cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A110591 Number of digits in base-4 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

Number of digits in A007090(n).
In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), this sequence is the repetition convolution A110594 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701.

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a110591 0 = 1
    a110591 n = length $
       unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) n
    -- Reinhard Zumkeller, Apr 22 2011
  • Maple
    A110592 := proc(n)
        if n = 0 then
            1;
        else
            1+floor(log[4](n)) ;
        end if;
    end proc:
    seq(A110592(n),n=0..50) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    a[n_] := If[n == 0, 1, Floor[Log[4, n]] + 1];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 24 2020 *)

Formula

G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(4^k). - Ilya Gutkovskiy, Jan 08 2017
a(n) = floor(log_4(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019

A020915 Number of digits in base-3 representation of 2^n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 47
Offset: 0

Views

Author

Keywords

Comments

For n > 0, first differences of A022331. - Michel Marcus, Oct 03 2013

Crossrefs

Cf. A022924 (first differences).

Programs

Formula

a(n) = 1 + floor(n*log_3(2)) = 1 + floor(n*A102525) = 1 + A136409(n). - R. J. Mathar, May 23 2009
a(n) = A081604(A000079(n)). - Reinhard Zumkeller, Jul 12 2011
a(A020914(n)) = n + 1. - Reinhard Zumkeller, Mar 28 2015

Extensions

More terms from James Sellers

A110592 Number of digits in base-5 representation of n. String length of A007091.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), then this sequence is the repetition convolution A110595 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701.

Crossrefs

Programs

  • Mathematica
    Join[{1},IntegerLength[Range[110],5]] (* Harvey P. Dale, Aug 03 2016 *)

Formula

G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(5^k). - Ilya Gutkovskiy, Jan 08 2017
a(n) = floor(log_5(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019

A110594 a(1) = 4, a(2) = 12, for n>1: a(n) = 3*4^(n-1).

Original entry on oeis.org

4, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
Offset: 1

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([4],List([2..25],n->3*4^(n-1))); # Muniru A Asiru, Oct 21 2018
  • Magma
    [4] cat [3*4^(n-1): n in [2..30]]; // Vincenzo Librandi, May 29 2014
    
  • Maple
    seq(coeff(series(4*x*(1-x)/(1-4*x),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    CoefficientList[Series[4 (1 - x)/(1 - 4 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
  • PARI
    x='x+O('x^50); Vec(4*x*(1 - x)/(1 - 4*x)) \\ G. C. Greubel, Sep 01 2017
    

Formula

a(n) = A002001(n), n>1. - R. J. Mathar, Aug 18 2008
G.f.: 4*x*(1 - x)/(1 - 4*x). - Vincenzo Librandi, May 29 2014

Extensions

Definition corrected by R. J. Mathar, Aug 18 2008

A134025 Numbers for which the balanced ternary representation is the same length as the ternary representation.

Original entry on oeis.org

0, 1, 3, 4, 9, 10, 11, 12, 13, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 19 2007

Keywords

Comments

A003462 is a subsequence; A171960(a(n)) >= a(n). - Reinhard Zumkeller, Jan 20 2010

Crossrefs

Complement of A134026.

Programs

  • Maple
    0,seq($3^(d-1)..floor(3^d/2), d=0..5); # Robert Israel, Dec 14 2015
  • Mathematica
    f[n_, m_, k_] := If[n == 0, k, If[k < (3^(m + 1) - 1)/2, f[n - 1, m, k + 1], f[n - 1, m + 1, 3^(m + 1)]]]; Table[f[n, 0, 0], {n, 0, 63}] (* L. Edson Jeffery, Dec 10 2015 *)

Formula

a(n) = f(n,0,0) with f(n,m,k) = if n=0 then k else if k<(3^(m+1)-1)/2 then f(n-1,m,k+1) else f(n-1,m+1,3^(m+1)).
A134021(a(n)) = A081604(a(n)).
G.f.: x/(1-x)^2 + (1-x)^(-1)*Sum_{j>=1} ((3^j-1)/2) * x^(3/4 + 3^j/2 + j/2). - Robert Israel, Dec 14 2015

A134026 Numbers that are in balanced ternary representation longer than in ternary representation.

