cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A051451 a(n) = lcm{ 1,2,...,x } where x is the n-th prime power (A000961).

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 840, 2520, 27720, 360360, 720720, 12252240, 232792560, 5354228880, 26771144400, 80313433200, 2329089562800, 72201776446800, 144403552893600, 5342931457063200, 219060189739591200, 9419588158802421600, 442720643463713815200
Offset: 1

Views

Author

Labos Elemer, Dec 11 1999

Keywords

Comments

This sequence is the list of distinct terms in A003418.
This may be the "smallest" product-based numbering system that has a unique finite representation for every rational number. In this base 1/2 = .1 (1*1/2), 1/3 = .02 (0*1/2 + 2*1/6), 1/5 = .0102 (0*1/2 + 1*1/6 + 0*1/12 + 2*1/60). - Russell Easterly, Oct 03 2001
Partial products of A025473, prime roots of the prime powers.
Conjecture: For every n > 2, there exists a twin prime pair [p, p+2] with p < a(n), such that [a(n)+p, a(n)+p+2] is also a twin prime pair. Example: For n=6 we can take p=11, because for a(6) = 420 is [420+11, 420+13] = [431, 433] also a twin prime pair. This has been verified for 2 < n <= 200. - Mike Winkler, Sep 12 2013, May 09 2014
The prime powers give all values, and do so uniquely. (Other positive integers give repeated values.) - Daniel Forgues, Apr 28 2014
"LCM numeral system": a(n+1) is place value for index n, n >= 0; a(-n+1) is (place value)^(-1) for index n, n < 0. - Daniel Forgues, May 03 2014
Repetitions removed from slowest growing integer series A003418 with integers > 0 converging to 0 in the ring Z^ of profinite integers. Both A003418 and the present sequence may be used as a replacement for the usual "factorial system" for coding profinite integers. - Herbert Eberle, May 01 2016
Every term of this sequence is deeply composite (A095848). Moreover, the terms of this sequence are the "special deeply composite numbers", in analogy to the special highly composite numbers (A106037). A special highly composite number is a highly composite number (A002182) that divides every larger highly composite number. In the same fashion, the deeply composite numbers that divide every larger deeply composite number are just the terms of this sequence. This follows from the formula for deeply composite numbers. - Hal M. Switkay, Jun 08 2021
From Bill McEachen, Apr 28 2023: (Start)
Every term belongs to A025487.
Conjecture: Every term = A001013(j)*A129912(k) for some j,k. (End)

Examples

			lcm[1,...,n] is 2520 for n=9 and 10. The smallest such n's are always prime powers, where A003418 jumps.
		

Crossrefs

Programs

  • Haskell
    a051451 n = a051451_list !! (n-1)
    a051451_list = scanl1 lcm a000961_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Mathematica
    f[n_] := LCM @@ Range@ n; Union@ Array[f, 41] (* Robert G. Wilson v, Jul 11 2011 *)
    Join[{1},LCM@@Range[#]&/@Select[Range[50],PrimePowerQ]] (* Harvey P. Dale, Feb 06 2020 *)
  • PARI
    do(lim)=my(v=primes(primepi(lim)), u=List([1])); forprime(p=2, sqrtint(lim\1), for(e=2, log(lim+.5)\log(p), listput(u, p^e))); v=vecsort(concat(v, Vec(u))); for(i=2,#v,v[i]=lcm(v[i],v[i-1])); v \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {lim=100; n=1; i=1; j=1; until(n==lim, until(a!=j, a=lcm(j,i+1); i++;); j=a; n++; print(n" "a););} \\ Mike Winkler, Sep 07 2013
    
  • PARI
    x=1;for(i=1,100,if(omega(i)==1,x*=factor(i)[1,1])) \\ Florian Baur, Apr 11 2022
    
  • Python
    from math import prod
    from sympy import primepi, integer_nthroot, integer_log, primerange
    def A051451(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return prod(p**integer_log(m, p)[0] for p in primerange(m+1)) # Chai Wah Wu, Aug 15 2024
  • Sage
    def A051451_list(n):
        a = [ ]
        L = [1]
        for i in (1..n):
           a.append(i)
           if (is_prime_power(i) == 1):
               L.append(lcm(a))
        return(L)
    A051451_list(42) # Jani Melik, Jul 07 2022
    

