    helper(n,k)=my(t=(n+1)\k); binomial(t,2)*k + (n+1 - t*k)*t
    a(n)=my(s); forsquarefree(k=1,sqrtint(n), s+=moebius(k)*helper(n,k[1]^2)); s \\ Charles R Greathouse IV, Feb 05 2018

Formula

a(n) ~ (Pi^2/12) * n^2. - Amiram Eldar, Oct 21 2020

A267315 Decimal expansion of the Dirichlet eta function at 4.

Original entry on oeis.org

9, 4, 7, 0, 3, 2, 8, 2, 9, 4, 9, 7, 2, 4, 5, 9, 1, 7, 5, 7, 6, 5, 0, 3, 2, 3, 4, 4, 7, 3, 5, 2, 1, 9, 1, 4, 9, 2, 7, 9, 0, 7, 0, 8, 2, 9, 2, 8, 8, 8, 6, 0, 4, 4, 2, 2, 2, 6, 0, 4, 1, 8, 8, 5, 1, 3, 6, 0, 5, 5, 3, 9, 1, 6, 3, 5, 9, 7, 7, 4, 0, 7, 3, 7, 2, 9, 5, 9, 3, 1, 4, 4, 8, 9, 8, 7, 4, 2, 7, 5, 7, 8, 8, 6, 6, 9, 6, 2, 1, 6, 9, 5, 3, 7, 3, 9, 9, 6, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			eta(4) = 1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 + ... = 0.9470328294972459175765032344735219149279070829288860...
		

Crossrefs

Programs

  • Magma
    pi:= 7*Pi(RealField(110))^4 / 720; Reverse(Intseq(Floor(10^100*pi))); // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    RealDigits[(7 Pi^4)/720, 10, 120][[1]]
  • PARI
    7*Pi^4/720 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1,10000): s += -((-1)^i/((i)^4))
    print(s) # Terry D. Grant, Aug 04 2016

Formula

eta(4) = Sum_{k > 0} (-1)^(k+1)/k^4 = (7*Pi^4)/720.
eta(4) = Lim_{n -> infinity} A120296(n)/A334585(n) = (7/8)*A013662. - Petros Hadjicostas, May 07 2020

A061017 List in which n appears d(n) times, where d(n) [A000005] is the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 24
Offset: 1

Views

Author

Jont Allen (jba(AT)research.att.com), May 25 2001

Keywords

Comments

The union of N, 2N, 3N, ..., where N = {1, 2, 3, 4, 5, 6, ...}. In other words, the numbers {m*n, m >= 1, n >= 1} sorted into nondecreasing order.
Considering the maximal rectangle in each of the Ferrers graphs of partitions of n, a(n) is the smallest such maximal rectangle; a(n) is also an inverse of A006218. - Henry Bottomley, Mar 11 2002
The numbers in A003991 arranged in numerical order. - Matthew Vandermast, Feb 28 2003
Least k such that tau(1) + tau(2) + tau(3) + ... + tau(k) >= n. - Michel Lagneau, Jan 04 2012
The number 1 appears only once, primes appear twice, squares of primes appear thrice. All other positive integers appear at least four times. - Alonso del Arte, Nov 24 2013

Examples

			Array begins:
   1
   2  2
   3  3
   4  4  4
   5  5
   6  6  6  6
   7  7
   8  8  8  8
   9  9  9
  10 10 10 10
  11 11
  12 12 12 12 12 12
  13 13
  14 14 14 14
  15 15 15 15
  16 16 16 16 16
  17 17
  18 18 18 18 18 18
  19 19
  20 20 20 20 20 20
  21 21 21 21
  22 22 22 22
  23 23
  24 24 24 24 24 24 24 24
		

Crossrefs

Cf. A000005. An inverse to A006218.

Programs

  • Maple
    with(numtheory); t1:=[]; for i from 1 to 1000 do for j from 1 to tau(i) do t1:=[op(t1),i]; od: od: t1:=sort(t1);
  • Mathematica
    Flatten[Table[Table[n, {Length[Divisors[n]]}], {n, 30}]]
  • PARI
    a(n)=if(n<0,0,t=1;while(sum(k=1,t,floor(t/k))Benoit Cloitre, Nov 08 2009

Formula

a(n) >= pi(n+1) for all n; a(n) >= pi(n) + 1 for all n >= 24 (cf. A098357, A088526, A006218, A052511). - N. J. A. Sloane, Oct 22 2008
a(n) = A027750(n) * A056538(n). - Charles Kusniec, Jan 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 (A072691). - Amiram Eldar, Jan 14 2024

Extensions

More terms from Erich Friedman, Jun 01 2001

A100199 Decimal expansion of Pi^2/(12*log(2)), inverse of Levy's constant.