Original entry on oeis.org

2, 5, 6, 7, 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 19 2007

Keywords

Comments

A157671 is a subsequence. - Reinhard Zumkeller, Jan 20 2010

Crossrefs

Complement of A134025.

Programs

  • Mathematica
    Select[Range[150], Ceiling[Log[3, 2*#+1]] > IntegerLength[#, 3] &] (* Amiram Eldar, Apr 03 2025 *)

Formula

a(n) = g(n,0,0) with g(n,m,k) = if n=0 then k else if k=3^m-1 then g(n-1,m,3*(k+1)/2+1) else g(n-1,m,k+1).
A134021(a(n)) = A081604(a(n)) + 1.
A171960(a(n)) < a(n). - Reinhard Zumkeller, Jan 20 2010

A080342 Number of weighings required to identify a single bad coin out of n coins, using a two-pan balance.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Mar 19 2003

Keywords

Comments

It is known that there is exactly one bad coin, which is heavier than the others. No weights are used in the weighings.
0 appears once, 1 twice, 2 6 times, 3 18 times, 4 54 times, ... which is the same as the number of base-3 numbers of length n; see A007089. - Jonathan Vos Post, Apr 20 2011
Records appear at positions 3^n+1 (=A034472(n)). - Robert G. Wilson v, Aug 06 2012
The "Heavy Marble" section of "Brainteaser Problems" in the Mongan et al. reference describes the n = 8 case in detail and then derives the general formula given below. Of course this sequence applies also when the single, unlike object is lighter than all the others. If the unlike object is only known to have a different weight (that is, to be lighter than all the others or heavier than all the others), use A064099. - Rick L. Shepherd, Sep 05 2013
If it is unknown whether the bad coin is heavier or lighter, then the minimum number of weighings is A029837(n) and the number of coins that must be used in the first weighing is A004526(n), for n > 2. - Ivan N. Ianakiev, Apr 13 2017

Examples

			a(1) = 0 since no weighings are needed - the coin is bad. a(2) = 1 since one weighing is needed.
		

References

  • J. Mongan, N. Suojanen, and E. Giguère, Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition, Wiley Publishing, Inc., 2007, pp. 169-172.

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a080342 n = genericIndex a080342_list (n - 1)
    a080342_list = 0 : zs where
       zs = 1 : 1 : (map (+ 1) $ concat $ transpose [zs, zs, zs])
    -- Reinhard Zumkeller, Sep 02 2015
  • Mathematica
    f[n_] := Floor[ Log[3, n]] - Floor[2^-FractionalPart[ Log[3, n]]] + 1; Array[f, 105] (* Robert G. Wilson v, Aug 05 2012 *)
  • PARI
    a(n) = ceil(log(n)/log(3)) \\ Rick L. Shepherd, Sep 05 2013
    

Formula

a(n) = floor(L) - floor(2^(-f(L))) + 1, where L = log_3(n) and f() = fractional part.
a(n) = ceiling(log_3(n)). - Rick L. Shepherd, Sep 05 2013
A064235(n) = 3 ^ a(n). - Reinhard Zumkeller, Sep 02 2015

A043000 Number of digits in all base-b representations of n, for 2 <= b <= n.

Original entry on oeis.org

2, 4, 7, 9, 11, 13, 16, 19, 21, 23, 25, 27, 29, 31, 35, 37, 39, 41, 43, 45, 47, 49, 51, 54, 56, 59, 61, 63, 65, 67, 70, 72, 74, 76, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 2

Views

Author

Keywords

Comments

From A.H.M. Smeets, Dec 14 2019: (Start)
a(n)-a(n-1) >= 2 due to the fact that n = 10_n, so there is an increment of at least 2. If n can be written as a perfect power m^s, an additional +1 comes to it for the representation of n in each base m.
For instance, for n = 729 we have 729 = 3^6 = 9^3 = 27^2, so there is an additional increment of 3. For n = 1296 we have 1296 = 6^4 = 36^2, so there is an additional increment of 2. For n = 4096 we have 4096 = 2^12 = 4^6 = 8^4 = 16^3= 64^2, so there is an additional increment of 5. (End)