Formula

a(n) = A003418(A000961(n)).
a(n) = A208768(n) + 1. - Reinhard Zumkeller, Mar 01 2012
Sum_{n>=1} 1/a(n) = A064890. - Amiram Eldar, Nov 16 2020

Extensions

Minor edits by Ray Chandler, Jan 16 2009

A005235 Fortunate numbers: least m > 1 such that m + prime(n)# is prime, where p# denotes the product of all primes <= p.

Original entry on oeis.org

3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307, 331
Offset: 1

Views

Author

Keywords

Comments

Reo F. Fortune conjectured that a(n) is always prime.
You might be searching for Fortunate Primes, which is an alternative name for this sequence. It is not the official name yet, because it is possible, although unlikely, that not all the terms are primes. - N. J. A. Sloane, Sep 30 2020
The first 500 terms are primes. - Robert G. Wilson v. The first 2000 terms are primes. - Joerg Arndt, Apr 15 2013
The strong form of Cramér's conjecture implies that a(n) is a prime for n > 1618, as previously noted by Golomb. - Charles R Greathouse IV, Jul 05 2011
a(n) is the smallest m such that m > 1 and A002110(n) + m is prime. For every n, a(n) must be greater than prime(n+1) - 1. - Farideh Firoozbakht, Aug 20 2003
If a(n) < prime(n+1)^2 then a(n) is prime. According to Cramér's conjecture a(n) = O(prime(n)^2). - Thomas Ordowski, Apr 09 2013
Conjectures from Pierre CAMI, Sep 08 2017: (Start)
If all terms are prime, then lim_{N->oo} (Sum_{n=1..N} primepi(a(n))) / (Sum_{n=1..N} n) = 3/2, and primepi(a(n))/n < 6 for all n.
Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = Pi/2.
a(n)/prime(n) < 8 for all n. (End)
Conjecture: Limit_{N->oo} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = 3/2. - Alain Rocchelli, Dec 24 2022
The name "Fortunate numbers" was coined by Golomb (1981) after the New Zealand social anthropologist Reo Franklin Fortune (1903 - 1979). According to Golomb, Fortune's conjecture first appeared in print in Martin Gardner's Mathematical Games column in 1980. - Amiram Eldar, Aug 25 2020

Examples

			a(4) = 13 because P_4# = 2*3*5*7 = 210, plus one is 211, the next prime is 223 and the difference between 210 and 223 is 13.
		

References

  • Martin Gardner, The Last Recreations, Chapter 12: Strong Laws of Small Primes, Springer-Verlag, 1997, pp. 191-205, especially pp. 194-195.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 1994, Section A2, p. 11.
  • Stephen P. Richards, A Number For Your Thoughts, 1982, p. 200.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 114-115.
  • David Wells, Prime Numbers: The Most Mysterious Figures In Math, Hoboken, New Jersey: John Wiley & Sons (2005), pp. 108-109.

Crossrefs

Programs

  • Haskell
    a005235 n = head [m | m <- [3, 5 ..], a010051'' (a002110 n + m) == 1]
    -- Reinhard Zumkeller, Apr 02 2014
    
  • Maple
    Primorial:= 2:
    p:= 2:
    A[1]:= 3:
    for n from 2 to 100 do
      p:= nextprime(p);
      Primorial:= Primorial * p;
      A[n]:= nextprime(Primorial+p+1)-Primorial;
    od:
    seq(A[n],n=1..100); # Robert Israel, Dec 02 2015
  • Mathematica
    NPrime[n_Integer] := Module[{k}, k = n + 1; While[! PrimeQ[k], k++]; k]; Fortunate[n_Integer] := Module[{p, q}, p = Product[Prime[i], {i, 1, n}] + 1; q = NPrime[p]; q - p + 1]; Table[Fortunate[n], {n, 60}]
    r[n_] := (For[m = (Prime[n + 1] + 1)/2, ! PrimeQ[Product[Prime[k], {k, n}] + 2 m - 1], m++]; 2 m - 1); Table[r[n], {n, 60}]
    FN[n_] := Times @@ Prime[Range[n]]; Table[NextPrime[FN[k] + 1] - FN[k], {k, 60}] (* Jayanta Basu, Apr 24 2013 *)
    NextPrime[#]-#+1&/@(Rest[FoldList[Times,1,Prime[Range[60]]]]+1) (* Harvey P. Dale, Dec 15 2013 *)
  • PARI
    a(n)=my(P=prod(k=1,n,prime(k)));nextprime(P+2)-P \\ Charles R Greathouse IV, Jul 15 2011; corrected by Jean-Marc Rebert, Jul 28 2015
    
