cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 118 results. Next

A255071 Number of steps required to reach (2^n)-2 from 2^(n+1)-2 by iterating the map x -> x - (number of runs in binary representation of x).

Original entry on oeis.org

1, 2, 3, 5, 9, 16, 29, 53, 97, 178, 328, 608, 1134, 2126, 4001, 7552, 14292, 27115, 51565, 98274, 187657, 358982, 687944, 1320793, 2540702, 4896919, 9456143, 18291753, 35435799, 68731296, 133436379, 259238717, 503912508, 979923792, 1906297165, 3709809375, 7222584181
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2015

Keywords

Crossrefs

First differences of A255061 and A255062.
A255069 gives the first differences of this sequence.
Analogous sequences: A213709, A219661.
a(n) differs from A192804(n+1) for the first time at n=11, where a(11) = 328, while A192804(12) = 327.

Programs

  • PARI
    A005811(n) = hammingweight(bitxor(n,n\2));
    A255071(n) = { my(k, i); k = (2^(n+1))-2; i = 1; while(1, k = k - A005811(k); if(!bitand(k+1,k+2),return(i),i++)); };
    for(n=1, 48, write("b255071.txt", n, " ", A255071(n)));
    
  • Scheme
    (define (A255071 n) (- (A255072 (- (expt 2 (+ n 1)) 2)) (A255072 (- (expt 2 n) 2))))
    (define (A255071shifted n) (add (COMPOSE A079944off2 A255056) (A255062 n) (A255061 (+ 1 n))))
    (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n))))) ;; Cf.
    A079944.
    ;; Shifted variant gives: (map A255071shifted (iota 16)) --> (0 1 2 3 5 9 16 29 53 97 178 328 608 1134 2126 4001)

Formula

a(n) = A255072((2^(n+1))-2) - A255072((2^n)-2).
a(n) = A255061(n+1) - A255061(n).
a(n) = A255125(n) + A255126(n).
a(n) = A255063(n) + A255064(n).
Other identities and observations:
It seems that a(n) <= A213709(n) for all n >= 1. A254119 gives the difference between these two sequences.
From Antti Karttunen, Feb 21 2015: (Start)
For n>1, a(n-1) = Sum_{k=A255062(n) .. A255061(n+1)} secondmsb(A255056(k)).
Here secondmsb is implemented by the starting offset 2 version of A079944, and effectively gives the second most significant bit in the binary expansion of n. The formula follows from the semi-regular nature of number-of-runs beanstalk, as in the upper half of any next higher range [A255062(n+1) .. A255061(n+2)] of its infinite trunk (A255056), the beanstalk imitates its behavior in the range [A255062(n) .. A255061(n+1)].
(End)

Extensions

a(37) added by Antti Karttunen, Feb 19 2015

A086799 Replace all trailing 0's with 1's in binary representation of n.

Original entry on oeis.org

1, 3, 3, 7, 5, 7, 7, 15, 9, 11, 11, 15, 13, 15, 15, 31, 17, 19, 19, 23, 21, 23, 23, 31, 25, 27, 27, 31, 29, 31, 31, 63, 33, 35, 35, 39, 37, 39, 39, 47, 41, 43, 43, 47, 45, 47, 47, 63, 49, 51, 51, 55, 53, 55, 55, 63, 57, 59, 59, 63, 61, 63, 63, 127, 65, 67, 67, 71, 69, 71
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 05 2003

Keywords

Comments

a(k+1) = smallest number greater than k having in its binary representation exactly one 1 more than k has; A000120(a(n)) = A063787(n). - Reinhard Zumkeller, Jul 31 2010
a(n) is the least m >= n-1 such that the Hamming distance D(n-1,m) = 1. - Vladimir Shevelev, Apr 18 2012
The number of appearances of k equals the 2-adic valuation of k+1. - Ali Sada, Dec 20 2024

Examples

			a(20) = a('10100') = '10100' + '11' = '10111' = 23.
		

