cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 58 results. Next

A099393 a(n) = 4^n + 2^n - 1.

Original entry on oeis.org

1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
Offset: 0

Views

Author

Ralf Stephan, Oct 20 2004

Keywords

Comments

Number of occurrences of letter 2 in the (n+1)-st Peano word.
In binary representation, a leading one followed by n zeros then by n ones. - Reinhard Zumkeller, Feb 07 2006
The number of involutions in group G_n G_{n+1} = G_n(operation) D_8. For example, Q_8->1 involution; D_8->5 involutions - Roger L. Bagula, Aug 08 2007

Examples

			n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
		

Crossrefs

See the formula section for the relationships with A000120, A000217, A000225, A002378, A007582, A020522, A023416, A030101, A063376, A070939, A083420, A279396.

Programs

Formula

a(n) = A063376(n)-1.
a(n) = A020522(n) + A000225(n+1) = A083420(n) - A020522(n); A000120(a(n)) = n+1; A023416(a(n))=n; A070939(a(n)) = 2*n+1; 2*A020522(n)+1 = A030101(a(n)). - Reinhard Zumkeller, Feb 07 2006
a(n) = 2^(2*n-1) + 2*a(n-1) + 1. - Roger L. Bagula, Aug 08 2007
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) + 1/(1-2*x) - 1/(1-x).
E.g.f.: e^(4*x) + e^(2*x) - e^x. (End)
a(n) = A279396(n+4, 4). - Wolfdieter Lang, Jan 10 2017
a(n) = A002378(2^n) - 1 = 2*A000217(2^n) - 1 = 2*A007582(n) - 1. - Peter Munn, Nov 20 2022

A096053 a(n) = (3*9^n - 1)/2.

Original entry on oeis.org

1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681
Offset: 0

Views

Author

Benoit Cloitre, Jun 18 2004

Keywords

Comments

Generalized NSW numbers. - Paul Barry, May 27 2005
Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005
Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703.
Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015

Crossrefs

Cf. A107903, A138894 ((5*9^n-1)/4).

Programs

Formula

From Paul Barry, May 27 2005: (Start)
G.f.: (1+3*x)/(1-10*x+9*x^2);
a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k;
a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End)
a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number.
a(n) = 10*a(n-1) - 9*a(n-2).
a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011
a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015
a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019

Extensions

Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007

A289481 Number A(n,k) of Dyck paths of semilength k*n and height n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 7, 1, 0, 1, 1, 31, 57, 1, 0, 1, 1, 127, 1341, 484, 1, 0, 1, 1, 511, 26609, 59917, 4199, 1, 0, 1, 1, 2047, 497845, 5828185, 2665884, 36938, 1, 0, 1, 1, 8191, 9096393, 517884748, 1244027317, 117939506, 328185, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2017

Keywords

Comments

For fixed k > 1, A(n,k) ~ 2^(2*k*n + 3) * k^(2*k*n + 1/2) / ((k-1)^((k-1)*n + 1/2) * (k+1)^((k+1)*n + 7/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 14 2017

Examples

			Square array A(n,k) begins:
  1, 1,    1,       1,          1,            1, ...
  0, 1,    1,       1,          1,            1, ...
  0, 1,    7,      31,        127,          511, ...
  0, 1,   57,    1341,      26609,       497845, ...
  0, 1,  484,   59917,    5828185,    517884748, ...
  0, 1, 4199, 2665884, 1244027317, 517500496981, ...
		

Crossrefs

Rows n=0-2 give: A000012, A057427, A083420(k+1).
Main diagonal gives A289482.
Cf. A080936.

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
          `if`(y <  min(x-1, k), b(x-1, y+1, k), 0))
        end:
    A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[yIndranil Ghosh, Jul 07 2017, after Maple code *)

A147590 Numbers whose binary representation is the concatenation of 2n-1 digits 1 and n-1 digits 0.

Original entry on oeis.org

1, 14, 124, 1016, 8176, 65504, 524224, 4194176, 33554176, 268434944, 2147482624, 17179867136, 137438949376, 1099511619584, 8796093005824, 70368744144896, 562949953355776, 4503599627239424, 36028797018701824, 288230376151187456
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Comments

a(n) is the number whose binary representation is A147589(n).

Examples

			     1_10 is 1_2;
    14_10 is 1110_2;
   124_10 is 1111100_2;
  1016_10 is 1111111000_2.
		

