cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 104 results. Next

A258987 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).

Original entry on oeis.org

2, 1, 3, 7, 9, 8, 8, 6, 8, 2, 2, 4, 5, 9, 2, 5, 4, 7, 0, 9, 9, 5, 8, 3, 5, 7, 4, 5, 0, 8, 0, 3, 3, 6, 4, 9, 6, 4, 0, 9, 5, 8, 9, 5, 7, 8, 6, 5, 5, 1, 7, 5, 5, 6, 1, 4, 4, 5, 1, 2, 7, 4, 8, 9, 4, 7, 1, 2, 5, 8, 3, 6, 6, 1, 4, 6, 9, 8, 1, 0, 2, 0, 4, 1, 7, 0, 9, 5, 6, 0, 2, 8, 9, 9, 9, 1, 1, 5, 5, 0, 6, 4, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.213798868224592547099583574508033649640958957865517556144512748947...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(1/2)*Zeta[3]^2 - (1/2)*Zeta[6], 10, 103] // First (* Corrected by Detlef Meya, Jun 06 2025 *)
  • PARI
    zetamult([3,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(3,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^3)) = (1/2)*zeta(3)^2 - (1/2)*zeta(6). - [Corrected by Detlef Meya, Jun 06 2025 ]

A353908 Decimal expansion of Pi^2/36.

Original entry on oeis.org

2, 7, 4, 1, 5, 5, 6, 7, 7, 8, 0, 8, 0, 3, 7, 7, 3, 9, 4, 1, 2, 0, 6, 9, 1, 9, 4, 4, 4, 1, 0, 0, 4, 1, 9, 8, 2, 0, 3, 1, 5, 8, 3, 1, 6, 8, 6, 7, 7, 9, 9, 7, 3, 9, 6, 2, 2, 5, 9, 3, 0, 3, 8, 2, 2, 8, 3, 3, 4, 5, 7, 8, 4, 0, 0, 5, 3, 3, 4, 7, 8, 9, 7, 2, 2, 7, 1, 4, 8, 3, 4, 3, 6, 6, 2, 6, 4, 5, 0, 8, 8, 4, 0, 0, 0, 7
Offset: 0

Views

Author

Omar E. Pol, May 10 2022

Keywords

Comments

Ratio between the volume of the stepped pyramid with an infinite number of levels described in A245092 and that of the circumscribed cube (see the first formula).
See also Vaclav Kotesovec's formula (2016) in A175254.
Volume shared by a sphere inscribed in a cube of volume Pi and one of the six pyramids inscribed in the cube. - Omar E. Pol, Sep 01 2024

Examples

			0.2741556778080377394120691944410041982031583168677997396225930382283345784...
		

Crossrefs

Programs

  • Maple
    evalf(Pi^2/36, 121);  # Alois P. Heinz, May 11 2022
  • Mathematica
    RealDigits[Pi^2/36, 10, 100][[1]] (* Amiram Eldar, May 11 2022 *)
  • PARI
    Pi^2/36
    
  • PARI
    zeta(2)/6

Formula

Equals lim_{n->oo} A175254(n)/n^3.
Equals A002388/36.
Equals A102753/18.
Equals A195055/12.
Equals A091476/9.
Equals A013661/6.
Equals A100044/4.
Equals A072691/3.
Equals A086463/2.
Equals A086729*2.
Equals A019673^2.
Equals Re(dilog((1+sqrt(3)*i)/2)). - Mohammed Yaseen, Jul 03 2024

A224880 a(n) = 2n + sum of divisors of n.