Original entry on oeis.org

1, 1, 8, 6, 5, 6, 9, 1, 1, 0, 4, 1, 5, 6, 2, 5, 4, 5, 2, 8, 2, 1, 7, 2, 2, 9, 7, 5, 9, 4, 7, 2, 3, 7, 1, 2, 0, 5, 6, 8, 3, 5, 6, 5, 3, 6, 4, 7, 2, 0, 5, 4, 3, 3, 5, 9, 5, 4, 2, 5, 4, 2, 9, 8, 6, 5, 2, 8, 0, 9, 6, 3, 2, 0, 5, 6, 2, 5, 4, 4, 4, 3, 3, 0, 0, 3, 4, 8, 3, 0, 1, 1, 0, 8, 4, 8, 6, 8, 7, 5, 9, 4, 6, 6, 3
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Dec 27 2004

Keywords

Comments

From A.H.M. Smeets, Jun 12 2018: (Start)
The denominator of the k-th convergent obtained from a continued fraction of a constant, the terms of the continued fraction satisfying the Gauss-Kuzmin distribution, will tend to exp(k*A100199).
Similarly, the error between the k-th convergent obtained from a continued fraction of a constant, and the constant itself will tend to exp(-2*k*A100199). (End)
The term "Lévy's constant" is sometimes used to refer to this constant (Wikipedia). - Bernard Schott, Sep 01 2022

Examples

			1.1865691104156254528217229759472371205683565364720543359542542986528...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7, p. 54.

Crossrefs

Programs

Formula

Equals 1/A089729 = log(A086702) = A174606/2.
Equals ((Pi^2)/12)/log(2) = A072691 / A002162 = (Sum_{n>=1} ((-1)^(n+1))/n^2) / (Sum_{n>=1} ((-1)^(n+1))/n^1). - Terry D. Grant, Aug 03 2016
Equals (-1/log(2)) * Integral_{x=0..1} log(x)/(1+x) dx (from Corless, 1992). - Bernard Schott, Sep 01 2022

A245058 Decimal expansion of the real part of Li_2(I), negated.

Original entry on oeis.org

2, 0, 5, 6, 1, 6, 7, 5, 8, 3, 5, 6, 0, 2, 8, 3, 0, 4, 5, 5, 9, 0, 5, 1, 8, 9, 5, 8, 3, 0, 7, 5, 3, 1, 4, 8, 6, 5, 2, 3, 6, 8, 7, 3, 7, 6, 5, 0, 8, 4, 9, 8, 0, 4, 7, 1, 6, 9, 4, 4, 7, 7, 8, 6, 7, 1, 2, 5, 0, 9, 3, 3, 8, 0, 0, 4, 0, 0, 1, 0, 9, 2, 2, 9, 2, 0, 3, 6, 1, 2, 5, 7, 7, 4, 6, 9, 8, 3, 8, 1, 6, 3, 0, 0, 0
Offset: 0

Views

Author

Robert G. Wilson v, Aug 21 2014

Keywords

Comments

This is the decimal expansion of the real part of the dilogarithm of the square root of -1. The imaginary part is Catalan's number (A006752).
5*Pi^2/24 = 10 * (this constant) equals the asymptotic mean of the abundancy index of the even numbers. - Amiram Eldar, May 12 2023

Examples

			0.2056167583560283045590518958307531486523687376508498047169447786712509338004...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Pi(R)^2/48; // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[ Re[ PolyLog[2, I]], 10, 111][[1]] (* or *) RealDigits[ Zeta[2]/8, 10, 111][[1]] (* or *) RealDigits[ Pi^2/48, 10, 111][[1]]
  • PARI
    zeta(2)/8 \\ Charles R Greathouse IV, Aug 27 2014
    
  • Sage
    (pi**2/48).n(200) # F. Chapoton, Mar 16 2020
    

Formula

Also equals -zeta(2)/8 = -Pi^2/48.
Also equals the Bessel moment Integral_{0..inf} x I_1(x) K_0(x)^2 K_1(x) dx. - Jean-François Alcover, Jun 05 2016
From Terry D. Grant, Sep 11 2016: (Start)
Equals Sum_{n>=0} (-1)^n/(2n+2)^2.
Equals (Sum_{n>=1} 1/(2n)^2)/2 = A222171/2. (End)
Equals Sum_{k>=1} A007949(k)/k^2. - Amiram Eldar, Jul 13 2020
Equals a tenth of integral_0^{pi/2} arccos[cos x/(1+2 cos x)]dx [Nahin]. - R. J. Mathar, May 22 2024
Equals Integral_{x>=0} x/(exp(2*x) + 1) dx. - Kritsada Moomuang, May 29 2025

A214549 Decimal expansion of 4*Pi^2/27.