Crossrefs

Programs

Formula

a(n) = A147537(n)/2.
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 8^n/4 - 2^(n-1) = A083332(2n-2).
a(n) = 10*a(n-1) - 16*a(n-2).
G.f.: x*(1+4*x)/((1-2*x)*(1-8*x)). (End)
From César Aguilera, Jul 26 2019: (Start)
Lim_{n->infinity} a(n)/a(n-1) = 8;
a(n)/a(n-1) = 8 + 6/A083420(n). (End)
E.g.f.: (1/4)*(exp(2*x)*(-2 + exp(6*x)) + 1). - Stefano Spezia, Aug 05 2019
a(n) = A020540(n - 1)/4. - Jon Maiga, Aug 05 2019

Extensions

More terms from R. J. Mathar, Jul 13 2009
Typo in a(12) corrected by Omar E. Pol, Jul 20 2009

A164908 a(n) = (3*4^n - 0^n)/2.

Original entry on oeis.org

1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
Offset: 0

Views

Author

Klaus Brockhaus, Aug 31 2009

Keywords

Comments

Binomial transform of A164907. Inverse binomial transform of A057651.
Partial sums are in A083420.
Decimal representations of the n-th iterations of elementary cellular automata rules 14, 46, 142 and 174 generate this sequence (see A266298 and A266299). - Karl V. Keller, Jr., Aug 31 2021

Crossrefs

Equals 1 followed by A002023 (6*4^n). Essentially the same as A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1+2*x)/(1-4*x).
a(n) = floor(6*4^(n-1)). - Karl V. Keller, Jr., Aug 30 2021
E.g.f.: (3*exp(4*x) - 1)/2. - Elmo R. Oliveira, Mar 31 2025

A101622 A Horadam-Jacobsthal sequence.

Original entry on oeis.org

0, 1, 6, 13, 30, 61, 126, 253, 510, 1021, 2046, 4093, 8190, 16381, 32766, 65533, 131070, 262141, 524286, 1048573, 2097150, 4194301, 8388606, 16777213, 33554430, 67108861, 134217726, 268435453, 536870910, 1073741821, 2147483646, 4294967293, 8589934590
Offset: 0

Views

Author

Paul Barry, Dec 10 2004

Keywords

Comments

Companion sequence to A084639.
This is the sequence A(0,1;1,2;5) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Except for the initial three terms, the decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 961", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 27 2017
Named after the Australian mathematician Alwyn Francis Horadam (1923-2016) and the German mathematician Ernst Jacobsthal (1882-1965). - Amiram Eldar, Jun 10 2021

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A131953.

Programs

  • Magma
    [(2^(n+2)+(-1)^n-5)/2: n in [0..35]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,1,6},40] (* Harvey P. Dale, Jul 08 2014 *)
  • PARI
    concat(0, Vec(x*(1+4*x)/((1-x)*(1+x)*(1-2*x)) + O(x^30))) \\ Colin Barker, Mar 28 2017

Formula

a(n) = (2^(n+2) + (-1)^n - 5)/2.
G.f.: x*(1+4*x)/((1-x)*(1+x)*(1-2*x)).
a(n) = (A014551(n+2)-5)/2.
(1, 6, 13, 30, 61, ...) are the row sums of A131953. - Gary W. Adamson, Jul 31 2007
From Paul Curtz, Jan 01 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) + 5.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = A000079(n+1) - A010693(n).
a(n+1) = A141722(n) + 5 = A141722(n) + A010716(n).
a(2n+1) - a(2n) = 1, 7, 31, ... = A083420.
a(2n+1) - 2*a(2n) = 1.
a(2n) = A002446 = 6*A002450, a(2n+1) = A141725. (End)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. - Colin Barker, Mar 28 2017
a(n) = (1/2) * Sum_{k=1..n} binomial(n+1,k) * (2+(-1)^k). - Wesley Ivan Hurt, Sep 23 2017

A331891 Negabinary palindromes: nonnegative numbers whose negabinary expansion (A039724) is palindromic.

Original entry on oeis.org

0, 1, 3, 5, 7, 11, 17, 21, 23, 31, 43, 51, 57, 65, 77, 85, 87, 103, 127, 143, 155, 171, 195, 211, 217, 233, 257, 273, 285, 301, 325, 341, 343, 375, 423, 455, 479, 511, 559, 591, 603, 635, 683, 715, 739, 771, 819, 851, 857, 889, 937, 969, 993, 1025, 1073, 1105, 1117
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2020

Keywords

Comments

Numbers of the form 2^(2*m-1) - 1 (A083420) and 2^(2*m) + 1 (A052539) are terms.

Examples

			5 is a term since its negabinary representation is 101 which is palindromic.
		