  • Python
    from sympy import nextprime, primorial
    def a(n): psharp = primorial(n); return nextprime(psharp+1) - psharp
    print([a(n) for n in range(1, 59)]) # Michael S. Branicky, Jan 15 2022
  • Sage
    def P(n): return prod(nth_prime(k) for k in range(1, n + 1))
    it = (P(n) for n in range(1, 31))
    print([next_prime(Pn + 2) - Pn for Pn in it]) # F. Chapoton, Apr 28 2020
    

Formula

If x(n) = 1 + Product_{i=1..n} prime(i), q(n) = least prime > x(n), then a(n) = q(n) - x(n) + 1.
a(n) = 1 + the difference between the n-th primorial plus one and the next prime.
a(n) = A035345(n) - A002110(n). - Jonathan Sondow, Dec 02 2015

A283477 If 2n = 2^e1 + 2^e2 + ... + 2^ek [e1 .. ek distinct], then a(n) = A002110(e1) * A002110(e2) * ... * A002110(ek).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 180, 360, 210, 420, 1260, 2520, 6300, 12600, 37800, 75600, 2310, 4620, 13860, 27720, 69300, 138600, 415800, 831600, 485100, 970200, 2910600, 5821200, 14553000, 29106000, 87318000, 174636000, 30030, 60060, 180180, 360360, 900900, 1801800, 5405400, 10810800, 6306300, 12612600, 37837800, 75675600
Offset: 0

Views

Author

Antti Karttunen, Mar 16 2017

Keywords

Comments

a(n) = Product of distinct primorials larger than one, obtained as Product_{i} A002110(1+i), where i ranges over the zero-based positions of the 1-bits present in the binary representation of n.
This sequence can be represented as a binary tree. Each child to the left is obtained as A283980(k), and each child to the right is obtained as 2*A283980(k), when their parent contains k:
1
|
...................2....................
6 12
30......../ \........60 180......../ \......360
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
210 420 1260 2520 6300 12600 37800 75600
etc.

Crossrefs

Programs

  • Mathematica
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e == 1 :> {Times @@ Prime@ Range@ PrimePi@ p, e}] &[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2]], {n, 0, 43}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A283477(n) = prod(i=0,exponent(n),if(bittest(n,i),vecprod(primes(1+i)),1)) \\ Edited by M. F. Hasler, Nov 11 2019
    
  • Python
    from sympy import prime, primerange, factorint
    from operator import mul
    from functools import reduce
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a108951(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
    def a(n): return a108951(a019565(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
    
  • Python
    from sympy import primorial
    from math import prod
    def A283477(n): return prod(primorial(i) for i, b in enumerate(bin(n)[:1:-1],1) if b =='1') # Chai Wah Wu, Dec 08 2022
  • Scheme
    (define (A283477 n) (A108951 (A019565 n)))
    ;; Recursive "binary tree" implementation, using memoization-macro definec:
    (definec (A283477 n) (cond ((zero? n) 1) ((even? n) (A283980 (A283477 (/ n 2)))) (else (* 2 (A283980 (A283477 (/ (- n 1) 2)))))))
    

