cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A144129 a(n) = ChebyshevT(3, n).

Original entry on oeis.org

0, 1, 26, 99, 244, 485, 846, 1351, 2024, 2889, 3970, 5291, 6876, 8749, 10934, 13455, 16336, 19601, 23274, 27379, 31940, 36981, 42526, 48599, 55224, 62425, 70226, 78651, 87724, 97469, 107910, 119071, 130976, 143649, 157114, 171395, 186516
Offset: 0

Views

Author

Keywords

Comments

The general formula for alternating sums of powers of odd integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,0)-(-1)^k*P(n,2*k))/2. Here n=3, thus a(k) = |(P(3,0)-(-1)^k*P(3,2*k))/2|. - Peter Luschny, Jul 12 2009
Partial sums of A069190. - J. M. Bergot, Jul 13 2013

Crossrefs

Programs

  • Magma
    [ 4*n^3-3*n: n in [0..36] ]; // Klaus Brockhaus, Jan 11 2009
    
  • Magma
    I:=[0, 1, 26, 99]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Maple
    a := n -> (4*n^2-3)*n; # Peter Luschny, Jul 12 2009
  • Mathematica
    lst={};Do[AppendTo[lst,ChebyshevT[3,n]],{n,0,10^2}];lst
    Round[Table[N[Cosh[3 ArcCosh[n]], 100], {n, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
    CoefficientList[Series[x*(1+22*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,26,99},40] (* Harvey P. Dale, Apr 02 2015 *)
  • PARI
    a(n) = 4*n^3-3*n \\ Charles R Greathouse IV, Feb 08 2012
    

Formula

a(n) = 4*n^3 - 3*n. - Klaus Brockhaus, Jan 11 2009
G.f.: x*(1 + 22*x + x^2)/(1 - x)^4. - Klaus Brockhaus, Jan 11 2009
a(n) = cosh(3*arccosh(n)) = cos(3*arccos(n)). - Artur Jasinski, Feb 14 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = 24*A000292(n-1) + n. - Bruce J. Nicholson, Jun 12 2020
From Gerry Martens, Apr 06 2024: (Start)
a(n) = Imaginary part of -(1/2)*(2*n*i-1)^3.
a(n) = -4*(1/4 + n^2)^(3/2)*sin(3*arctan(2*n)). (End)

A011934 a(n) = |1^3 - 2^3 + 3^3 - 4^3 + ... + (-1)^(n+1)*n^3|.

Original entry on oeis.org

0, 1, 7, 20, 44, 81, 135, 208, 304, 425, 575, 756, 972, 1225, 1519, 1856, 2240, 2673, 3159, 3700, 4300, 4961, 5687, 6480, 7344, 8281, 9295, 10388, 11564, 12825, 14175, 15616, 17152, 18785, 20519, 22356, 24300, 26353, 28519, 30800, 33200, 35721, 38367, 41140
Offset: 0

Views

Author

David Penney (david(AT)math.uga.edu)

Keywords

Comments

From the formula a(n) = n^3 - a(n-1) it follows that a(n-1) + a(n) = n^3. Thus the sum of two consecutive terms (call them the "former" and "latter" terms) is a cube of the index of the "latter" term. - Alexander R. Povolotsky, Jan 09 2008
The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) (A153641) 2^(-n-1)*(P(n,1)-(-1)^k P(n,2*k+1)). Thus we get expression a(k) = |2^(-4)*(P(3,1)-(-1)^k P(3,2*k+1))|. - Peter Luschny, Jul 12 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w < floor((x+y)/2). Also, the number of (w,x,y) having all terms in {0,...,n} and w >= floor((x+y)/2). - Clark Kimberling, Jun 02 2012

References

Crossrefs

Programs

  • Magma
    [((2*n+3)*n^2 - (n mod 2))/4: n in [0..100]]; // G. C. Greubel, Nov 03 2024
    
  • Maple
    a := n -> ((2*n+3)*n^2-(n mod 2))/4; # Peter Luschny, Jul 12 2009
  • Mathematica
    Table[(4*n^3 -6*n^2 +1-(-1)^n)/8, {n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    Abs[Accumulate[Times@@@Partition[Riffle[Range[0,50]^3,{1,-1},{1,-1,2}],2]]] (* Harvey P. Dale, May 20 2019 *)
  • SageMath
    [((2*n+3)*n^2 - (n%2))//4 for n in range(101)] # G. C. Greubel, Nov 03 2024