Crossrefs

Programs

  • C
    int a(int n) { return n | (n-1); } // Russ Cox, May 15 2007
    
  • Haskell
    a086799 n | even n    = (a086799 $ div n 2) * 2 + 1
              | otherwise = n
    -- Reinhard Zumkeller, Aug 07 2011
    
  • Maple
    nmax:=70: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := 2^(p+1)*n-1 od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 01 2013
  • Mathematica
    Table[BitOr[(n + 1), n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
  • PARI
    a(n)=bitor(n,n-1) \\ Charles R Greathouse IV, Apr 17 2012
    
  • Python
    def a(n): return n | (n-1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = n + 2^A007814(n) - 1.
a(n) is odd; a(n) = n iff n is odd.
a(a(n)) = a(n); A007814(a(n)) = a(n); A000265(a(n)) = a(n).
A023416(a(n)) = A023416(n) - A007814(n) = A086784(n).
A000120(a(n)) = A000120(n) + A007814(n).
a(2^n) = a(A000079(n)) = 2*2^n - 1 = A000051(n+1).
a(n) = if n is odd then n else a(n/2)*2 + 1.
a(n) = A006519(n) + n - 1. - Reinhard Zumkeller, Feb 02 2007
a(n) = n OR n-1 (bitwise OR of consecutive numbers). - Russ Cox, May 15 2007
a(2*n) = A038712(n) + 2*n. - Reinhard Zumkeller, Aug 07 2011
a((2*n-1)*2^p) = 2^(p+1)*n-1, p >= 0. - Johannes W. Meijer, Feb 01 2013
Sum_{k=1..n} a(k) ~ n^2/2 + (1/(2*log(2)))*n*log(n) + (3/4 + (gamma-1)/(2*log(2)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 24 2022

A067699 Number of comparisons made in a version of the sorting algorithm QuickSort for an array of size n with n identical elements.

Original entry on oeis.org

0, 4, 8, 14, 18, 24, 30, 38, 42, 48, 54, 62, 68, 76, 84, 94, 98, 104, 110, 118, 124, 132, 140, 150, 156, 164, 172, 182, 190, 200, 210, 222, 226, 232, 238, 246, 252, 260, 268, 278, 284, 292, 300, 310, 318, 328, 338, 350, 356, 364, 372, 382
Offset: 1

Views

Author

Karla J. Oty (oty(AT)uscolo.edu), Feb 05 2002

Keywords

References

  • Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest. Introduction to Algorithms. McGraw-Hill Book Company, 2000. (Gives description of this version of QuickSort.)

Crossrefs

Programs

  • Python
    from functools import cache
    @cache
    def b(n): return 0 if n == 0 else b(n//2) + b((n-1)//2) + n + 2 + (n&1)
    def a(n): return b(n-1)
    print([a(n) for n in range(1, 53)]) # Michael S. Branicky, Aug 08 2022

Formula

a(n) = 2*ceiling((n+1)/2) + a(ceiling(n/2)) + a(floor(n/2)) with a(1) = 0, a(2) = 4 and a(3) = 8.
From Ralf Stephan, Oct 24 2003: (Start)
a(n) = A076178(n-1) + 4*(n-1) for n >= 1.
a(n) = b(n-1) for n >= 1, where b(0) = 0, b(2*n) = b(n) + b(n-1) + 2*n + 2, b(2*n+1) = 2*b(n) + 2*n + 4.
(End)

A063694 Remove odd-positioned bits from the binary expansion of n.

Original entry on oeis.org

0, 1, 0, 1, 4, 5, 4, 5, 0, 1, 0, 1, 4, 5, 4, 5, 16, 17, 16, 17, 20, 21, 20, 21, 16, 17, 16, 17, 20, 21, 20, 21, 0, 1, 0, 1, 4, 5, 4, 5, 0, 1, 0, 1, 4, 5, 4, 5, 16, 17, 16, 17, 20, 21, 20, 21, 16, 17, 16, 17, 20, 21, 20, 21, 64, 65, 64, 65, 68, 69, 68, 69, 64, 65, 64, 65, 68, 69, 68
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Comments

a(n) is the formal derivative of x*n (evaluated at x=2 after being lifted to Z[x]) where n is interpreted as a polynomial in GF(2)[x] via its binary expansion. - Keith J. Bauer, Mar 17 2024
In the base 4 expansion of n, change 2 to 0 and 3 to 1. - Paolo Xausa, Feb 27 2025

Examples

			a(25) = 17 because 25 = 11001 in binary and when we AND this with 10101 we are left with 10001 = 17.
		