Examples

			5 = 101_2 = 12_3 = 11_4 = 10_5. Thus a(5) = 3+2+2+2 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[Floor(Log(i,i*n)):k in [2..n]]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
    
  • Maple
    A043000 := proc(n) add( nops(convert(n,base,b)),b=2..n) ; end proc: # R. J. Mathar, Jun 04 2011
  • Mathematica
    Table[Total[IntegerLength[n,Range[2,n]]],{n,2,60}] (* Harvey P. Dale, Apr 23 2019 *)
  • PARI
    a(n)=sum(b=2,n,#digits(n,b)) \\ Jeppe Stig Nielsen, Dec 14 2019
    
  • PARI
    a(n)= n-1 +sum(b=2,n,logint(n,b)) \\ Jeppe Stig Nielsen, Dec 14 2019
    
  • PARI
    a(n) = {2*n-2+sum(i=2, logint(n, 2), sqrtnint(n, i)-1)} \\ David A. Corneth, Dec 31 2019
    
  • PARI
    first(n) = my(res = vector(n)); res[1] = 2; for(i = 2, n, inc = numdiv(gcd(factor(i+1)[,2]))+1; res[i] = res[i-1]+inc); res \\ David A. Corneth, Dec 31 2019
  • Python
    def count(n,b):
        c = 0
        while n > 0:
            n, c = n//b, c+1
        return c
    n = 0
    while n < 50:
        n = n+1
        a, b = 0, 1
        while b < n:
            b = b+1
            a = a + count(n,b)
        print(n,a) # A.H.M. Smeets, Dec 14 2019
    

Formula

a(n) = Sum_{i=2..n} floor(log_i(i*n)); a(n) ~ 2*n. - Vladimir Shevelev, Jun 03 2011 [corrected by Vaclav Kotesovec, Apr 05 2021]
a(n) = A070939(n) + A081604(n) + A110591(n) + ... + 1. - R. J. Mathar, Jun 04 2011
From Ridouane Oudra, Nov 13 2019: (Start)
a(n) = Sum_{i=1..n-1} floor(n^(1/i));
a(n) = n - 1 + Sum_{i=1..floor(log_2(n))} floor(n^(1/i) - 1);
a(n) = n - 1 + A255165(n). (End)
If n is in A001597 then a(A001597(m)) - a(A001597(m)-1) = 2 + A253642(m), otherwise a(n) - a(n-1) = 2. - A.H.M. Smeets, Dec 14 2019

A049803 a(n) = n mod 3 + n mod 9 + ... + n mod 3^k, where 3^k <= n < 3^(k+1).

Original entry on oeis.org

0, 0, 0, 1, 2, 0, 1, 2, 0, 2, 4, 3, 5, 7, 6, 8, 10, 0, 2, 4, 3, 5, 7, 6, 8, 10, 0, 3, 6, 6, 9, 12, 12, 15, 18, 9, 12, 15, 15, 18, 21, 21, 24, 27, 18, 21, 24, 24, 27, 30, 30, 33, 36, 0, 3, 6, 6, 9, 12, 12, 15, 18, 9, 12, 15, 15, 18, 21, 21, 24, 27, 18
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: For b >= 2, consider the function s(n,b) = Sum_{1 <= b^j <= n} (n mod b^j) from p. 8 in Dearden et al. (2011). Then s(b*n + r, b) = b*s(n,b) + r*N(n,b) for 0 <= r <= b-1, where N(n,b) = floor(log_b(n)) + 1 is the number of digits in the base-b representation of n. As initial conditions, we have s(n,b) = 0 for 1 <= n <= b. (This is a generalization of a result by Robert Israel in A049802.)
Here b = 3 and a(n) = s(n,3).
We have N(n,2) = A070939(n), N(n,3) = A081604(n), N(n,4) = A110591(n), and N(n,5) = A110592(n).
If A_b(x) = Sum_{n >= 1} s(n,b)*x^n is the g.f. of the sequence (s(n,b): n >= 1) and the above conjecture is correct, then it can be proved that A_b(x) = b * A_b(x^b) * (1-x^b)/(1-x) + x * ((b-1)*x^b - b*x^(b-1) + 1)/((1-x)^2 * (1-x^b)) * Sum_{k >= 1} x^(b^k). (End)