Formula

a(n) = |(1/8)*(-1 + (-1)^n - 6*(-1)^n*n^2 - 4*(-1)^n*n^3)|. - Henry Bottomley, Nov 13 2000
a(n) = n^3 - a(n-1) = a(n-1) + A032528(n) = ceiling(A015238(n+1)/4) = ceiling((n+1)^2*(2*n-1)/4). - Henry Bottomley, Nov 13 2000
G.f.: x*(1 + 4*x + x^2)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5). - Alexander R. Povolotsky, Apr 26 2008
a(n) = Sum_{k=1..n} floor((2*n+1)*k/2). - Wesley Ivan Hurt, Apr 01 2017

Extensions

More terms from Henry Bottomley, Nov 13 2000

A154286 a(n) = E(k)*C(n+k,k) = Euler(k)*binomial(n+k,k) for k=4.

Original entry on oeis.org

5, 25, 75, 175, 350, 630, 1050, 1650, 2475, 3575, 5005, 6825, 9100, 11900, 15300, 19380, 24225, 29925, 36575, 44275, 53130, 63250, 74750, 87750, 102375, 118755, 137025, 157325, 179800, 204600, 231880, 261800, 294525, 330225, 369075, 411255
Offset: 0

Views

Author

Peter Luschny, Jan 06 2009

Keywords

Comments

a(n) = E(4)*binomial(n+4,4) where E(n) are the Euler number in the enumeration A122045.
a(n) is the special case k=4 in the sequence of diagonals in the triangle A153641.
a(n) is the 5th row in A093375.
a(n) is the 5th column in A103406.
a(n) is the 5th antidiagonal in A103283.
(a(n+1) - a(n))/5 are the pyramidal numbers A000292 (n>1).
(a(n+2) - 2a(n+1) + a(n))/5 are the triangular numbers A000217 (n>2).
(a(n+3) - 3a(n+2) + 3a(n+1) - a(n))/5 are the natural numbers A000027 (n > 3).
Number of orbits of Aut(Z^7) as function of the infinity norm (n+4) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 107520. - Philippe A.J.G. Chevalier, Dec 28 2015

Crossrefs

Programs

  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*5 div 24: n in [0..40]]; // Vincenzo Librandi, Sep 10 2016
    
  • Maple
    seq(euler(4)*binomial(n+4,4),n=0..32);
  • Mathematica
    CoefficientList[Series[-5/(x - 1)^5, {x, 0, 35}], x] (* Robert G. Wilson v, Jan 29 2015 *)
    Table[(n + 1)*(n + 2)*(n + 3)*(n + 4)*5/24, {n, 0, 25}] (* G. C. Greubel, Sep 09 2016 *)
    LinearRecurrence[{5,-10,10,-5,1},{5,25,75,175,350},40] (* Harvey P. Dale, Nov 18 2021 *)
  • PARI
    x='x+O('x^99); Vec(5/(1-x)^5) \\ Altug Alkan, Sep 10 2016

Formula

a(n) = (n+1)*(n+2)*(n+3)*(n+4)*5/24.
a(n) = a(n-1)*(n+4)/n (n>0), a(0)=5.
O.g.f.: 5/(1-x)^5.
E.g.f.: (5/24)*x*(24 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Sep 09 2016
a(n) = 5*A000332(n+4). - Michel Marcus, Sep 10 2016

