cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A075415 Squares of A002280 or numbers (666...6)^2.

Original entry on oeis.org

0, 36, 4356, 443556, 44435556, 4444355556, 444443555556, 44444435555556, 4444444355555556, 444444443555555556, 44444444435555555556, 4444444444355555555556, 444444444443555555555556, 44444444444435555555555556, 4444444444444355555555555556, 444444444444443555555555555556
Offset: 0

Views

Author

Michael Taylor (michael.taylor(AT)vf.vodafone.co.uk), Sep 14 2002

Keywords

Comments

A transformation of the Wonderful Demlo numbers (A002477).

Examples

			a(2) = 66^2 = 4356.
From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 36 = 9 * 4;
n=2: ................... 4356 = 99 * 44;
n=3: ................. 443556 = 999 * 444;
n=4: ............... 44435556 = 9999 * 4444;
n=5: ............. 4444355556 = 99999 * 44444;
n=6: ........... 444443555556 = 999999 * 444444;
n=7: ......... 44444435555556 = 9999999 * 4444444;
n=8: ....... 4444444355555556 = 99999999 * 44444444;
n=9: ..... 444444443555555556 = 999999999 * 444444444. (End)
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,6]]^2,{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{0,36,4356},20] (* Harvey P. Dale, May 20 2021 *)

Formula

a(n) = A002280(n)^2 = (6*A002275(n))^2 = 36*A002275(n)^2.
a(n) = (6*(10^n-1)/9)^2 = (4/9)*(10^(2*n) - 2*10^n + 1), which is n-1 4's, followed by a 3, n-1 5's and a 6. - Ignacio Larrosa Cañestro, Feb 26 2005
From Reinhard Zumkeller, May 31 2010: (Start)
a(n) = ((A002278(n-1)*10 + 3)*10^(n-1) + A002279(n-1))*10 + 6 for n>0.
a(n) = A002283(n)*A002278(n). (End)
G.f.: 36*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Arkadiusz Wesolowski, Dec 26 2011
From Elmo R. Oliveira, Jul 27 2025: (Start)
E.g.f.: 4*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 36*A002477(n). (End)

Extensions

Edited by Alois P. Heinz, Aug 21 2019 (merged with A102794, submitted by Richard C. Schroeppel, Feb 26 2005)

A052041 Squares lacking the digit zero in their decimal expansion.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2116, 2916, 3136, 3249, 3364, 3481, 3721, 3844, 3969, 4225, 4356
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite: see A075415 or A102807 for a constructive proof.
Intersection of A052382 and A000290; A168046(a(n))*A010052(a(n))=1. - Reinhard Zumkeller, Dec 01 2009

Crossrefs

Programs

  • Mathematica
    Select[Range[66]^2, FreeQ[IntegerDigits[#],0]==True &] (* Jayanta Basu, May 25 2013 *)

Formula

a(n) = A052040(n)^2. - R. J. Mathar, Jul 23 2025

A093137 Expansion of (1-7*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 4, 34, 334, 3334, 33334, 333334, 3333334, 33333334, 333333334, 3333333334, 33333333334, 333333333334, 3333333333334, 33333333333334, 333333333333334, 3333333333333334, 33333333333333334, 333333333333333334, 3333333333333333334, 33333333333333333334
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 3*A001045(3n)/3+(-1)^n. Partial sums of A093138. A convex combination of 10^n and 1. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1,1+k,1+11k,1+111k,... This is the case for k=3.
a(n) is the number of n-length sequences of decimal digits whose sum is divisible by 3. - Geoffrey Critzer, Jan 18 2014
This sequence appears in a family of curious cubic identities based on the Armstrong number 407 = A005188(13). See the formula section. For the analog identities based on 153 = A005188(10) see a comment on A246057 with the van der Poorten et al. reference and A281857. For those based on 370 = A005188(11) see A067275, A002277 and A281858. - Wolfdieter Lang, Feb 08 2017

Examples

			a(1)^2 = 16
a(2)^2 = 1156
a(3)^2 = 111556
a(4)^2 = 11115556
a(5)^2 = 1111155556
a(6)^2 = 111111555556
a(7)^2 = 11111115555556
a(8)^2 = 1111111155555556
a(9)^2 = 111111111555555556, etc... (see A102807). - _Philippe Deléham_, Oct 03 2011
Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ... - _Wolfdieter Lang_, Feb 08 2017
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 3334 at p. 168.

