cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A261506 Decimal expansion of -zeta'(4).

Original entry on oeis.org

0, 6, 8, 9, 1, 1, 2, 6, 5, 8, 9, 6, 1, 2, 5, 3, 7, 9, 8, 4, 8, 8, 2, 9, 3, 6, 5, 5, 8, 7, 4, 4, 0, 8, 2, 7, 1, 5, 0, 0, 1, 6, 3, 7, 4, 8, 7, 1, 3, 7, 8, 4, 6, 3, 8, 2, 7, 5, 8, 5, 7, 0, 6, 0, 1, 8, 4, 2, 8, 4, 9, 8, 5, 2, 7, 6, 2, 1, 2, 0, 1, 3, 3, 4, 7, 8, 0, 4, 1, 0, 3, 8, 9, 8, 4, 7, 6, 0, 2, 2, 9, 0, 1, 8, 8, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2015

Keywords

Examples

			0.06891126589612537984882936558744082715001637487137...
		

Crossrefs

Cf. A075700 (0), A073002 (2), A244115 (3).
Cf. A084448 (-1), A240966 (-2), A259068 (-3), A259069 (-4), A259070 (-5), A259071 (-6), A259072 (-7), A259073 (-8).

Programs

  • Mathematica
    Flatten[{0, RealDigits[-Zeta'[4], 10, 105][[1]]}]

Formula

Sum_{n>=1} log(n) / n^4.

A034761 Dirichlet convolution of sigma(n) with itself.

Original entry on oeis.org

1, 6, 8, 23, 12, 48, 16, 72, 42, 72, 24, 184, 28, 96, 96, 201, 36, 252, 40, 276, 128, 144, 48, 576, 98, 168, 184, 368, 60, 576, 64, 522, 192, 216, 192, 966, 76, 240, 224, 864, 84, 768, 88, 552, 504, 288, 96, 1608, 178, 588, 288, 644, 108, 1104, 288, 1152, 320, 360
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((e + 1)*p^(e + 3) - (e + 3)*(p^(e + 2) - p + 1) + 2)/(p - 1)^3; f[2, e_] := (e - 1)*2^(e + 2) + e + 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 16 2022 *)

Formula

Dirichlet g.f.: zeta^2(s)*zeta^2(s-1).
Multiplicative with a(2^e) = (e-1) 2^(e+2) + e + 5, a(p^e) = ((1+e)p^(e+3) - (3+e)(p^(e+2)-p+1) + 2)/(p-1)^3, p > 2. - Mitch Harris, Jun 27 2005 [corrected by Amiram Eldar, Oct 16 2022 and Sep 12 2023]
Equals A134577 * A000005. - Gary W. Adamson, Nov 02 2007
Also the Dirichlet convolution A000005 by A038040. - R. J. Mathar, Apr 01 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (2*Pi^2 * log(n) + (4*gamma - 1)*Pi^2 + 24*zeta'(2)) / 144, where gamma is the Euler-Mascheroni constant A001620 and Zeta'(2) = A073002. Equivalently, Sum_{k=1..n} a(k) ~ Pi^4 * n^2 * (2*log(n) - 1 + 8*gamma - 48*log(A) + 4*log(2*Pi)) / 144, where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jan 28 2019

A201995 Decimal expansion of the absolute value of zeta'''(2), the third derivative of the Riemann zeta function at 2.

Original entry on oeis.org

6, 0, 0, 0, 1, 4, 5, 8, 0, 2, 8, 4, 3, 0, 4, 4, 8, 6, 5, 6, 4, 3, 9, 4, 1, 2, 1, 7, 5, 3, 7, 8, 4, 8, 3, 8, 3, 7, 4, 0, 5, 8, 8, 6, 1, 5, 9, 4, 4, 5, 6, 8, 5, 8, 5, 0, 3, 5, 1, 0, 7, 9, 5, 0, 0, 8, 5, 9, 7, 4, 1, 6, 7, 4, 7, 5, 1, 0, 0, 3, 5, 9, 2, 4, 1, 5, 0, 3, 4, 2, 5, 6, 0
Offset: 1