A119467 A masked Pascal triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 1, 0, 66, 0, 495, 0, 924
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Row sums are A011782. Diagonal sums are F(n+1)*(1+(-1)^n)/2 (aerated version of A001519). Product by Pascal's triangle A007318 is A119468. Schur product of (1/(1-x),x/(1-x)) and (1/(1-x^2),x).
Exponential Riordan array (cosh(x),x). Inverse is (sech(x),x) or A119879. - Paul Barry, May 26 2006
Rows give coefficients of polynomials p_n(x) = Sum_{k=0..n} (k+1 mod 2)*binomial(n,k)*x^(n-k) having e.g.f. exp(x*t)*cosh(t)= 1*(t^0/0!) + x*(t^1/1!) + (1+x^2)*(t^2/2!) + ... - Peter Luschny, Jul 14 2009
Inverse of the coefficient matrix of the Swiss-Knife polynomials in ascending order of x^i (reversed and aerated rows of A153641). - Peter Luschny, Jul 16 2012
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*... is equal to A136630 but with the first row and column omitted. - Peter Bala, Jul 28 2014
The row polynomials SKv(n,x) = [(x+1)^n + (x-1)^n]/2 , with e.g.f. cosh(t)*exp(xt), are the umbral compositional inverses of the row polynomials of A119879 (basically the Swiss Knife polynomials SK(n,x) of A153641); i.e., umbrally SKv(n,SK(.,x)) = x^n = SK(n,SKv(.,x)). Therefore, this entry's matrix and A119879 are an inverse pair. Both sequences of polynomials are Appell sequences, i.e., d/dx P(n,x) = n * P(n-1,x) and (P(.,x)+y)^n = P(n,x+y). In particular, (SKv(.,0)+x)^n = SKv(n,x), reflecting that the first column has the e.g.f. cosh(t). The raising operator is R = x + tanh(d/dx); i.e., R SKv(n,x) = SKv(n+1,x). The coefficients of this operator are basically the signed and aerated zag numbers A000182, which can be expressed as normalized Bernoulli numbers. The triangle is formed by multiplying the n-th diagonal of the lower triangular Pascal matrix by the Taylor series coefficient a(n) of cosh(x). More relations for this type of triangle and its inverse are given by the formalism of A133314. - Tom Copeland, Sep 05 2015
The signed version of this matrix has the e.g.f. cos(t) e^{xt}, generating Appell polynomials that have only real, simple zeros and whose extrema are maxima above the x-axis and minima below and situated above and below the zeros of the next lower degree polynomial. The bivariate versions appear on p. 27 of Dimitrov and Rusev in conditions for entire functions that are cosine transforms of a class of functions to have only real zeros. - Tom Copeland, May 21 2020
The n-th row of the triangle is obtained by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probabilities of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms of the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k-1) as the (2k-1)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k-1). - Luca Onnis, Oct 29 2023

Examples

			Triangle begins
  1,
  0, 1,
  1, 0,  1,
  0, 3,  0,  1,
  1, 0,  6,  0,   1,
  0, 5,  0, 10,   0,   1,
  1, 0, 15,  0,  15,   0,   1,
  0, 7,  0, 35,   0,  21,   0,  1,
  1, 0, 28,  0,  70,   0,  28,  0,  1,
  0, 9,  0, 84,   0, 126,   0, 36,  0, 1,
  1, 0, 45,  0, 210,   0, 210,  0, 45, 0, 1
p[0](x) = 1
p[1](x) = x
p[2](x) = 1 + x^2
p[3](x) = 3*x + x^3
p[4](x) = 1 + 6*x^2 + x^4
p[5](x) = 5*x + 10*x^3 + x^5
Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1        \/1        \/1        \      /1         \
|0 1      ||0 1      ||0 1      |      |0 1       |
|1 0 1    ||0 0 1    ||0 0 1    |... = |1 0  1    |
|0 3 0 1  ||0 1 0 1  ||0 0 0 1  |      |0 4  0 1  |
|1 0 6 0 1||0 0 3 0 1||0 0 1 0 1|      |1 0 10 0 1|
|...      ||...      ||...      |      |...       |
- _Peter Bala_, Jul 28 2014
		

References

  • Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.

Crossrefs

From Peter Luschny, Jul 14 2009: (Start)
p[n](k), n=0,1,...
k= 0: 1, 0, 1, 0, 1, 0, ... A128174
k= 1: 1, 1, 2, 4, 8, 16, ... A011782
k= 2: 1, 2, 5, 14, 41, 122, ... A007051
k= 3: 1, 3, 10, 36, 136, ... A007582
k= 4: 1, 4, 17, 76, 353, ... A081186
k= 5: 1, 5, 26, 140, 776, ... A081187
k= 6: 1, 6, 37, 234, 1513, ... A081188
k= 7: 1, 7, 50, 364, 2696, ... A081189
k= 8: 1, 8, 65, 536, 4481, ... A081190
k= 9: 1, 9, 82, 756, 7048, ... A060531
k=10: 1, 10, 101, 1030, ... A081192
p[n](k), k=0,1,...
p[0]: 1,1,1,1,1,1, ....... A000012
p[1]: 0,1,2,3,4,5, ....... A001477
p[2]: 1,2,5,10,17,26, .... A002522
p[3]: 0,4,14,36,76,140, .. A079908 (End)