Crossrefs

Programs

  • Mathematica
    negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; Select[Range[0, 1200], PalindromeQ @ negabin[#] &]

A140529 a(n) = 6*4^n - 1.

Original entry on oeis.org

5, 23, 95, 383, 1535, 6143, 24575, 98303, 393215, 1572863, 6291455, 25165823, 100663295, 402653183, 1610612735, 6442450943, 25769803775, 103079215103, 412316860415, 1649267441663, 6597069766655, 26388279066623, 105553116266495
Offset: 0

Views

Author

Paul Curtz, Jul 03 2008

Keywords

Crossrefs

Cf. A028894.

Programs

Formula

a(n) = 4*a(n-1) + 3, a(0)=5.
a(n) = A002023(n) - 1 = A000302(n+1) + A083420(n).
G.f.: ( 5-2*x ) / ( (4*x-1)*(x-1) ). - R. J. Mathar, Jul 08 2022

A099856 Expansion of (1+3*x)/(1-3*x).

Original entry on oeis.org

1, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974, 45753584909922
Offset: 0

Views

Author

Paul Barry, Oct 28 2004

Keywords

Comments

A099858 gives a Chebyshev transform. Binomial transform is A083420.
Hankel transform is 1, -18, 0, 0, 0, 0, 0, 0, 0, ... - Philippe Deléham, Dec 13 2011

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+3x)/(1-3x),{x,0,30}],x] (* or *) Join[{1}, NestList[3#&,6,30]] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    Vec((1+3*x)/(1-3*x) + O(x^40)) \\ Michel Marcus, Dec 11 2015

Formula

a(n) = 2*3^n - 0^n.
a(n) = A025192(n+1), n > 0. - R. J. Mathar, Sep 02 2008
a(n) = Sum_{k=0..n} A093561(n,k)*2^k. - Philippe Deléham, Dec 13 2011
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: 2*exp(3*x) - 1.
a(n) = 3*a(n-1) for n > 1. (End)

Extensions

a(26)-a(28) from Elmo R. Oliveira, Aug 23 2024

A140253 a(2*n) = 2*(2*4^(n-1)-1) and a(2*n-1) = 2*4^(n-1)-1.

Original entry on oeis.org

-1, 1, 2, 7, 14, 31, 62, 127, 254, 511, 1022, 2047, 4094, 8191, 16382, 32767, 65534, 131071, 262142, 524287, 1048574, 2097151, 4194302, 8388607, 16777214, 33554431, 67108862, 134217727, 268435454, 536870911
Offset: 0

Views

Author

Paul Curtz, Jun 23 2008

Keywords

Comments

The inverse binomial transform is 1, 1, 4, -2, 10, -14, 34, -62 which leads to (-1)^(n+1)*A135440(n).
For n > 0: A266161(a(n)) = n and A266161(m) < n for m < a(n). - Reinhard Zumkeller, Dec 22 2015
Also, the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 23 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a140253 n = a140253_list !! n
    a140253_list = -1 : concat
                        (transpose [a083420_list, map (* 2) a083420_list])
    -- Reinhard Zumkeller, Dec 22 2015
  • Maple
    A140253:=proc(n): if type(n, odd) then 2*4^(((n+1)/2)-1)-1 else 2*(2*4^((n/2)-1)-1) fi: end: seq(A140253(n),n=0..29); # Johannes W. Meijer, Jun 24 2011
  • Mathematica
    Table[(2^(n+1) - 3 + (-1)^(n+1))/2, {n, 0, 30}] (* Jean-François Alcover, Jun 05 2017 *)

Formula

a(2*n) = 2*A083420(n-1) and a(2*n+1) = A083420(n)
a(n+1) - a(n) = A014551(n); Jacobsthal-Lucas numbers.
a(2*n) + a(2*n+1) = 9*A002450(n)
a(n+1) - 2*a(n) = A010674(n+1); repeat 3, 0.
a(n) + A000034(n+1) = A000079(n); powers of 2.
a(n)= a(n-1) + 2*a(n-2) + 3. - Gary Detlefs, Jun 22 2010
a(n+1) = A000069(2^n); odious numbers. - Johannes W. Meijer, Jun 24 2011
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2, a(0) = -1, a(1) = 1, a(2) = 2. - Philippe Deléham, Feb 25 2012
G.f.: (x^2+3*x-1)/((1-2*x)*(1-x)*(1+x)). - Philippe Deléham, Feb 25 2012

Extensions

Edited, corrected and information added by Johannes W. Meijer, Jun 24 2011
Previous Showing 11-20 of 58 results. Next