Crossrefs

Programs

  • Mathematica
    nn=20; r=Solve[{s==4x s+3 x a+3x b+1,a==4x a+3x s+3x b,b==4x b+3x s+3x a},{s,a,b}]; CoefficientList[Series[s/.r,{x,0,nn}],x] (* Geoffrey Critzer, Jan 18 2014 *)
    Table[3*10^n/9 + 6/9, {n, 0, 20}] (* or *) NestList[10 # - 6 &, 1, 20] (* Michael De Vlieger, Feb 08 2017 *)
    LinearRecurrence[{11,-10},{1,4},20] (* Harvey P. Dale, Oct 07 2017 *)
  • PARI
    Vec((1-7*x)/((1-x)*(1-10*x)) + O (x^30)) \\ Michel Marcus, Feb 09 2017

Formula

a(n) = 3*10^n/9 + 6/9.
a(n) = 10*a(n-1)-6 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n)^3 + 0(n)^3 + A067275(n+1)^3 = concatenation(a(n), 0(n), A067275(n+1)) = A281859(n), where 0(n) denotes n 0's, n >= 1. - Wolfdieter Lang, Feb 08 2017
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(x)*(exp(9*x) + 2)/3.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. (End)

A104264 Number of n-digit squares with no zero digits.

Original entry on oeis.org

3, 6, 19, 44, 136, 376, 1061, 2985, 8431, 24009, 67983, 193359, 549697, 1563545, 4446173, 12650545, 35999714, 102439796, 291532841, 829634988, 2360947327, 6719171580, 19122499510, 54423038535, 154888366195
Offset: 1

Views

Author

Reinhard Zumkeller and Ron Knott, Feb 26 2005

Keywords

Comments

Comments from David W. Wilson, Feb 26 2005: (Start)
"There are approximately s(d) = (10^d)^(1/2) - (10^(d-1))^(1/2) d-digit squares. A random d-digit number has the probability p(d) = (9/10)^(d-1) of being zeroless (exponent d-1 as opposed to d because the first digit is not zero). So we expect p(d)s(d) zeroless d-digit squares.
"For d = 1 through 12, we get (truncating): 1, 5, 15, 44, 127, 363, 1034, 2943, 8377, 23841, 67854, 193117, ... The elements grow approximately geometrically with limit ratio (9/10)*10^(1/2) = 2.846+.
"The same naive estimate can easily be generalize to k-th powers, giving the estimate s(d) = (10^d)^(1/k) - (10^(d-1))^(1/k) for d-digit k-th powers. p(d) remains the same. The resulting estimates have ratio (9/10)*10^(1/k).
"We should expect an infinite number of zeroless k-th powers when this ratio is >= 1, which it is for k <= 21. For k >= 22, the ratio is < 1 and we should expect a finite number of zeroless k-th powers." (End)

Examples

			a(3) = #{121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961} = 19.
		

Crossrefs

Programs

  • Python
    def aupton(terms):
      c, k, kk = [0 for i in range(terms)], 1, 1
      while kk < 10**terms:
        s = str(kk)
        c[len(s)-1], k, kk = c[len(s)-1] + (s.count('0')==0), k+1, kk + 2*k + 1
      return c
    print(aupton(14)) # Michael S. Branicky, Mar 06 2021

Extensions

a(14)-a(18) from Donovan Johnson, Nov 05 2009
a(19)-a(21) from Donovan Johnson, Mar 23 2011
a(22)-a(25) from Donovan Johnson, Jan 29 2013

A104265 Smallest n-digit square with no zero digits.