Programs

  • Haskell
    a119467 n k = a119467_tabl !! n !! k
    a119467_row n = a119467_tabl !! n
    a119467_tabl = map (map (flip div 2)) $
                   zipWith (zipWith (+)) a007318_tabl a130595_tabl
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Magma
    /* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
  • Maple
    # Polynomials: p_n(x)
    p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
    add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
    # Coefficients: a(n)
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
  • Mathematica
    Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *)
    n = 15; "n-th row"
    mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
    mat[[1, 2]] = 1;
    mat[[n + 1, n]] = 1;
    For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
    For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
    mat // MatrixForm;
    P2 = Dot[mat, mat];
    R1 = Simplify[
      Eigenvectors[Transpose[P2]][[1]]/
       Total[Eigenvectors[Transpose[P2]][[1]]]]
    R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
    odd = R2*2^(n - 1) (* _Luca Onnis *)
  • Sage
    @CachedFunction
    def A119467_poly(n):
        R = PolynomialRing(ZZ, 'x')
        x = R.gen()
        return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2))
    def A119467_row(n):
        return list(A119467_poly(n))
    for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
    

Formula

G.f.: (1-x*y)/(1-2*x*y-x^2+x^2*y^2);
T(n,k) = C(n,k)*(1+(-1)^(n-k))/2;
Column k has g.f. (1/(1-x^2))*(x/(1-x^2))^k*Sum_{j=0..k+1} binomial(k+1,j)*sin((j+1)*Pi/2)^2*x^j.
Column k has e.g.f. cosh(x)*x^k/k!. - Paul Barry, May 26 2006
Let Pascal's triangle, A007318 = P; then this triangle = (1/2) * (P + 1/P). Also A131047 = (1/2) * (P - 1/P). - Gary W. Adamson, Jun 12 2007
Equals A007318 - A131047 since the zeros of the triangle are masks for the terms of A131047. Thus A119467 + A131047 = Pascal's triangle. - Gary W. Adamson, Jun 12 2007
T(n,k) = (A007318(n,k) + A130595(n,k))/2, 0<=k<=n. - Reinhard Zumkeller, Mar 23 2014

Extensions

Edited by N. J. A. Sloane, Jul 14 2009

A188458 Expansion of e.g.f. exp(x)/cosh(2*x).

Original entry on oeis.org

1, 1, -3, -11, 57, 361, -2763, -24611, 250737, 2873041, -36581523, -512343611, 7828053417, 129570724921, -2309644635483, -44110959165011, 898621108880097, 19450718635716001, -445777636063460643, -10784052561125704811, 274613643571568682777
Offset: 0

Views

Author

Paul D. Hanna, Apr 01 2011

Keywords

Comments

A signed version of A001586 (Springer numbers).
Equals the logarithmic derivative of A188514 (ignoring the initial term of this sequence); note that the unsigned version (A001586) does not form a logarithmic derivative of an integer sequence.

Examples

			E.g.f.: exp(x)/cosh(2*x) = 1 + x - 3*x^2/2! - 11*x^3/3! + 57*x^4/4! + 361*x^5/5! +...
Illustration of other generating functions.
E.g.f.: 1 = exp(-x) + exp(x)*x - 3*exp(-x)*x^2/2! - 11*exp(x)*x^3/3! +...
L.g.f.: log(1+x) = x/(1-x) - 3*(x^2/2)/(1+x)^2 - 11*(x^3/3)/(1-x)^3 +...
G.f.: 1 = 1/(1+x) + 1*x/(1-x)^2 - 3*x^2/(1+x)^3 - 11*x^3/(1-x)^4 +...
G.f.: 1 = 1/(1+x)^2 + 1*2*x/(1-x)^3 - 3*3*x^2/(1+x)^4 - 11*4*x^3/(1-x)^5 +...
G.f.: 1 = 1/(1+x)^3 + 1*3*x/(1-x)^4 - 3*6*x^2/(1+x)^5 - 11*10*x^3/(1-x)^6 +...
		