Views

Author

R. J. Mathar, Dec 07 2011

Keywords

Examples

			zeta'''(2) = -6.00014580284304486564394121753784..
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(3,2));
  • Mathematica
    RealDigits[ Zeta'''[2], 10, 93] // First (* Jean-François Alcover, Feb 20 2013 *)

Formula

zeta'''(2)= -Sum_{k>=1} log^3(k)/k^2.
Equals 3! + Sum_{k>=0} (-1)^k*gamma(3+k)/k!, where gamma(.) are the Stieltjes constants A001620, A082633, A086279 etc. [Choudhury, Thm. 4]

A295295 Sum of squarefree divisors of the powerful part of n: a(n) = A048250(A057521(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 8, 4, 18, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Comments

The sum of the squarefree divisors of n whose square divides n. - Amiram Eldar, Oct 13 2023

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#/Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2], # &, SquareFreeQ] &, 105] (* Michael De Vlieger, Nov 26 2017, after Jean-François Alcover at A057521 *)
    f[p_, e_] := If[e == 1, 1, p+1] ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,2]==1, f[i,1]=1)); sumdiv(factorback(f), d, d*issquarefree(d)); \\ Michel Marcus, Jan 29 2021

Formula

Multiplicative with a(p) = 1 and a(p^e) = (p+1) for e > 1.
a(n) = A048250(n) / A092261(n).
a(n) = Sum_{d^2|n} d * mu(d)^2. - Wesley Ivan Hurt, Feb 13 2022
From Amiram Eldar, Sep 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ (3*n/Pi^2) * (log(n) + 3*gamma - 1 - 4*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
a(n) = A048250(n) - A344137(n). - Amiram Eldar, Oct 13 2023

A061503 a(n) = Sum_{k=1..n} tau(k^2), where tau is the number of divisors function A000005.

Original entry on oeis.org

1, 4, 7, 12, 15, 24, 27, 34, 39, 48, 51, 66, 69, 78, 87, 96, 99, 114, 117, 132, 141, 150, 153, 174, 179, 188, 195, 210, 213, 240, 243, 254, 263, 272, 281, 306, 309, 318, 327, 348, 351, 378, 381, 396, 411, 420, 423, 450, 455, 470, 479, 494, 497
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2001

Keywords

Comments

a(n) is the number of pairs of positive integers <= n with their LCM <= n. - Andrew Howroyd, Sep 01 2019

References

  • Mentioned by Steven Finch in a posting to the Number Theory List (NMBRTHRY(AT)LISTSERV.NODAK.EDU), Jun 13 2001.

Crossrefs

Cf. A000005, A061502. Partial sums of A048691.

Programs

  • GAP
    List([1..60],n->Sum([1..n],k->Tau(k^2))); # Muniru A Asiru, Mar 09 2019
    
  • Maple
    with(numtheory): a:=n->add(tau(k^2),k=1..n): seq(a(n),n=1..60); # Muniru A Asiru, Mar 09 2019
  • Mathematica
    DivisorSigma[0, Range[60]^2] // Accumulate (* Jean-François Alcover, Nov 25 2013 *)
  • PARI
    for (n=1, 1024, write("b061503.txt", n, " ", sum(k=1, n, numdiv(k^2)))) \\ Harry J. Smith, Jul 23 2009
    
  • PARI
    t=0;v=vector(60,n,t+=numdiv(n^2)) \\ Charles R Greathouse IV, Nov 08 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A061503(n): return sum(prod(2*e+1 for e in factorint(k).values()) for k in range(1,n+1)) # Chai Wah Wu, May 10 2022
  • Sage
    def A061503(n) :
        tau = sloane.A000005
        return add(tau(k^2) for k in (1..n))
    [ A061503(i) for i in (1..19)] # Peter Luschny, Sep 15 2012
    

Formula

a(n) = Sum_{j=1..n^2} floor(n/A019554(j)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 20 2002
a(n) = Sum_{i=1..n} 2^omega(i) * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
a(n) ~ 3/Pi^2 * n log^2 n. - Charles R Greathouse IV, Nov 08 2012
a(n) ~ 3*n/Pi^2 * (log(n)^2 + log(n)*(-2 + 6*g - 24*z/Pi^2) + 2 - 6*g + 6*g^2 - 6*sg1 + 288*z^2/Pi^4 - 24*(-z + 3*g*z + z2)/ Pi^2), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant (see A082633), z = Zeta'(2) (see A073002), z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Jan 30 2019
a(n) = Sum_{k=1..n} A064608(floor(n/k)). - Daniel Suteu, Mar 09 2019

Extensions

Name corrected by Peter Luschny, Sep 15 2012

A078644 a(n) = tau(2*n^2)/2.

