A099393
a(n) = 4^n + 2^n - 1.
Original entry on oeis.org
1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
Offset: 0
n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
- Vincenzo Librandi, Table of n, a(n) for n = 0..170
- A. M. Cohen and D. E. Taylor, On a Certain Lie Algebra Defined By a Finite Group, American Mathematical Monthly, volume 114, number 7, August-September 2007, pages 633-638. Also preprint. a(n) = t_n in proof of theorem 6.2.
- Sergey Kitaev and Toufik Mansour, The Peano curve and counting occurrences of some patterns, arXiv:math/0210268 [math.CO], 2002. Section 3 lemma 1, d_2^n = a(n-1).
- Sergey Kitaev, Toufik Mansour, and Patrice Séébold, Generating the Peano curve and counting occurrences of some patterns, Journal of Automata, Languages and Combinatorics, volume 9, number 4, 2004, pages 439-455. Also at ResearchGate. Section 4, |P_n|_r = a(n-1).
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
See the formula section for the relationships with
A000120,
A000217,
A000225,
A002378,
A007582,
A020522,
A023416,
A030101,
A063376,
A070939,
A083420,
A279396.
-
[4^n + 2^n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
-
LinearRecurrence[{7,-14,8},{1,5,19},30] (* Harvey P. Dale, Sep 06 2015 *)
-
a(n)=4^n+2^n-1; \\ Charles R Greathouse IV, Sep 24 2015
-
def A099393(n): return ((1<Chai Wah Wu, Mar 10 2025
A096053
a(n) = (3*9^n - 1)/2.
Original entry on oeis.org
1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681
Offset: 0
A289481
Number A(n,k) of Dyck paths of semilength k*n and height n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 7, 1, 0, 1, 1, 31, 57, 1, 0, 1, 1, 127, 1341, 484, 1, 0, 1, 1, 511, 26609, 59917, 4199, 1, 0, 1, 1, 2047, 497845, 5828185, 2665884, 36938, 1, 0, 1, 1, 8191, 9096393, 517884748, 1244027317, 117939506, 328185, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 7, 31, 127, 511, ...
0, 1, 57, 1341, 26609, 497845, ...
0, 1, 484, 59917, 5828185, 517884748, ...
0, 1, 4199, 2665884, 1244027317, 517500496981, ...
Columns k=0..10 give:
A000007,
A000012,
A268316,
A289473,
A289474,
A289475,
A289476,
A289477,
A289478,
A289479,
A289480.
-
b:= proc(x, y, k) option remember;
`if`(x=0, 1, `if`(y>0, b(x-1, y-1, k), 0)+
`if`(y < min(x-1, k), b(x-1, y+1, k), 0))
end:
A:= (n, k)-> `if`(n=0, 1, b(2*n*k, 0, n)-b(2*n*k, 0, n-1)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, k_]:=b[x, y, k]=If[x==0, 1, If[y>0, b[x - 1, y - 1, k], 0] + If[yIndranil Ghosh, Jul 07 2017, after Maple code *)
A147590
Numbers whose binary representation is the concatenation of 2n-1 digits 1 and n-1 digits 0.
Original entry on oeis.org
1, 14, 124, 1016, 8176, 65504, 524224, 4194176, 33554176, 268434944, 2147482624, 17179867136, 137438949376, 1099511619584, 8796093005824, 70368744144896, 562949953355776, 4503599627239424, 36028797018701824, 288230376151187456
Offset: 1
1_10 is 1_2;
14_10 is 1110_2;
124_10 is 1111100_2;
1016_10 is 1111111000_2.
-
List([1..25], n-> 2^(n-2)*(4^n-2)); # G. C. Greubel, Jul 27 2019
-
[8^n/4-2^(n-1): n in [1..25]]; // Vincenzo Librandi, Jul 27 2019
-
seq(8^n/4-2^(n-1),n=1..25); # Nathaniel Johnston, Apr 30 2011
-
LinearRecurrence[{10,-16},{1,14},30] (* Harvey P. Dale, Oct 10 2014 *)
Table[8^n / 4 - 2^(n - 1), {n, 25}] (* Vincenzo Librandi, Jul 27 2019 *)
-
vector(25, n, 2^(n-2)*(4^n-2)) \\ G. C. Greubel, Jul 27 2019
-
[2^(n-2)*(4^n-2) for n in (1..25)] # G. C. Greubel, Jul 27 2019
A164908
a(n) = (3*4^n - 0^n)/2.
Original entry on oeis.org
1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata.
- Index entries for linear recurrences with constant coefficients, signature (4).
Equals 1 followed by
A002023 (6*4^n). Essentially the same as
A084509.