Crossrefs

Programs

  • Maple
    a:= n-> add(irem(n, 3^j), j=1..ilog[3](n)):
    seq(a(n), n=1..105);  # Alois P. Heinz, Dec 13 2019
  • Mathematica
    Table[n * Floor@Log[3, n] - Sum[Floor[n*3^-k]*3^k, {k, Log[3, n]}], {n, 100}] (* after Federico Provvedi in A049802*) (* Metin Sariyar, Dec 12 2019 *)
  • PARI
    a(n) = sum(k=1, logint(n, 3), n % 3^k); \\ Michel Marcus, Dec 12 2019

Formula

From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: a(3*n+r) = 3*a(n) + r*A081604(n) = 3*a(n) + r*(floor(log_3(n)) + 1) for n >= 1 and r = 0, 1, 2.
If the conjecture above is true, the g.f. A(x) satisfies A(x) = 3*(1+x+x^2)*A(x^3) + x*(2*x+1)/(1-x^3) * Sum_{k >= 1} x^(3^k). (End)

A049804 a(n) = n mod 4 + n mod 16 + ... + n mod 4^k, where 4^k <= n < 4^(k+1).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 2, 4, 6, 4, 6, 8, 10, 8, 10, 12, 14, 12, 14, 16, 18, 0, 3, 6, 9, 8, 11, 14, 17, 16, 19, 22
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: For b >= 2, consider the function s(n,b) = Sum_{1 <= b^j <= n} (n mod b^j) from p. 8 in Dearden et al. (2011). Then s(b*n + r, b) = b*s(n,b) + r*N(n,b) for 0 <= r <= b-1, where N(n,b) = floor(log_b(n)) + 1 is the number of digits in the base-b representation of n. As initial conditions, we have s(n,b) = 0 for 1 <= n <= b. (This is a generalization of a result by Robert Israel in A049802.)
Here b = 4 and a(n) = s(n,4).
We have N(n,2) = A070939(n), N(n,3) = A081604(n), N(n,4) = A110591(n), and N(n,5) = A110592(n).
If A_b(x) = Sum_{n >= 1} s(n,b)*x^n is the g.f. of the sequence (s(n,b): n >= 1) and the above conjecture is correct, then it can be proved that A_b(x) = b * A_b(x^b) * (1-x^b)/(1-x) + x * ((b-1)*x^b - b*x^(b-1) + 1)/((1-x)^2 * (1-x^b)) * Sum_{k >= 1} x^(b^k). (End)

Crossrefs

Programs

  • Maple
    a:= n-> add(irem(n, 4^j), j=1..ilog[4](n)):
    seq(a(n), n=1..105);  # Petros Hadjicostas, Dec 13 2019 (after Alois P. Heinz's program for A330358)
  • Mathematica
    Table[n * Floor@Log[4, n] - Sum[Floor[n*4^-k]*4^k, {k, Log[4, n]}], {n, 100}] (* Metin Sariyar, Dec 12 2019 *)
    a[n_] := Sum[Mod[n, 4^j], {j, 1, Length[IntegerDigits[n, 4]] - 1}];
    Array[a, 105] (* Jean-François Alcover, Dec 31 2021 *)
  • PARI
    a(n) = sum(k=1, logint(n, 4), n % 4^k); \\ Michel Marcus, Dec 12 2019

Formula

From Petros Hadjicostas, Dec 11 2019: (Start)
Conjecture: a(4*n+r) = 4*a(n) + r*A110591(n) = 4*a(n) + r*(floor(log_4(n)) + 1) for n >= 1 and r = 0, 1, 2, 3.
If the conjecture above is true, the g.f. A(x) satisfies A(x) = 4*(1 + x + x^2 + x^3)*A(x^4) + x*(1 + 2*x + 3*x^2)/(1 - x^4) * Sum_{k >= 1} x^(4^k). (End)
Previous Showing 11-20 of 38 results. Next