Original entry on oeis.org

1, 2, 3, 3, 3, 6, 3, 4, 5, 6, 3, 9, 3, 6, 9, 5, 3, 10, 3, 9, 9, 6, 3, 12, 5, 6, 7, 9, 3, 18, 3, 6, 9, 6, 9, 15, 3, 6, 9, 12, 3, 18, 3, 9, 15, 6, 3, 15, 5, 10, 9, 9, 3, 14, 9, 12, 9, 6, 3, 27, 3, 6, 15, 7, 9, 18, 3, 9, 9, 18, 3, 20, 3, 6, 15, 9, 9, 18, 3, 15, 9, 6, 3, 27, 9, 6, 9, 12, 3, 30, 9, 9, 9, 6, 9
Offset: 1

Views

Author

Vladeta Jovovic, Dec 13 2002

Keywords

Comments

Inverse Moebius transform of A068068. Number of elements in the set {(x,y): x is odd, x|n, y|n, gcd(x,y)=1}.
The number of Pythagorean points (x,y), 0 < x < y, located on the hyperbola y = 2n(x-n)/(x-2n) and having "excess" x+y-z = 2n. - Seppo Mustonen, Jun 07 2005
a(n) is the number of Pythagorean triangles with radius of the inscribed circle equal to n. For number of primitive Pythagorean triangles having inradius n, see A068068(n). - Ant King, Mar 06 2006
Dirichlet convolution of A048691 and A154269. - R. J. Mathar, Jun 01 2011
Number of distinct L-shapes of thickness n where the L area equals the rectangular area that it "contains". Visually can be thought as those areas of A156688 (surrounded by equal border of thickness n: 2xy = (x+2n)(y+2n), x and y positive integers) where both x and y are even, so they can be split into L-shapes. So L-shapes have formula: 2xy = (x+n)(y+n). - Juhani Heino, Jul 23 2012

Crossrefs

Programs

  • Magma
    [NumberOfDivisors(2*n^2)/2 : n in [1..100]]; // Vincenzo Librandi, Aug 14 2018
  • Maple
    with(numtheory): seq(add(mobius(2*d)^2*tau(n/d), d in divisors(n)), n=1..100); # Ridouane Oudra, Nov 17 2019
  • Mathematica
    Table[DivisorSigma[0, 2 n^2] / 2, {n, 100}] (* Vincenzo Librandi, Aug 14 2018 *)
  • PARI
    a(n) = numdiv(2*n^2)/2; \\ Michel Marcus, Oct 04 2013
    
  • Sage
    [sigma(2*n^2,0)/2 for n in range(1,100)] # Joerg Arndt, May 12 2014
    

Formula

Multiplicative with a(2^e) = e+1, a(p^e) = 2*e+1, p > 2. a(n) = tau(n^2) if n is odd, a(n) = tau(n^2) - a(n/2) if n is even.
Dirichlet g.f.: zeta^3(s)/(zeta(2s)*(1+1/2^s)). - R. J. Mathar, Jun 01 2011
Sum_{k=1..n} a(k) ~ 2*n / (9*Pi^2) * (9*log(n)^2 + 6*log(n) * (-3 + 9*g + log(2) - 36*Pi^(-2)*z1) + 18 + 54*g^2 + 18*g * (log(2) - 3) - 6*log(2) - log(2)^2 - 54*sg1 + 2592*z1^2/Pi^4 - 72*Pi^-2*(9*g*z1 + (log(2) - 3)*z1 + 3*z2)), where g is the Euler-Mascheroni constant A001620, sg1 is the first Stieltjes constant A082633, z1 = Zeta'(2) = A073002, z2 = Zeta''(2) = A201994. - Vaclav Kotesovec, Feb 02 2019
a(n) = Sum_{d|n} mu(2d)^2*tau(n/d), Dirichlet convolution of A323239 and A000005. - Ridouane Oudra, Nov 17 2019
a(n) = A361689(n)/2. - R. J. Mathar, Mar 21 2023

A225746 Decimal expansion of the logarithm of Glaisher's constant.