Original entry on oeis.org

1, 4, 6, 2, 1, 6, 3, 6, 1, 4, 9, 7, 6, 2, 0, 1, 2, 7, 6, 8, 6, 4, 3, 6, 9, 0, 3, 7, 0, 1, 8, 6, 8, 9, 0, 5, 7, 0, 8, 3, 5, 1, 1, 0, 2, 3, 2, 9, 4, 9, 3, 1, 9, 4, 4, 6, 5, 3, 8, 2, 9, 5, 3, 7, 2, 1, 7, 7, 8, 4, 4, 1, 8, 1, 3, 6, 1, 7, 8, 5, 5, 4, 5, 1, 8, 7, 8, 1, 2, 4, 4, 9, 9
Offset: 1

Views

Author

R. J. Mathar, Jul 20 2012

Keywords

Comments

Represents the value of the Dirichlet series for A011655 (principal Dirichlet character mod 3) at s=2.
Equals the asymptotic mean of the abundancy index of the numbers that are not divisible by 3 (A001651). - Amiram Eldar, May 12 2023

Examples

			1.4621636149762012768643690370186...
		

Crossrefs

Programs

  • Julia
    using Nemo
    R = RealField(310)
    t = const_pi(RR) + const_pi(RR); s = t * t
    s / RR(27) |> println # Peter Luschny, Mar 13 2018
  • Magma
    R:= RealField(); 4*Pi(R)^2/27; // G. C. Greubel, Mar 08 2018
    
  • Magma
    R:=RealField(106); SetDefaultRealField(R); n:=4*Pi(R)^2/27; Reverse(Intseq(Floor(10^105*n))); // Bruno Berselli, Mar 13 2018
    
  • Maple
    evalf(4*Pi^2/27) ;
  • Mathematica
    RealDigits[(4Pi^2)/27,10,120][[1]] (* Harvey P. Dale, Dec 20 2012 *)
  • PARI
    4*Pi^2/27 \\ G. C. Greubel, Mar 08 2018
    

Formula

Equals (4/3)*A100044.
Equals Sum_{n>=0} (1/(3*n+1)^2 + 1/(3*n+2)^2).
From Peter Luschny, May 13 2020: (Start)
Equals (8/9) * Sum_(k>=1) 1/k^2 =8/9 *A013661.
Equals -(16/9) * Sum_(k>=1) (-1)^k/k^2 = -16/9 * A072691.
Equals (64/27) * ( Integral_{x=0..1} sqrt(1 - x^2) )^2 = 64/27 * A091476. (End)
Equals Integral_{x=0..oo} log(x)/(x^3 - 1) dx. - Amiram Eldar, Aug 12 2020

A258947 Decimal expansion of the multiple zeta value (Euler sum) zetamult(6,2).

Original entry on oeis.org

0, 1, 7, 8, 1, 9, 7, 4, 0, 4, 1, 6, 8, 3, 5, 9, 8, 8, 3, 6, 2, 6, 5, 9, 5, 3, 0, 2, 4, 8, 7, 2, 4, 6, 1, 2, 1, 6, 8, 7, 1, 3, 1, 3, 7, 1, 1, 0, 2, 9, 1, 1, 8, 8, 4, 1, 8, 8, 2, 1, 3, 6, 1, 9, 1, 7, 6, 1, 3, 4, 8, 0, 2, 7, 6, 4, 1, 6, 0, 4, 6, 3, 7, 1, 8, 2, 8, 6, 2, 1, 0, 1, 9, 2, 0, 5, 8, 7, 9, 4
Offset: 0

Views

Author

Jean-François Alcover, Jun 15 2015

Keywords

Examples

			0.01781974041683598836265953024872461216871313711029118841882136191761348...
		

Crossrefs

Programs

  • Mathematica
    digits = 99; zetamult[6,2] = NSum[HarmonicNumber[m-1, 2]/m^6, {m, 2, Infinity}, WorkingPrecision -> digits+20, NSumTerms -> 200, Method -> {"NIntegrate", "MaxRecursion" -> 18}]; Join[{0}, RealDigits[zetamult[6,2], 10, digits] // First]
  • PARI
    zetamult([6,2]) \\ Charles R Greathouse IV, Jan 21 2016
    
  • PARI
    zetamult([2, 2, 1, 1, 1, 1]) \\ Charles R Greathouse IV, Feb 04 2025

Formula

zetamult(6,2) = Sum_{m>=2} (sum_{n=1..m-1} 1/(m^6*n^2)).
Equals Sum_{m>=2} H(m-1, 2)/m^6, where H(n,2) is the n-th harmonic number of order 2.
Previous Showing 11-20 of 104 results. Next