Crossrefs

Programs

  • Maple
    seq(4^n*euler(n,3/4), n=0..20); # Peter Luschny, Apr 19 2014
  • Mathematica
    CoefficientList[Series[E^x/Cosh[2*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 07 2013 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(2*X),n)}
    
  • PARI
    {a(n)=n!*polcoeff(1-sum(k=0, n-1, a(k)*exp(-(-1)^k*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(-1)^k*x+x*O(x^n))^(k+1)), n)}
    
  • PARI
    /* Holds for m>=1: */
    {a(n)=local(m=1); polcoeff(1-sum(k=0, n-1, a(k)*binomial(m+k-1, k)*x^k/(1+(-1)^k*x+x*O(x^n))^(k+m)), n)/binomial(m+n-1, n)}
    
  • PARI
    /* Recurrence: */
    {a(n)=if(n<0,0,if(n==0,1, sum(k=1, n, -(-1)^(n*k)*binomial(n, k)*a(n-k))))}
    
  • PARI
    {EULER(n)=n!*polcoeff(1/cosh(x+x*O(x^n)),n)}
    {a(n)=sum(k=0,n,2^k*binomial(n,k)*EULER(k))}
    
  • PARI
    {a(n)=(-1)^(n\2)*((1+I)/2)^n*sum(k=0, n, ((1-I)/(1+I))^k*sum(j=0, k, (-1)^(k-j)*binomial(n+1, k-j)*(2*j+1)^n))}

Formula

a(n) = Sum_{k=1..n} -(-1)^(n*k)*C(n, k)*a(n-k) for n>0 with a(0)=1.
L.g.f.: log(1+x) = Sum_{n>=1} a(n)*(x^n/n)/(1 + (-1)^n*x)^n.
E.g.f.: 1 = Sum_{n>=0} a(n)*exp(-(-1)^n*x)*x^n/n!.
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1 + (-1)^n*x)^(n+1).
G.f.: 1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + (-1)^n*x)^(n+m) for m>=1.
a(n) = Sum_{k=0..n} 2^k C(n,k) Euler(k). - Peter Luschny
a(n) = (-1)^[n/2]*((1+I)/2)^n * Sum_{k=0..n} ((1-I)/(1+I))^k * Sum_{j=0..k} (-1)^(k-j)*C(n+1, k-j)*(2*j+1)^n. - Peter Bala
O.g.f.: 1/(1-x/(1+4*x/(1-x- 4*x/(1+4*x/(1+x- 6*x/(1+6*x/(1+x- 8*x/(1+8*x/(1+x- 10*x/(1+10*x/(1+x- 12*x/(1+12*x/(1+x- ...))))))))))))) (continued fraction).
E.g.f.: E(x) = exp(x)/cosh(2*x) = 2/G(0) where G(k)= 1 -((-1)^k)*3^k/(1 - x/(x + (k+1)*((-1)^k)*3^k/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jun 07 2012
a(n) ~ n! * (cos(n*Pi/2) + sin(n*Pi/2)) * 2^(2*n+3/2) / Pi^(n+1). - Vaclav Kotesovec, Oct 07 2013
G.f.: conjecture T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)^2/(4*x^2*(k+1)^2 + (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
From Peter Luschny, Apr 19 2014: (Start)
a(n) = 2^n*skp(n, 1/2), where skp(n,x) are the Swiss-Knife polynomials A153641.
a(n) = 4^n*E(n, 3/4), where E(n,x) are Euler polynomials.
a(n) = (8^n/((n+1)/2))*(B(n+1, 7/8) - B(n+1, 3/8)), where B(n,x) are the Bernoulli polynomials. (End)
a(n) = 2^(3*n+1)*(Zeta(-n,3/8)-Zeta(-n,7/8)). - Peter Luschny, Oct 15 2015

A119880 Expansion of e.g.f. exp(2x)*sech(x).

Original entry on oeis.org

1, 2, 3, 2, -3, 2, 63, 2, -1383, 2, 50523, 2, -2702763, 2, 199360983, 2, -19391512143, 2, 2404879675443, 2, -370371188237523, 2, 69348874393137903, 2, -15514534163557086903, 2, 4087072509293123892363, 2, -1252259641403629865468283, 2, 441543893249023104553682823
Offset: 0

Views

Author

Paul Barry, May 26 2006

Keywords

Comments

Transform of 2^n under the matrix A119879.
Also the Swiss-Knife polynomials A153641 evaluated at x=2. - Peter Luschny, Nov 23 2012