Original entry on oeis.org

1, 16, 121, 1156, 11236, 111556, 1115136, 11115556, 111112681, 1111155556, 11111478921, 111111555556, 1111118377216, 11111115555556, 111111226346761, 1111111155555556, 11111112515384644, 111111111555555556, 1111111112398242916, 11111111115555555556, 111111111113333185156, 1111111111155555555556
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2005

Keywords

Examples

			a(3) = Min{121, 144, 169, 196, ....} = 121.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = Ceiling[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k++ ]; k^2]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Mar 02 2005 *)
    snds[n_]:=Module[{c=Ceiling[Sqrt[FromDigits[Join[PadRight[{},n-1,1], {0}]]]]^2},While[DigitCount[c,10,0]>0,c=(1+Sqrt[c])^2];c]; Array[ snds,22] (* Harvey P. Dale, Jun 12 2020 *)
  • Python
    from sympy import integer_nthroot
    def A104265(n):
        m, a = integer_nthroot((10**n-1)//9,2)
        if not a:
            m += 1
        k = m**2
        while '0' in str(k):
            m += 1
            k += 2*m-1
        return k # Chai Wah Wu, Mar 24 2020

Formula

From Chai Wah Wu, Mar 24 2020: (Start)
a(n) >= (10^n-1)/9.
a(2n) = (10^n+2)^2/9 = A102807(n). Proof: the smallest 2n-digit number without zero digits is (10^(2n)-1)/9. ((10^n-1)/3)^2 = (10^(2n)-2*10^n+1)/9 < (10^(2n)-1)/9 for n >= 1. Thus a(2n) > ((10^n-1)/3)^2. The next square is ((10^n+2)/3)^2 = (10^(2n)-1)/9 + 4*(10^(n)-1)/9 + 1, i.e. it is n 1's followed by n-1 5's followed by the digit 6, and has no zero digits.
(End)

Extensions

More terms from Robert G. Wilson v, Mar 02 2005
Two more terms from Jon E. Schoenfield, Mar 29 2015
a(21)-a(22) from Chai Wah Wu, Mar 24 2020

A309907 a(n) is the square of the number consisting of one 1 and n 3's: (133...3)^2.

Original entry on oeis.org

1, 169, 17689, 1776889, 177768889, 17777688889, 1777776888889, 177777768888889, 17777777688888889, 1777777776888888889, 177777777768888888889, 17777777777688888888889, 1777777777776888888888889, 177777777777768888888888889, 17777777777777688888888888889
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2019

Keywords

Comments

All terms are zeroless (elements of A052382).

Crossrefs

Programs

  • Maple
    a:= n-> parse(cat(1, 3$n))^2:
    seq(a(n), n=0..18);
  • PARI
    {a(n) = ((4*10^n-1)/3)^2} \\ Seiichi Manyama, Aug 23 2019

Formula

G.f.: -(40*x^2+58*x+1)/((x-1)*(100*x-1)*(10*x-1)).
a(n) = A097166(n)^2 = ((4*10^n-1)/3)^2. - Seiichi Manyama, Aug 23 2019

A034979 Smallest square starting with a string of n 1's.