Original entry on oeis.org

3, 7, 10, 15, 16, 24, 22, 31, 31, 38, 34, 52, 40, 52, 54, 63, 52, 75, 58, 82, 74, 80, 70, 108, 81, 94, 94, 112, 88, 132, 94, 127, 114, 122, 118, 163, 112, 136, 134, 170, 124, 180, 130, 172, 168, 164, 142, 220, 155, 193, 174, 202, 160, 228, 182, 232, 194, 206
Offset: 1

Views

Author

Hans Havermann, Jul 23 2013

Keywords

Comments

This sequence is A033880 for the negative integers, thus making explicit the mapping noted in A075701.
From Omar E. Pol, Jun 21 2018: (Start)
a(n) is also the total area of the terraces and the vertical sides that are visible in the perspective view at the n-th level (starting from the top) of the stepped pyramid described in A245092.
Partial sums give A299692. (End)

Examples

			a(6) = 2*6 + (1+2+3+6) = 24.
		

Crossrefs

Programs

  • Maple
    with(numtheory); seq(2*k+sigma(k),k=1..100); # Wesley Ivan Hurt, Jul 24 2013
  • Mathematica
    Table[2*n+DivisorSigma[1,n],{n,64}]
  • PARI
    vector(80, n, 2*n + sigma(n)) \\ Michel Marcus, Aug 19 2015

Formula

a(n) = A155085(n) + n.
a(n) = 2n + sigma(n) = A005843(n) + A000203(n) = A033879(n) + 2*A000203(n) = A033880(n) + 2*A005843(n) = 2*A155085(n) - A000203(n) = 2*A000203(n) - A033880(n). - Wesley Ivan Hurt, Jul 24 2013
G.f.: 2*x/(1 - x)^2 + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
a(n) = A001065(n) + A008585(n). - Omar E. Pol, Mar 06 2018
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = zeta(2)/2 + 1 = A072691 + 1 = 1.822467... . - Amiram Eldar, Mar 17 2024

A258982 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,3).

Original entry on oeis.org

0, 3, 7, 7, 0, 7, 6, 7, 2, 9, 8, 4, 8, 4, 7, 5, 4, 4, 0, 1, 1, 3, 0, 4, 7, 8, 2, 2, 9, 3, 6, 5, 9, 9, 1, 4, 8, 2, 2, 6, 0, 1, 3, 1, 9, 4, 1, 5, 2, 7, 7, 5, 2, 4, 0, 1, 2, 6, 4, 5, 0, 7, 7, 8, 0, 3, 9, 1, 0, 9, 3, 8, 7, 5, 5, 5, 0, 7, 2, 1, 9, 8, 9, 1, 3, 8, 3, 6, 0, 2, 9, 8, 1, 9, 0, 7, 7, 0, 8, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.03770767298484754401130478229365991482260131941527752401264507780391...
		

Crossrefs

Programs

  • Mathematica
    digits = 99; zetamult[6, 2] = NSum[HarmonicNumber[m-1, 2]/m^6, {m, 2, Infinity}, WorkingPrecision -> digits+20, NSumTerms -> 200, Method -> {"NIntegrate", "MaxRecursion" -> 18}]; zetamult[5, 3] = 5*Zeta[3]*Zeta[5] - (147/24)*Zeta[8] - (5/2)*zetamult[6, 2]; Join[{0}, RealDigits[zetamult[5, 3], 10, digits] // First]
  • PARI
    zetamult([5,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(5,3) = Sum_{m>=2} (sum_{n=1..m-1} 1/(m^5*n^3)).
Equals Sum_{m>=2} (H(m-1, 3)+polygamma(2,1)/2+zeta(3))/m^5, where H(n,3) is the n-th harmonic number of order 3.
Also equals Sum_{m>=2} (polygamma(2,m)+zeta(3))/(2m^5).
Also equals 5*zeta(3)*zeta(5) - (147/24)*zeta(8) - (5/2)*zetamult(6, 2), where zetamult(6,2) is A258947.

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).

A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).