Crossrefs

Cf. A004514, A063695 (remove even-positioned bits), A088442.

Programs

  • Haskell
    a063694 0 = 0
    a063694 n = 4 * a063694 n' + mod q 2
                where (n', q) = divMod n 4
    -- Reinhard Zumkeller, Sep 26 2015
    
  • Magma
    function A063694(n)
      if n le 1 then return n;
      else return 4*A063694(Floor(n/4)) + ((n mod 4) mod 2);
      end if; return A063694;
    end function;
    [A063694(n): n in [0..120]]; // G. C. Greubel, Dec 05 2022
    
  • Maple
    every_other_pos := proc(nn, x, w) local n, i, s; n := nn; i := 0; s := 0; while(n > 0) do if((i mod 2) = w) then s := s + ((x^i)*(n mod x)); fi; n := floor(n/x); i := i+1; od; RETURN(s); end: [seq(every_other_pos(j, 2, 0), j=0..120)];
  • Mathematica
    a[n_] := BitAnd[n, Sum[2^k, {k, 0, Log[2, n] // Floor, 2}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 28 2016 *)
    A063694[n_] := FromDigits[ReplaceAll[IntegerDigits[n, 4], {2 -> 0, 3 -> 1}], 4];
    Array[A063694, 100, 0] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    a(n)=sum(k=0,n,(-1)^k*2^k*floor(n/2^k))  /* since n> ceil(log(n)/log(2)) */
    
  • PARI
    a(n)=if(n<0,0,sum(k=0,n,(-1)^k*2^k*floor(n/2^k))) /* since n> ceil(log(n)/log(2)) */
    
  • Python
    def A063694(n): return n&((1<<(m:=n.bit_length())+(m&1))-1)//3 # Chai Wah Wu, Jan 30 2023
  • SageMath
    def A063694(n):
        if (n<2): return n
        else: return 4*A063694(floor(n/4)) + ((n%4)%2)
    [A063694(n) for n in range(121)] # G. C. Greubel, Dec 05 2022
    

Formula

a(n) = Sum_{k>=0} (-1)^k*2^k*floor(n/2^k).
a(n) + A063695(n) = n.
a(n) = n - 2*a(floor(n/2)). - Vladeta Jovovic, Feb 23 2003
G.f.: 1/(1-x) * Sum_{k>=0} (-2)^k*x^2^k/(1-x^2^k). - Ralf Stephan, May 05 2003
a(n) = 4*a(floor(n/4)) + (n mod 4) mod 2. - Reinhard Zumkeller, Sep 26 2015
a(n) = Sum_{k>=0} A030308(n,k)*A199572(k). - Philippe Deléham, Jan 12 2023

A079946 Numbers k whose binary expansion begins with two or more 1's and ends with at least one 0.

Original entry on oeis.org

6, 12, 14, 24, 26, 28, 30, 48, 50, 52, 54, 56, 58, 60, 62, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246
Offset: 1

Views

Author

N. J. A. Sloane, Feb 21 2003

Keywords

Comments

a(n) = b(n+1), with b(2n) = 2b(n), b(2n+1) = 2b(n)+2+4[n==0]. - Ralf Stephan, Oct 11 2003

Crossrefs

A004755 = union of this and A080565. A057547(n) = a(A014486(n)) for n >= 1.