Crossrefs

Programs

  • Magma
    EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >;
    A119880:= func< n | (-2)^n*EulerPoly(n, -1/2) >;
    [A119880(n): n in [0..40]]; // G. C. Greubel, Jun 07 2023
  • Maple
    A119880_list := proc(n) local S,A,m,k;
    A := array(0..n-1,0..n-1); S := NULL;
    for m from 0 to n-1 do
       A[m,0] := (-2)^m*euler(m,0);
       for k from m-1 by -1 to 0 do
           A[k,m-k] := A[k+1,m-k-1] + A[k,m-k-1] od;
        S := S,A[0,m] od;
    S end:
    A119880_list(31); # Peter Luschny, Jun 15 2012
    P := proc(n,x) option remember; if n = 0 then 1 else
      (n*x-(1/2)*(1-x))*P(n-1,x)+x*(1-x)*diff(P(n-1,x),x);
      expand(%) fi end:
    A119880 := n -> (-1)^n*subs(x=-1, P(n,x)):
    seq(A119880(n), n=0..30);  # Peter Luschny, Mar 07 2014
  • Mathematica
    Table[2 (1 + Zeta[-n] (2^n - 1) + 2^(2n+1) Zeta[-n, 3/4]), {n, 0, 30}] (* Peter Luschny, Jul 16 2013 *)
    Range[0, 30]! CoefficientList[Series[Exp[2 x] Sech[x], {x, 0, 30}], x] (* Vincenzo Librandi, Mar 08 2014 *)
  • Sage
    def skp(n, x):
        A = lambda k: 0 if (k+1)%4 == 0 else (-1)^((k+1)//4)*2^(-(k//2))
        return add(A(k)*add((-1)^v*binomial(k,v)*(v+x+1)^n for v in (0..k)) for k in (0..n))
    A119880 = lambda n: skp(n,2)
    [A119880(n) for n in (0..30)]  # Peter Luschny, Nov 23 2012
    

Formula

a(n) = Sum_{k=0..n} A119879(n,k) * 2^k.
From Sergei N. Gladkovskii, Oct 14 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x - x*(k+1)/(1 + x*(k+1)/U(k+1)).
G.f.: 1/Q(0), where Q(k) = 1 - 3*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: x/(1-x)/Q(0) + 1/(1-x), where Q(k) = 1 - x + x^2*(k+1)*(k+2)/Q(k+1).
G.f.: T(0)/(1-2*x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1-2*x)^2/T(k+1)).
E.g.f.: 2/Q(0), where Q(k) = 1 + 3^k/( 1 - x/( x - 3^k*(k+1)/Q(k+1))). (End)
a(n) = 2*(1+zeta(-n)*(2^n-1)+2^(2*n+1)*zeta(-n,3/4)). - Peter Luschny, Jul 16 2013
a(n) = (-2)^n*Euler(n, -1/2). - Peter Luschny, Jul 21 2020

A081658 Triangle read by rows: T(n, k) = (-2)^k*binomial(n, k)*Euler(k, 1/2).

Original entry on oeis.org

1, 1, 0, 1, 0, -1, 1, 0, -3, 0, 1, 0, -6, 0, 5, 1, 0, -10, 0, 25, 0, 1, 0, -15, 0, 75, 0, -61, 1, 0, -21, 0, 175, 0, -427, 0, 1, 0, -28, 0, 350, 0, -1708, 0, 1385, 1, 0, -36, 0, 630, 0, -5124, 0, 12465, 0, 1, 0, -45, 0, 1050, 0, -12810, 0, 62325, 0, -50521, 1, 0, -55, 0, 1650, 0, -28182, 0, 228525, 0, -555731, 0, 1, 0, -66, 0, 2475, 0
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

These are the coefficients of the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 21 2012
Nonzero diagonals of the triangle are of the form A000364(k)*binomial(n+2k,2k)*(-1)^k.
A363393 is the dual triangle ('dual' in the sense of Euler-tangent versus Euler-secant numbers). - Peter Luschny, Jun 05 2023

Examples

			The triangle begins
[0] 1;
[1] 1, 0;
[2] 1, 0,  -1;
[3] 1, 0,  -3, 0;
[4] 1, 0,  -6, 0,   5;
[5] 1, 0, -10, 0,  25, 0;
[6] 1, 0, -15, 0,  75, 0,  -61;
[7] 1, 0, -21, 0, 175, 0, -427, 0;
...
From _Peter Luschny_, Sep 17 2021: (Start)
The triangle shows the coefficients of the following polynomials:
[1] 1;
[2] 1 -    x^2;
[3] 1 -  3*x^2;
[4] 1 -  6*x^2 +   5*x^4;
[5] 1 - 10*x^2 +  25*x^4;
[6] 1 - 15*x^2 +  75*x^4 -  61*x^6;
[7] 1 - 21*x^2 + 175*x^4 - 427*x^6;
...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to '-x'. The main antidiagonals consist only of ones. Substituting x <- 1 generates the Euler tangent numbers A155585. (Compare with A046739.)
(End)
		

Crossrefs

Row reversed: A119879.