Formula

a(0) = 1; a(2n) = A283980(a(n)), a(2n+1) = 2*A283980(a(n)).
Other identities. For all n >= 0 (or for n >= 1):
a(2n+1) = 2*a(2n).
a(n) = A108951(A019565(n)).
A097248(a(n)) = A283475(n).
A007814(a(n)) = A051903(a(n)) = A000120(n).
A001221(a(n)) = A070939(n).
A001222(a(n)) = A029931(n).
A048675(a(n)) = A005187(n).
A248663(a(n)) = A006068(n).
A090880(a(n)) = A283483(n).
A276075(a(n)) = A283984(n).
A276085(a(n)) = A283985(n).
A046660(a(n)) = A124757(n).
A056169(a(n)) = A065120(n). [seems to be]
A005361(a(n)) = A284001(n).
A072411(a(n)) = A284002(n).
A007913(a(n)) = A284003(n).
A000005(a(n)) = A284005(n).
A324286(a(n)) = A324287(n).
A276086(a(n)) = A324289(n).
A267263(a(n)) = A324341(n).
A276150(a(n)) = A324342(n). [subsequences in the latter are converging towards this sequence]
G.f.: Product_{k>=0} (1 + prime(k + 1)# * x^(2^k)), where prime()# = A002110. - Ilya Gutkovskiy, Aug 19 2019

Extensions

More formulas and the binary tree illustration added by Antti Karttunen, Mar 19 2017
Four more linking formulas added by Antti Karttunen, Feb 25 2019

A317090 Positive integers whose prime multiplicities span an initial interval of positive integers.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

The first term in this sequence but absent from A179983 is 180.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 6, 78, 820, 8379, 84440, 846646, 8473868, 84763404, 847714834, 8477408261, ... . Apparently, the asymptotic density of this sequence exists and equals 0.8477... . - Amiram Eldar, Aug 04 2024

Crossrefs

Subsequences: A129912\{1}, A179983\{1}.
Subsequence of A337533.

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Select[Range[2,100],normalQ[FactorInteger[#][[All,2]]]&]
  • PARI
    is(k) = {my(e = Set(factor(k)[,2])); k > 1 && vecmax(e) == #e;} \\ Amiram Eldar, Aug 04 2024

A212167 Numbers k such that the maximum exponent in its prime factorization is not greater than the number of positive exponents (A051903(k) <= A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212166 and A212168. Includes numerous subsequences that are subsequences of neither A212166 nor A212168.

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although the 1 is often left implicit).  2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 does not belong to the sequence. But 10 = 2^1*5^1 and 20 = 2^2*5^1 belong, since the maximal exponents in their prime factorizations are 1 and 2 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212164. See also A212165.
Subsequences (none of which are subsequences of A212166 or A212168) include A002110, A051451, A129912, A179983, A181826, A181827, A182862, A182863. Includes all members of A003418.

Programs

  • Haskell
    import Data.List (findIndices)
    a212167 n = a212167_list !! (n-1)
    a212167_list = map (+ 1) $ findIndices (>= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    isA212167 := proc(n)
        simplify(A051903(n) <= A001221(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA212167(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 06 2021
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] <= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) <= #e; } \\ Amiram Eldar, Sep 09 2024

Formula

A225230(a(n)) >= 0; A050326(a(n)) > 0. - Reinhard Zumkeller, May 03 2013

A181826 Members of A025487 such that A025487(n) >= A181822(n).

Original entry on oeis.org

1, 2, 6, 12, 30, 36, 60, 120, 180, 210, 360, 420, 840, 900, 1260, 1680, 1800, 2310, 2520, 4620, 5040, 5400, 6300, 7560, 9240, 12600, 13860, 18480, 25200, 27000, 27720, 30030, 36960, 37800, 44100, 55440, 60060, 69300, 75600, 83160, 88200, 110880, 120120
Offset: 1

Views

Author

Matthew Vandermast, Dec 08 2010

Keywords

Comments

Includes all members of A003418, A051451 and A129912.

Crossrefs

Formula

Union of A181825 and A181827.