Original entry on oeis.org

6, 7, 4, 5, 2, 3, 9, 1, 4, 0, 3, 3, 9, 6, 8, 1, 4, 0, 4, 9, 1, 5, 6, 0, 6, 0, 8, 2, 5, 7, 4, 2, 9, 9, 3, 9, 2, 7, 8, 3, 8, 4, 3, 6, 5, 1, 3, 7, 8, 8, 9, 5, 7, 9, 7, 0, 6, 9, 1, 7, 2, 2, 1, 4, 4, 3, 7, 7, 4, 8, 5, 8, 2, 4, 7, 7, 2, 4, 8, 5, 1, 9, 5, 6, 2, 5, 2, 6, 8, 8, 8, 5, 3, 4, 3, 0, 7, 9, 1, 2, 7, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.67452391403396814049156060825742993927838436513788957970691722144377...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
  • PARI
    zetamult([2,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
Equals Sum_{i, j >= 1} 1/(i^4*j^2*binomial(i+j, i)). - Peter Bala, Aug 05 2025

A267316 Decimal expansion of the Dirichlet eta function at 5.

Original entry on oeis.org

9, 7, 2, 1, 1, 9, 7, 7, 0, 4, 4, 6, 9, 0, 9, 3, 0, 5, 9, 3, 5, 6, 5, 5, 1, 4, 3, 5, 5, 3, 4, 6, 9, 5, 3, 2, 5, 5, 3, 5, 1, 3, 3, 6, 2, 0, 3, 3, 0, 4, 3, 2, 6, 1, 2, 2, 5, 8, 0, 5, 6, 3, 5, 5, 3, 4, 8, 1, 5, 8, 6, 5, 4, 2, 4, 6, 3, 8, 8, 9, 1, 7, 7, 5, 0, 4, 0, 4, 1, 2, 3, 9, 7, 3, 1, 2, 5, 0, 2, 8, 5, 5, 8, 9, 4, 0, 7, 0, 1, 2, 4, 8, 9, 6, 8, 2, 0, 9, 7, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			1/1^5 - 1/2^5 + 1/3^5 - 1/4^5 + 1/5^5 - 1/6^5 + ... = 0.972119770446909305935655143553469532553513362...
		

Crossrefs

Cf. A002162 (value at 1), A013663, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A136676, A334604.

Programs

  • Mathematica
    RealDigits[(15 Zeta[5])/16, 10, 120][[1]]
  • PARI
    15*zeta(5)/16 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s += -((-1)^i/((i)^5))
    print(s) # Terry D. Grant, Aug 05 2016

Formula

Equals Sum_{k > 0} (-1)^(k+1)/k^5 = (15*zeta(5))/16.
Equals Lim_{n -> infinity} A136676(n)/A334604(n). - Petros Hadjicostas, May 07 2020

A072692 Sum of sigma(j) for 1<=j<=10^n, where sigma(j) is the sum of the divisors of j.

Original entry on oeis.org

1, 87, 8299, 823081, 82256014, 8224740835, 822468118437, 82246711794796, 8224670422194237, 822467034112360628, 82246703352400266400, 8224670334323560419029, 822467033425357340138978, 82246703342420509396897774, 8224670334241228180927002517
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			For n=1, the sum of sigma(j) for j<=10 is 1+3+4+7+6+12+8+15+13+18=87, so a(1)=87 (=69+18=A049000(1)+A046915(1)).
		

Crossrefs

Compare with A049000. Note that a(n) = A049000(n) + A046915(n).
Cf. A000203 (sigma(n)), A072691 (Pi^2/12), A049000, A046915, A024916, A025281.

Programs

  • PARI
    for(m=0,10,print1(sum(n=1,k=10^m,n*(k\n)),",")) \\ Improved by M. F. Hasler, Apr 18 2015
    
  • PARI
    A072692(n)=A024916(10^n) \\ This is very efficient, using efficient code of A024916. - M. F. Hasler, Apr 18 2015
  • Python
    [(i, sum([d*(10**i//d) for d in range(1,10**i+1)])) for i in range(8)] # Seth A. Troisi, Jun 27 2010
    
  • Python
    from math import isqrt
    def A072692(n): return -(s:=isqrt(m:=10**n))**2*(s+1)+sum((q:=m//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 23 2023
    

Formula

Asymptotic formula: a(n) ~ Pi^2/12 * 10^2n. See A072691 for Pi^2/12. Observe that A025281 also contains that constant in its asymptotic formula.