Programs

  • Maple
    A079946 := n -> 2*(2^(1+A000523(n))+n);
  • Mathematica
    Table[Union[FromDigits[Join[{1,1},#,{0}],2]&/@Tuples[{1,0},n]],{n,0,5}]//Flatten (* Harvey P. Dale, Jan 16 2018 *)
  • PARI
    for(n=0,6, for(k=2^(n-1),2^n-1,print1((2^n+k)*2,",")))
    
  • PARI
    for(n=1,59,print1((2^(floor(log(n)/log(2))+1)+n)*2,","))
    
  • PARI
    a(n) = n*2 + 4<Ruud H.G. van Tol, May 10 2024
    
  • Python
    def A079946(n): return n+(1<Chai Wah Wu, Jul 13 2022

Formula

a(n) = 2^floor(log_2(4*n))+2*n. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 22 2003
a(n) = (2^(floor(log_2(n))+1)+n)*2. - Klaus Brockhaus, Feb 23 2003
a(2n) = 2a(n), a(2n+1) = 2a(n) + 2 + 4[n==0]. Twice A004755. - Ralf Stephan, Oct 12 2003

Extensions

Definition clarified by N. J. A. Sloane, May 10 2024

A007378 a(n), for n >= 2, is smallest positive integer which is consistent with sequence being monotonically increasing and satisfying a(a(n)) = 2n.

Original entry on oeis.org

3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103
Offset: 2

Views

Author

Keywords

Comments

This is the unique monotonic sequence {a(n)}, n>=2, satisfying a(a(n)) = 2n.
May also be defined by: a(n), n=2,3,4,..., is smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) is an even number >= 4". - N. J. A. Sloane, Feb 23 2003
A monotone sequence satisfying a^(k+1)(n) = mn is unique if m=2, k >= 0 or if (k,m) = (1,3). See A088720. - Colin Mallows, Oct 16 2003
Numbers (greater than 2) whose binary representation starts with "11" or ends with "0". - Franklin T. Adams-Watters, Jan 17 2006
Lower density 2/3, upper density 3/4. - Charles R Greathouse IV, Dec 14 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003605. Equals A080653 + 2.
This sequence, A079905, A080637 and A080653 are all essentially the same.

Programs

  • Maple
    a := proc(n) option remember; if n < 4 then n+1 else a(iquo(n,2)) + a(iquo(n+1,2)) fi end:
    seq(a(n), n = 2..70); # Peter Bala, Aug 03 2022
  • Mathematica
    max = 70; f[x_] := -x/(1-x) + x/(1-x)^2*(2 + Sum[ x^(2^k + 2^(k+1)) - x^2^(k+1) , {k, 0, Ceiling[Log[2, max]]}]); Drop[ CoefficientList[ Series[f[x], {x, 0, max + 1}], x], 2](* Jean-François Alcover, May 16 2012, from g.f. *)
    a[2]=3; a[3]=4; a[n_?OddQ] := a[n] = a[(n-1)/2+1] + a[(n-1)/2]; a[n_?EvenQ] := a[n] = 2a[n/2]; Table[a[n], {n, 2, 71}] (* Jean-François Alcover, Jun 26 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = my(s=logint(n,2)-1); if(bittest(n,s), n<<1 - 2<Kevin Ryde, Aug 08 2022
  • Python
    from functools import cache
    @cache
    def a(n): return n+1 if n < 4 else a(n//2) + a((n+1)//2)
    print([a(n) for n in range(2, 72)]) # Michael S. Branicky, Aug 04 2022
    

Formula

a(2^i + j) = 3*2^(i-1) + j, 0<=j<2^(i-1); a(3*2^(i-1) + j) = 2^(i+1) + 2*j, 0<=j<2^(i-1).
a(3*2^k + j) = 4*2^k + 3j/2 + |j|/2, k>=0, -2^k <= j < 2^k. - N. J. A. Sloane, Feb 23 2003
a(2*n+1) = a(n+1)+a(n), a(2*n) = 2*a(n). a(n) = n+A060973(n). - Vladeta Jovovic, Mar 01 2003
G.f.: -x/(1-x) + x/(1-x)^2 * (2 + sum(k>=0, t^2(t-1), t=x^2^k)). - Ralf Stephan, Sep 12 2003

Extensions

More terms from Matthew Vandermast and Vladeta Jovovic, Mar 01 2003

A045654 Number of 2n-bead balanced binary strings, rotationally equivalent to complement.