-
[ (3*4^n-0^n)/2: n in [0..22] ];
-
a[n_]:=(MatrixPower[{{2,2},{2,2}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
Join[{1},(3*4^Range[25])/2] (* or *) Join[{1},NestList[4#&,6,25]] (* Harvey P. Dale, Feb 14 2012 *)
-
a(n)=3*4^n\2 \\ Charles R Greathouse IV, Oct 12 2015
-
print([int(6*4**(n-1)) for n in range(50)]) # Karl V. Keller, Jr., Aug 30 2021
A101622
A Horadam-Jacobsthal sequence.
Original entry on oeis.org
0, 1, 6, 13, 30, 61, 126, 253, 510, 1021, 2046, 4093, 8190, 16381, 32766, 65533, 131070, 262141, 524286, 1048573, 2097150, 4194301, 8388606, 16777213, 33554430, 67108861, 134217726, 268435453, 536870910, 1073741821, 2147483646, 4294967293, 8589934590
Offset: 0
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Jacobsthal Representation Numbers, Fib Quart., Vol. 34, No. 1 (1996), pp. 40-54.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences. [_Wolfdieter Lang_, Oct 18 2010]
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Stephen Wolfram, A New Kind of Science.
- Wolfram Research, Wolfram Atlas of Simple Programs.
- Index entries for sequences related to cellular automata.
- Index to 2D 5-Neighbor Cellular Automata.
- Index to Elementary Cellular Automata.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
-
[(2^(n+2)+(-1)^n-5)/2: n in [0..35]]; // Vincenzo Librandi, Aug 12 2011
-
LinearRecurrence[{2,1,-2},{0,1,6},40] (* Harvey P. Dale, Jul 08 2014 *)
-
concat(0, Vec(x*(1+4*x)/((1-x)*(1+x)*(1-2*x)) + O(x^30))) \\ Colin Barker, Mar 28 2017
A331891
Negabinary palindromes: nonnegative numbers whose negabinary expansion (A039724) is palindromic.
Original entry on oeis.org
0, 1, 3, 5, 7, 11, 17, 21, 23, 31, 43, 51, 57, 65, 77, 85, 87, 103, 127, 143, 155, 171, 195, 211, 217, 233, 257, 273, 285, 301, 325, 341, 343, 375, 423, 455, 479, 511, 559, 591, 603, 635, 683, 715, 739, 771, 819, 851, 857, 889, 937, 969, 993, 1025, 1073, 1105, 1117
Offset: 1
5 is a term since its negabinary representation is 101 which is palindromic.
-
negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; Select[Range[0, 1200], PalindromeQ @ negabin[#] &]
A140529
a(n) = 6*4^n - 1.
Original entry on oeis.org
5, 23, 95, 383, 1535, 6143, 24575, 98303, 393215, 1572863, 6291455, 25165823, 100663295, 402653183, 1610612735, 6442450943, 25769803775, 103079215103, 412316860415, 1649267441663, 6597069766655, 26388279066623, 105553116266495
Offset: 0
A099856
Expansion of (1+3*x)/(1-3*x).
Original entry on oeis.org
1, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974, 45753584909922
Offset: 0
-
CoefficientList[Series[(1+3x)/(1-3x),{x,0,30}],x] (* or *) Join[{1}, NestList[3#&,6,30]] (* Harvey P. Dale, Nov 08 2011 *)
-
Vec((1+3*x)/(1-3*x) + O(x^40)) \\ Michel Marcus, Dec 11 2015
A140253
a(2*n) = 2*(2*4^(n-1)-1) and a(2*n-1) = 2*4^(n-1)-1.
Original entry on oeis.org
-1, 1, 2, 7, 14, 31, 62, 127, 254, 511, 1022, 2047, 4094, 8191, 16382, 32767, 65534, 131071, 262142, 524287, 1048574, 2097151, 4194302, 8388607, 16777214, 33554431, 67108862, 134217727, 268435454, 536870911
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2).
-
import Data.List (transpose)
a140253 n = a140253_list !! n
a140253_list = -1 : concat
(transpose [a083420_list, map (* 2) a083420_list])
-- Reinhard Zumkeller, Dec 22 2015
-
A140253:=proc(n): if type(n, odd) then 2*4^(((n+1)/2)-1)-1 else 2*(2*4^((n/2)-1)-1) fi: end: seq(A140253(n),n=0..29); # Johannes W. Meijer, Jun 24 2011
-
Table[(2^(n+1) - 3 + (-1)^(n+1))/2, {n, 0, 30}] (* Jean-François Alcover, Jun 05 2017 *)
Comments