Extensions

More terms from P L Patodia (pannalal(AT)usa.net), Jan 11 2008, Jun 25 2008
Corrected by N. J. A. Sloane, Jun 08 2008, following suggestions from Don Reble and David W. Wilson

A107759 a(n) = (+2)UnitarySigma(n): if n = Product p_i^r_i then a(n) = Product (2 + p_i^r_i).

Original entry on oeis.org

1, 4, 5, 6, 7, 20, 9, 10, 11, 28, 13, 30, 15, 36, 35, 18, 19, 44, 21, 42, 45, 52, 25, 50, 27, 60, 29, 54, 31, 140, 33, 34, 65, 76, 63, 66, 39, 84, 75, 70, 43, 180, 45, 78, 77, 100, 49, 90, 51, 108, 95, 90, 55, 116, 91
Offset: 1

Views

Author

Yasutoshi Kohmoto, May 25 2005

Keywords

Examples

			a(12) = (2+3)*(2+4) = 30.
		

Crossrefs

Programs

  • Maple
    A107759 := proc(n) local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; mul( 2+op(1,p)^op(2,p), p=pf) ; end if; end proc:
    seq(A107759(n),n=1..60) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[1] = 1; a[n_] := Times @@ (2 + Power @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} usigma(d), where usigma = A034448. - Ilya Gutkovskiy, Mar 27 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/12) * Product_{p prime} (1 + 1/p^2 - 2/p^3) = A072691 * A330594 = 0.910438... . - Amiram Eldar, Nov 01 2022

A162395 a(n) = -(-1)^n * n^2.

Original entry on oeis.org

1, -4, 9, -16, 25, -36, 49, -64, 81, -100, 121, -144, 169, -196, 225, -256, 289, -324, 361, -400, 441, -484, 529, -576, 625, -676, 729, -784, 841, -900, 961, -1024, 1089, -1156, 1225, -1296, 1369, -1444, 1521, -1600, 1681, -1764, 1849, -1936, 2025, -2116, 2209, -2304, 2401, -2500
Offset: 1

Views

Author

Michael Somos, Jul 02 2009

Keywords

Comments

This sequence is the denominator of (Pi^2)/12 = 1/1-1/4+1/9-1/16+1/25-1/36+... - Mohammad K. Azarian, Dec 29 2011
Also, circulant determinant of [1,2,...,n,n-1,...,1], i.e., determinant of the (2n-1) X (2n-1) matrix which has this as first row (and also first column), where row k+1 is obtained by cyclically shifting row k one place to the left. - M. F. Hasler, Dec 17 2016

Examples

			G.f. = x - 4*x^2 + 9*x^3 - 16*x^4 + 25*x^5 - 36*x^6 + 49*x^7 - 64*x^8 + 81*x^9 + ...
		

Crossrefs

For the reversion of this sequence see A263843 (and also A007297).

Programs

  • Magma
    [(-1)^(n+1) * n^2: n in [1..60]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(-1)^(n+1) * n^2, {n, 60}] (* Vincenzo Librandi, Feb 15 2013 *)
  • PARI
    {a(n) = -(-1)^n * n^2};
    

Formula

Euler transform of length 2 sequence [-4, 3].
a(n) is multiplicative with a(2^e) = -(4^e) if e>0, a(p^e) = (p^2)^e if p>2.
G.f.: x * (1 - x) / (1 + x)^3.
E.g.f.: exp(-x) * (x - x^2).
a(n) = a(-n) = -(-1)^n * A000290(n) for all n in Z.
Sum_{n>=1} 1/a(n) = Pi^2/12 (A072691). - Amiram Eldar, Dec 10 2022
Dirichlet g.f.: zeta(s-2)*(1-2^(3-s)) = DirichletEta(s-2). - Amiram Eldar, Jan 07 2023
Previous Showing 21-30 of 104 results. Next