Original entry on oeis.org

1, 2, 6, 8, 22, 32, 72, 128, 278, 512, 1056, 2048, 4168, 8192, 16512, 32768, 65814, 131072, 262656, 524288, 1049632, 2097152, 4196352, 8388608, 16781384, 33554432, 67117056, 134217728, 268451968, 536870912, 1073774592, 2147483648, 4295033110, 8589934592
Offset: 0

Views

Author

Keywords

Examples

			From _Andrew Howroyd_, Jul 06 2025: (Start)
The a(1) = 2 length 2 balanced binary strings are: 01, 10.
The a(2) = 6 strings are: 0101, 1010, 0011, 0110, 1100, 1001.
The a(3) = 8 strings are: 010101, 101010, 000111, 001110, 011100, 111000, 110001, 100011. (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          2^n+`if`(n::even and n>0, a(n/2), 0)
        end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jul 01 2025
  • PARI
    a(n)={if(n==0, 1, my(s=0); while(n%2==0, s+=2^n; n/=2); s + 2^n)} \\ Andrew Howroyd, Sep 22 2019
    
  • Python
    def A045654(n): return sum(1<<(n>>k) for k in range((~n & n-1).bit_length()+1)) if n else 1 # Chai Wah Wu, Jul 22 2024

Formula

a(0)=1, a(2n) = a(n)+2^(2n), a(2n+1) = 2^(2n+1). - Ralf Stephan, Jun 07 2003
G.f.: 1/(1-x) + sum(k>=0, t(1+2t-2t^2)/(1-t^2)/(1-2t), t=x^2^k). - Ralf Stephan, Aug 30 2003
For n >= 1, a(n) = Sum_{k=0..A007814(n)} 2^(n/2^k). - David W. Wilson, Jan 01 2012
Inverse Moebius transform of A045663. - Andrew Howroyd, Sep 15 2019
a(n) = 2*A127804(n-1) for n > 0. - Tilman Piesk, Jul 05 2025
a(n) = Sum_{k=1..n} 2 * n * A385665(n,k) / k. - Tilman Piesk, Jul 07 2025

A080541 In binary representation: keep the first digit and left-rotate the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers: let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080542(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20)=a('10100')='11000'=24; a(24)=a('11000')='10001'=17.
		

Crossrefs

Inverse: A080542.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Maple
    f:= proc(n) local d;
       d:= ilog2(n);
       if n >= 3/2*2^d then 2*n+1-2^(d+1) else 2*n - 2^d fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2015
  • Mathematica
    A080541[n_] := FromDigits[Join[{First[#]}, RotateLeft[Rest[#]]], 2] & [IntegerDigits[n, 2]];
    Array[A080541, 100] (* Paolo Xausa, May 13 2025 *)
  • Python
    def A080541(n): return ((n&(m:=1< 1 else n  # Chai Wah Wu, Jan 22 2023
  • R
    maxlevel <- 6 # by choice
    a <- 1:3
    for(m in 1:maxlevel) for(k in 0:(2^(m-1)-1)){
    a[2^(m+1)       + 2*k    ] = 2*a[2^m           + k]
    a[2^(m+1)       + 2*k + 1] = 2*a[2^m + 2^(m-1) + k]
    a[2^(m+1) + 2^m + 2*k    ] = 2*a[2^m           + k] + 1
    a[2^(m+1) + 2^m + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] + 1
    }
    a
    # Yosu Yurramendi, Oct 12 2020
    
  • Scheme
    (define (A080541 n) (if (< n 2) n (A003986bi (A053644 n) (+ (* 2 (A053645 n)) (A079944off2 n))))) ;; A003986bi gives the bitwise OR of its two arguments. See A003986.
    ;; Where A079944off2 gives the second most significant bit of n. (Cf. A079944):
    (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n)))))
    ;; Antti Karttunen, May 16 2015
    