Programs

  • Maple
    ogf := n -> euler(n) / (1 - x)^(n + 1):
    ser := n -> series(ogf(n), x, 16):
    T := (n, k) -> coeff(ser(k), x, n - k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jun 05 2023
    T := (n, k) -> (-2)^k*binomial(n, k)*euler(k, 1/2):
    seq(seq(T(n, k), k = 0..n), n = 0..9);  # Peter Luschny, Apr 03 2024
  • Mathematica
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n - k), {k, 0, n}];
    Table[CoefficientList[sk[n, x], x] // Reverse, {n, 0, 12}] // Flatten (* Jean-François Alcover, Jun 04 2019 *)
    Flatten@Table[Binomial[n, k] EulerE[k], {n, 0, 12}, {k, 0, n}] (* Oliver Seipel, Jan 14 2025 *)
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k == 0: return 1
        if k % 2 == 1:  return 0
        if k == n: return -sum(T(n, j) for j in range(0, n - 1, 2))
        return (T(n - 1, k) * n) // (n - k)
    for n in range(10):
        print([T(n, k) for k in range(n + 1)])  # Peter Luschny, Jun 05 2023
  • Sage
    R = PolynomialRing(ZZ, 'x')
    @CachedFunction
    def p(n, x) :
        if n == 0 : return 1
        return add(p(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
    def A081658_row(n) : return [R(p(n,x)).reverse()[i] for i in (0..n)]
    for n in (0..8) : print(A081658_row(n)) # Peter Luschny, Jul 20 2012
    

Formula

Coefficients of the polynomials in k in the binomial transform of the expansion of 2/(exp(kx)+exp(-kx)).
From Peter Luschny, Jul 20 2012: (Start)
p{n}(0) = Signed Euler secant numbers A122045.
p{n}(1) = Signed Euler tangent numbers A155585.
p{n}(2) has e.g.f. 2*exp(x)/(exp(-2*x)+1) A119880.
2^n*p{n}(1/2) = Signed Springer numbers A188458.
3^n*p{n}(1/3) has e.g.f. 2*exp(4*x)/(exp(6*x)+1)
4^n*p{n}(1/4) has e.g.f. 2*exp(5*x)/(exp(8*x)+1).
Row sum: A155585 (cf. A009006). Absolute row sum: A003701.
The GCD of the rows without the first column: A155457. (End)
From Peter Luschny, Jun 05 2023: (Start)
T(n, k) = [x^(n - k)] Euler(k) / (1 - x)^(k + 1).
For a recursion see the Python program.
Conjecture: If n is prime then n divides T(n, k) for 1 <= k <= n-1. (End)

Extensions

Typo in data corrected by Peter Luschny, Jul 20 2012
Error in data corrected and new name by Peter Luschny, Apr 03 2024

A137501 The even numbers repeated, with alternating signs.

Original entry on oeis.org

0, 0, 2, -2, 4, -4, 6, -6, 8, -8, 10, -10, 12, -12, 14, -14, 16, -16, 18, -18, 20, -20, 22, -22, 24, -24, 26, -26, 28, -28, 30, -30, 32, -32, 34, -34, 36, -36, 38, -38, 40, -40, 42, -42, 44, -44, 46, -46, 48, -48, 50, -50, 52, -52, 54, -54, 56, -56, 58, -58, 60, -60, 62, -62, 64, -64, 66, -66, 68, -68, 70, -70, 72, -72, 74
Offset: 0

Views

Author

Carlos Alberto da Costa Filho (cacau_dacosta(AT)hotmail.com), Apr 22 2008

Keywords

Comments

The general formula for alternating sums of powers of even integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,1)-(-1)^k P(n,2k+1))/2. Here n=1 and k shifted one place, thus a(k) = (P(1,1)-(-1)^(k-1) P(1,2(k-1)+1))/2. - Peter Luschny, Jul 12 2009
With just one 0 at the beginning, this is a permutation of all the even integers. - Alonso del Arte, Jun 24 2012