A117825 Distance from n-th highly composite number (cf. A002182) to nearest prime.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 11, 13, 1, 11, 1, 17, 1, 1, 13, 13, 1, 1, 17, 1, 17, 1, 1, 17, 17, 17, 1, 1, 19, 37, 37, 1, 17, 23, 1, 29, 1, 1, 19, 1, 19, 23, 1, 19, 31, 1, 19, 1, 1, 1, 1, 23, 1, 29, 23, 23, 1, 23, 71, 37, 1, 1, 31, 1, 23, 53, 1, 31
Offset: 1

Views

Author

Bill McEachen, May 01 2006

Keywords

Comments

a) Conjecture: entries > 1 will always be prime. The entry will be larger than the largest prime factor of the highly composite number.
b) Will 1 always be the most common entry?
c) While a prime may always be located close to each highly composite number, is the converse false?
d) Is there always a prime between successive highly composite numbers?
From Antti Karttunen, Feb 26 2019: (Start)
The second sentence of point (a) follows as both gcd(n, A151799(n)) = 1 and gcd(A151800(n), n) = 1 for all n > 2 and the fact that the highly composite numbers are products of primorials, A002110 (with the least coprime prime > the largest prime factor). See also the conjectures and notes in A129912 and A141345. (End)

Examples

			a(5) = abs(12-11) = 1.
		

Crossrefs

Sequences tied to conjecture a): A228943, A228945.
Cf. also A005235, A060270.

Programs

Formula

a(1) = 1; for n > 1, a(n) = min(A141345(n), A324385(n)). - Antti Karttunen, Feb 26 2019

Extensions

More terms from Don Reble, May 02 2006

A182862 Numbers k that set a record for the number of distinct prime signatures represented among their unitary divisors.

Original entry on oeis.org

1, 2, 6, 12, 60, 360, 1260, 2520, 27720, 138600, 360360, 831600, 10810800, 75675600, 183783600, 1286485200, 24443218800, 38594556000, 424540116000, 733296564000, 8066262204000, 185524030692000, 1693915062840000, 5380196890068000, 38960046445320000, 166786103592108000
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

In other words, the sequence includes k iff A182860(k) > A182860(m) for all m < k.
The records for the number of distinct prime signatures are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 60, 64, 72, 80, 96, ... (see the link for more values). - Amiram Eldar, Jul 07 2019

Examples

			60 has 8 unitary divisors (1, 3, 4, 5, 12, 15, 20 and 60). Primes 3 and 5 have the same prime signature, as do 12 (2^2*3) and 20 (2^2*5); each of the other four numbers listed is the only unitary divisor of 60 with its particular prime signature.  This makes a total of 6 distinct prime signatures that appear among the unitary divisors of 60.  Since no positive integer smaller than 60 has more than 4 distinct prime signatures appearing among its unitary divisors, 60 belongs to this sequence.
		

Crossrefs

Subsequence of A025487, A129912, A181826, A182863. See also A034444, A085082, A182860, A182861.

Programs

  • Mathematica
    f[1] = 1; f[n_] := Times @@ (Values[Counts[FactorInteger[n][[;; , 2]]]] + 1); fm = 0; s={}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, Jan 19 2019 *)

Extensions

a(14)-a(26) from Amiram Eldar, Jan 19 2019

A182863 Members m of A025487 such that, if k appears in m's prime signature, k-1 appears at least as often as k (for any integer k > 1).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 210, 360, 420, 1260, 2310, 2520, 4620, 13860, 27720, 30030, 60060, 75600, 138600, 180180, 360360, 510510, 831600, 900900, 1021020, 1801800, 3063060, 6126120, 9699690, 10810800, 15315300, 19399380, 30630600, 37837800
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

Members m of A025487 such that A181819(m) is also a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A181818.
Also the least number with each sorted prime metasignature, where a number's metasignature is the sequence of multiplicities of exponents in its prime factorization. For example, 2520 has prime indices {1,1,1,2,2,3,4}, sorted prime signature {1,1,2,3}, and sorted prime metasignature {1,1,2}. - Gus Wiseman, May 21 2022