Formula

From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) bitwise_OR (2*A053645(n) + second_most_significant_bit_of(n)). [Here bitwise_OR is a 2-argument function given by array A003986 and second_most_significant_bit_of gives the second most significant bit (0 or 1) of n larger than 1. See A079944.]
Other identities. For all n >= 1:
a(n) = A059893(A080542(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)
A080542(a(n)) = a(A080542(n)) = n. [A080542 is the inverse permutation.]
From Robert Israel, May 19 2015: (Start)
Let d = floor(log[2](n)). If n >= 3*2^(d-1) then a(n) = 2*n + 1 - 2^(d+1), otherwise a(n) = 2*n - 2^d.
G.f.: 2*x/(x-1)^2 + Sum_{n>=1} x^(2^n)+(2^n-1)*x^(3*2^(n-1)))/(x-1). (End)

A088705 First differences of A000120. One minus exponent of 2 in n.

Original entry on oeis.org

0, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -4, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -5, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1
Offset: 0

Views

Author

Ralf Stephan, Oct 10 2003

Keywords

Comments

The number of 1's in the binary expansion of n+1 minus the number of 1's in the binary expansion of n.

Crossrefs

Programs

  • Haskell
    a088705 n = a088705_list !! n
    a088705_list = 0 : zipWith (-) (tail a000120_list) a000120_list
    -- Reinhard Zumkeller, Dec 11 2011
    
  • Maple
    add(x^(2^k)/(1+x^(2^k)),k=0..20); series(%,x,1001); seriestolist(%); # To get up to a million terms, from N. J. A. Sloane, Aug 31 2014
  • Mathematica
    a[n_] := If[n<1, 0, If[Mod[n, 2] == 0, a[n/2] - 1, 1]]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2018 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)-1,1))
    
  • PARI
    a(n)=if(n<1,0,1-valuation(n,2))
    
  • Python
    def A088705(n): return 1-(~n & n-1).bit_length() # Chai Wah Wu, Sep 18 2024

Formula

For n > 0: a(n) = A000120(n) - A000120(n-1) = 1 - A007814(n).
Multiplicative with a(2^e) = 1-e, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
G.f.: Sum{k>=0} t/(1+t), t=x^2^k.
a(0) = 0, a(2*n) = a(n) - 1, a(2*n+1) = 1.
Let T(x) be the g.f., then T(x)-T(x^2)=x/(1+x). - Joerg Arndt, May 11 2010
Dirichlet g.f.: zeta(s) * (2-2^s)/(1-2^s). - Amiram Eldar, Sep 18 2023

A004134 Denominators in expansion of (1-x)^{-1/4} are 2^a(n).

Original entry on oeis.org

0, 2, 5, 7, 11, 13, 16, 18, 23, 25, 28, 30, 34, 36, 39, 41, 47, 49, 52, 54, 58, 60, 63, 65, 70, 72, 75, 77, 81, 83, 86, 88, 95, 97, 100, 102, 106, 108, 111, 113, 118, 120, 123, 125, 129, 131, 134, 136, 142, 144, 147, 149, 153, 155, 158, 160, 165, 167, 170, 172, 176, 178
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A004130.
Cf. A005187.

Programs

  • Mathematica
    Log2[ Denominator[ CoefficientList[ Series[ 1/Sqrt[Sqrt[1 - x]], {x, 0, 61}], x]]] (* Robert G. Wilson v, Mar 23 2014 *)
    f[n_] := 3 n - DigitCount[n, 2, 1]; Array[f, 62, 0] (* or *)
    a[n_] := If[ OddQ@ n, a[(n - 1)/2] + 3 (n - 1)/2 + 2, a[n/2] + 3 n/2]; a[0] = 0; Array[a, 62, 0] (* Robert G. Wilson v, Mar 23 2014 *)
  • PARI
    {a(n) = if( n<0, 0, 3*n - subst( Pol( binary( n ) ), x, 1) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = 3*n - hammingweight(n); \\ Joerg Arndt, Mar 23 2014

Formula

a(n) = 3*n - A000120(n). Recurrence: a(2n) = a(n) + 3n, a(2n+1) = a(n) + 3n + 2. Proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = A005187(n) + n. - Cyril Damamme, Aug 04 2015
Previous Showing 51-60 of 118 results. Next