Original entry on oeis.org

0, 2, 4, 8, 7, 5, 4, 4, 7, 7, 0, 3, 3, 7, 8, 4, 2, 6, 2, 5, 4, 7, 2, 5, 2, 9, 9, 3, 5, 7, 6, 1, 1, 3, 9, 7, 6, 0, 9, 7, 3, 6, 9, 7, 1, 3, 6, 6, 8, 5, 3, 5, 1, 1, 6, 9, 9, 9, 8, 5, 5, 6, 3, 9, 6, 9, 0, 6, 9, 3, 0, 3, 2, 9, 9, 9, 9, 1, 0, 5, 0, 6, 0, 9, 2, 8, 5, 8, 4, 3, 3, 6, 6, 5, 8, 4, 2, 0, 8, 8, 8
Offset: 1

Views

Author

Jean-François Alcover, May 14 2013

Keywords

Examples

			0.248754477033784262547252993576113976097369713668535116999855639690693032999...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[Glaisher], 10, 100] // First
  • PARI
    1/12-zeta'(-1) \\ Charles R Greathouse IV, Dec 12 2013

Formula

Equals 1/12 - zeta'(-1).
Also equals (gamma + log(2*Pi))/12 -zeta'(2)/(2*Pi^2).
From Amiram Eldar, Apr 15 2021: (Start)
Equals lim_{n->oo} (Sum_{k=1..n} k*log(k) - (n^2/2 + n/2 + 1/12)*log(n) + n^2/4).
Equals 1/8 + (1/2) * Sum_{n>=0} ((1/(n+1)) * Sum_{k=0..n} (-1)^(k+1) * binomial(n,k) * (k+1)^2 * log(k+1)) (Guillera and Sondow, 2008). (End)

A358040 a(n) is the number of divisors of the n-th cubefree number.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 4, 2, 6, 2, 4, 4, 2, 6, 2, 6, 4, 4, 2, 3, 4, 6, 2, 8, 2, 4, 4, 4, 9, 2, 4, 4, 2, 8, 2, 6, 6, 4, 2, 3, 6, 4, 6, 2, 4, 4, 4, 2, 12, 2, 4, 6, 4, 8, 2, 6, 4, 8, 2, 2, 4, 6, 6, 4, 8, 2, 4, 2, 12, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 2, 6, 6, 9, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2022

Keywords

Comments

The analogous sequence with squarefree numbers is A072048.

Crossrefs

Cf. A000005, A001620 (gamma), A004709, A072048, A073002 (-zeta'(2)), A147533 (2*gamma-1), A358039.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[100], Max[FactorInteger[#][[;;, 2]]] < 3 &]]
  • Python
    from sympy import mobius, integer_nthroot, divisor_count
    def A358040(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_count(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000005(A004709(n)).
Sum_{k=1..n} a(k) = (36*c_1/Pi^4) * n * (log(n) + (2*gamma - 1) - 24*zeta'(2)/Pi^2 - 4*c_2) + O(n^(1/2 + eps)), where c_1 = Product_{p prime} ((p^2+2*p+3)/(p+1)^2) = 1.58095136661854869148023... and c_2 = Sum_{p prime} p*log(p)/((p+1)*(p^2+2*p+3)) = 0.229224... (Weiyi, 2004).

A161166 Decimal expansion of a constant in the linear term in the growth rate of unitary squarefree divisors.