Original entry on oeis.org

1, 1156, 111556, 11115556, 111112681, 111111555556, 11111115555556, 1111111155555556, 111111111555555556, 11111111115555555556, 111111111113333185156, 11111111111122500004921, 11111111111115555555555556, 111111111111119590793871025, 11111111111111115805344390916, 11111111111111115805344390916, 111111111111111115889741773581604, 11111111111111111167337156002376484, 11111111111111111115555555555555555556, 1111111111111111111155555555555555555556
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1998

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local x,k,s;
      x:= (10^n-1)/9;
      for k from 0 do
        s:= ceil(sqrt(10^k*x))^2;
        if s < (x+1)*10^k then return s fi
      od
    end proc:
    map(f, [$1..20]); # Robert Israel, May 31 2023

Formula

a(n) <= A102807(n). - Robert Israel, May 31 2023

Extensions

More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 23 2001

A093140 Expansion of (1-6*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 5, 45, 445, 4445, 44445, 444445, 4444445, 44444445, 444444445, 4444444445, 44444444445, 444444444445, 4444444444445, 44444444444445, 444444444444445, 4444444444444445, 44444444444444445, 444444444444444445, 4444444444444444445, 44444444444444444445, 444444444444444444445
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 4*A001045(3n)/3+(-1)^n. Partial sums of A093141. A convex combination of 10^n and 1. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1, 1+k, 1+11k, 1+111k, ... This is the case for k=4.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-6x)/((1-x)(1-10x)),{x,0,30}],x] (* or *) LinearRecurrence[{11,-10},{1,5},30] (* or *) Join[{1},Table[FromDigits[PadLeft[{5},n,4]],{n,30}]] (* Harvey P. Dale, Dec 17 2022 *)

Formula

G.f.: (1-6*x)/((1-x)*(1-10*x)).
a(n) = 4*10^n/9 + 5/9.
a(n+1) = (A102807(n+1)-A002477(n))/((Sum_{i=1..n} 2*10^i) + 3). [Roger L. Bagula, May 22 2010]
a(n) = 10*a(n-1)-5 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n) = 11*a(n-1)-10*a(n-2). - Wesley Ivan Hurt, May 20 2021
E.g.f.: exp(x)*(4*exp(9*x) + 5)/9. - Elmo R. Oliveira, Aug 17 2024

Extensions

a(19)-a(22) from Elmo R. Oliveira, Aug 17 2024

A177769 a(n) = 111*n.

Original entry on oeis.org

111, 222, 333, 444, 555, 666, 777, 888, 999, 1110, 1221, 1332, 1443, 1554, 1665, 1776, 1887, 1998, 2109, 2220, 2331, 2442, 2553, 2664, 2775, 2886, 2997, 3108, 3219, 3330, 3441, 3552, 3663, 3774, 3885, 3996, 4107, 4218, 4329, 4440, 4551, 4662, 4773, 4884, 4995, 5106
Offset: 1

Views

Author

Paul Curtz, May 13 2010

Keywords

Comments

The reference contains also sequences A102807, A109344, A075415, and A109492.

Crossrefs

Programs

Formula

G.f.: 111*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2).
a(n) = a(n-1) + 111.
E.g.f.: 111*x*exp(x). - Stefano Spezia, Sep 15 2023

A309827 a(n) is the square of the number consisting of one 1 and n 6's: (166...6)^2.

Original entry on oeis.org

1, 256, 27556, 2775556, 277755556, 27777555556, 2777775555556, 277777755555556, 27777777555555556, 2777777775555555556, 277777777755555555556, 27777777777555555555556, 2777777777775555555555556, 277777777777755555555555556, 27777777777777555555555555556
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2019

Keywords

Comments

All terms are zeroless (element of A052382).

Crossrefs

((k*10^n+3-k)/3)^2: A102807 (k=1), A109344 (k=2), A098608 (k=3), A309907 (k=4), this sequence (k=5).

Programs

  • Mathematica
    LinearRecurrence[{111,-1110,1000},{1,256,27556},20] (* Harvey P. Dale, Dec 13 2021 *)
  • PARI
    {a(n) = ((5*10^n-2)/3)^2}
    
  • PARI
    N=20; x='x+O('x^N); Vec((1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)))

Formula

a(n) = A246057(n)^2 = ((5*10^n-2)/3)^2.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
G.f.: (1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)).
Showing 1-10 of 12 results. Next