Examples

			The prime signature of 360360 = 2^3*3^2*5*7*11*13 is (3,2,1,1,1,1). 2 appears as many times as 3 in 360360's prime signature, and 1 appears more times than 2. Since 360360 is also a member of A025487, it is a member of this sequence.
From _Gus Wiseman_, May 21 2022: (Start)
The terms together with their sorted prime signatures and sorted prime metasignatures begin:
      1: {}                -> {}            -> {}
      2: {1}               -> {1}           -> {1}
      6: {1,2}             -> {1,1}         -> {2}
     12: {1,1,2}           -> {1,2}         -> {1,1}
     30: {1,2,3}           -> {1,1,1}       -> {3}
     60: {1,1,2,3}         -> {1,1,2}       -> {1,2}
    210: {1,2,3,4}         -> {1,1,1,1}     -> {4}
    360: {1,1,1,2,2,3}     -> {1,2,3}       -> {1,1,1}
    420: {1,1,2,3,4}       -> {1,1,1,2}     -> {1,3}
   1260: {1,1,2,2,3,4}     -> {1,1,2,2}     -> {2,2}
   2310: {1,2,3,4,5}       -> {1,1,1,1,1}   -> {5}
   2520: {1,1,1,2,2,3,4}   -> {1,1,2,3}     -> {1,1,2}
   4620: {1,1,2,3,4,5}     -> {1,1,1,1,2}   -> {1,4}
  13860: {1,1,2,2,3,4,5}   -> {1,1,1,2,2}   -> {2,3}
  27720: {1,1,1,2,2,3,4,5} -> {1,1,1,2,3}   -> {1,1,3}
  30030: {1,2,3,4,5,6}     -> {1,1,1,1,1,1} -> {6}
  60060: {1,1,2,3,4,5,6}   -> {1,1,1,1,1,2} -> {1,5}
(End)
		

Crossrefs

Intersection of A025487 and A179983.
Subsequence of A129912 and A181826.
Includes all members of A182862.
Positions of first appearances in A353742, unordered version A238747.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A005361 gives product of prime signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A182850 gives frequency depth of prime indices, counted by A225485.
A323014 gives adjusted frequency depth of prime indices, counted by A325280.

Programs

  • Mathematica
    nn=1000;
    r=Table[Sort[Length/@Split[Sort[Last/@If[n==1,{},FactorInteger[n]]]]],{n,nn}];
    Select[Range[nn],!MemberQ[Take[r,#-1],r[[#]]]&] (* Gus Wiseman, May 21 2022 *)

A342456 A276086 applied to the primorial inflation of Doudna-tree, where A276086(n) is the prime product form of primorial base expansion of n.

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 35, 15, 11, 49, 117649, 625, 717409, 1225, 55, 225, 13, 121, 1771561, 2401, 36226650889, 184877, 1127357, 875, 902613283, 514675673281, 3780549773, 1500625, 83852850675321384784127, 3025, 62004635, 21, 17, 169, 4826809, 14641, 8254129, 143, 2924207, 77, 8223741426987700773289, 59797108943, 546826709
Offset: 0

Views

Author

Keywords

Comments

This sequence (which could be viewed as a binary tree, like the underlying A005940 and A329886) is similar to A324289, but unlike its underlying tree A283477 that generates only numbers that are products of distinct primorial numbers (i.e., terms of A129912), here the underlying tree A329886 generates all possible products of primorial numbers, i.e., terms of A025487, but in different order.

Crossrefs

Cf. A005940, A025487, A108951, A129912, A276086, A283980, A324886, A342457 [= 2*A246277(a(n))], A342461 [= A001221(a(n))], A342462 [= A001222(a(n))], A342463 [= A342001(a(n))], A342464 [= A051903(a(n))].
Cf. A324289 (a subset of these terms, in different order).

Programs

  • Mathematica
    Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] :=
    Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[f@ a[#] &, 43, 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)};
    A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2)));
    A342456(n) = A276086(A329886(n));

Formula

a(n) = A276086(A329886(n)) = A324886(A005940(1+n)).
For all n >= 0, gcd(a(n), A329886(n)) = 1.
For all n >= 1, A055396(a(n))-1 = A061395(A329886(n)) = A290251(n) = 1+A080791(n).
For all n >= 0, a(2^n) = A000040(2+n).
Previous Showing 11-20 of 26 results. Next