Original entry on oeis.org

7, 4, 8, 3, 7, 2, 3, 3, 3, 4, 2, 9, 6, 7, 4, 7, 0, 0, 9, 3, 8, 0, 8, 6, 5, 2, 9, 4, 3, 9, 4, 0, 8, 9, 9, 5, 9, 9, 2, 9, 2, 5, 4, 0, 2, 5, 9, 4, 5, 6, 8, 9, 6, 6, 0, 0, 0, 8, 5, 5, 1, 3, 0, 8, 8, 5, 7, 5, 2, 5, 6, 7, 6, 9, 7, 5, 1, 3, 0, 8, 3, 9, 6, 4, 5, 9, 3, 8, 4, 2, 6, 2, 1, 1, 9, 7, 1, 0, 0, 8, 1, 5, 5, 6, 8, 2
Offset: 0

Views

Author

R. J. Mathar, Jun 04 2009

Keywords

Comments

Other constituents of the linear term are in A065463, A073002, A001620 and A059956.

Examples

			0.748372333429674...
		

References

  • D. Suryanarayana and V. Siva Rama Prasad, The number of k-ary, k+1-free divisors of an integer, J. Reine Angew. Math. 276 (1975) 15-35.

Programs

  • Mathematica
    ratfun = (2*p + 1)/((p + 1)*(p^2 + p - 1)); zetas = 0; ratab = Table[konfun = Simplify[ratfun + c/(p^power - 1)] // Together; coefs = CoefficientList[Numerator[konfun], p]; sol = Solve[Last[coefs] == 0, c][[1]]; zetas = zetas + c*Zeta'[power]/Zeta[power] /. sol; ratfun = konfun /. sol, {power, 2, 25}]; Do[Print[N[Sum[Log[p]*ratfun /. p -> Prime[k], {k, 1, m}] + zetas, 120]], {m, 2000, 20000, 2000}] (* Vaclav Kotesovec, Jun 24 2020 *)

Formula

Equals sum_{primes p} (2p+1)*log(p)/((p+1)(p^2+p-1)) = sum_p log(p)*[2/(p^2-1)-3/p^3-1)+4/(p^4-1)-10/(p^5-1)....] where the terms accumulate; this is essentially the logarithmic derivative of the Riemann zeta function at s=2, 3, 4,...

Extensions

More digits from Vaclav Kotesovec, Jun 24 2020

A210593 Decimal expansion of the series limit of Sum_{k>=1} (-1)^k*log(k)/k^2.

Original entry on oeis.org

1, 0, 1, 3, 1, 6, 5, 7, 8, 1, 6, 3, 5, 0, 4, 5, 0, 1, 8, 8, 6, 0, 0, 2, 8, 8, 2, 2, 1, 2, 2, 4, 2, 1, 8, 3, 6, 5, 9, 3, 8, 4, 7, 7, 6, 3, 7, 4, 9, 1, 1, 1, 6, 3, 3, 3, 4, 2, 9, 4, 2, 4, 7, 1, 9, 6, 2, 0, 4, 5, 3, 0, 9, 2, 0, 5, 4, 3, 6, 3, 2, 4, 9, 5, 3, 1, 7, 8, 0, 1, 2, 5, 3, 1, 9, 0, 3, 5, 6, 3, 9, 8, 2, 3, 1
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2012

Keywords

Comments

First derivative of the Dirichlet eta-function eta(s) at s=2.
Phatisena et al. misspell "Euler" and provide the wrong sign and an invalid 7th digit.

Examples

			0.101316578163504501886002882212242183659384776374911163334294247196204...
		

Crossrefs

Cf. A073002, A013661, A002162, A091812 (s=1), A375506 (s=3/2), A349220 (s=3), A349252 (s=4).

Programs

  • Maple
    1/2*log(2)*Zeta(2)+Zeta(1,2)/2 ; evalf(%) ;
  • Mathematica
    N[(1/12)*Pi^2*(Log[4] - 12*Log[Glaisher] + Log[Pi] + EulerGamma), 105] // RealDigits // First (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    (log(2)*zeta(2)+zeta'(2))/2 \\ Charles R Greathouse IV, Mar 28 2012

Formula

Decimal expansion of (log(2)*zeta(2) + zeta'(2)) / 2.

Extensions

Extended to 105 digits by Jean-François Alcover, Feb 05 2013
Previous Showing 11-20 of 59 results. Next