Crossrefs

Programs

  • Maple
    den:= n -> (n-1/2+1/2*(-1)^n)*(-1)^n: seq(den(n),n=-10..10);
    a := n -> (1+(-1)^n*(2*n-1))/2; # Peter Luschny, Jul 12 2009
  • Mathematica
    Flatten[Table[{2n, -2n}, {n, 0, 39}]] (* Alonso del Arte, Jun 24 2012 *)
    With[{enos=2*Range[0,40]},Riffle[enos,-enos]] (* Harvey P. Dale, Oct 12 2014 *)

Formula

a(n) = ( n - (1/2) + (1/2)*(-1)^n )*(-1)^n.
From R. J. Mathar, Feb 14 2010: (Start)
a(n) = -a(n-1) + a(n-2) + a(n-3).
G.f.: 2*x^2/((1-x) * (1+x)^2). (End)
a(n) = A064455(n) - A123684(n). - Jaroslav Krizek, Mar 22 2011

A162660 Triangle read by rows: coefficients of the complementary Swiss-Knife polynomials.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, -2, 0, 3, 0, 0, -8, 0, 4, 0, 16, 0, -20, 0, 5, 0, 0, 96, 0, -40, 0, 6, 0, -272, 0, 336, 0, -70, 0, 7, 0, 0, -2176, 0, 896, 0, -112, 0, 8, 0, 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0, 0, 79360, 0, -32640, 0, 4032, 0, -240, 0, 10, 0
Offset: 0

Views

Author

Peter Luschny, Jul 09 2009

Keywords

Comments

Definition. V_n(x) = (skp(n, x+1) - skp(n, x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
Equivalently, let the polynomials V_n(x) (n>=0) defined by V_n(x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*L(k)*(x+v+1)^n; the sequence L(k) = -1 - H(k-1)*(-1)^floor((k-1)/4) / 2^floor(k/2) if k > 0 and L(0)=0; H(k) = 1 if k mod 4 <> 0, otherwise 0.
(1) V_n(0) = 2^n * Euler(n,1) for n > 0, A155585.
(2) V_n(1) = 1 - Euler(n).
(3) V_{n-1}(0) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli numbers A027641/A027642.
(4) V_{n-1}(0) n (2/2^n-2)/(2^n-1) = G_n the Genocchi number A036968 for n > 1.
(5) V_n(1/2)2^{n} - 1 is a signed version of the generalized Euler (Springer) numbers, see A001586.
The Swiss-Knife polynomials (A153641) are complementary to the polynomials defined here. Adding both gives polynomials with e.g.f. exp(x*t)*(sech(t)+tanh(t)), the coefficients of which are a signed variant of A109449.
The Swiss-Knife polynomials as well as the complementary Swiss-Knife polynomials are closely related to the Bernoulli and Euler polynomials. Let F be a sequence and
P_{F}[n](x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*F(k)*(x+v+1)^n.
V_n(x) = P_{F}[n](x) with F(k)=L(k) defined above, are the Co-Swiss-Knife polynomials,
W_n(x) = P_{F}[n](x) with F(k)=c(k) the Chen sequence defined in A153641 are the Swiss-Knife polynomials.
B_n(x) = P_{F}[n](x-1) with F(k)=1/(k+1) are the Bernoulli polynomials,
E_n(x) = P_{F}[n](x-1) with F(k)=2^(-k) are the Euler polynomials.
The most striking formal difference between the Swiss-Knife-type polynomials and the Bernoulli-Euler type polynomials is: The SK-type polynomials have integer coefficients whereas the BE-type polynomials have rational coefficients.
Let R be the exponential Riordan array (exp(x)*sech(x), x) = P * A119879 = 2*P(I + P^2)^(-1) where P denotes Pascal's triangle A007318. Then T = R - I. - Peter Bala, Mar 07 2024

Examples

			Triangle begins:
  [0]    0;
  [1]    1,     0;
  [2]    0,     2,     0;
  [3]   -2,     0,     3,   0;
  [4]    0,    -8,     0,   4,    0;
  [5]   16,     0,   -20,   0,    5,    0;
  [6]    0,    96,     0, -40,    0,    6,    0;
  [7] -272,     0,   336,   0,  -70,    0,    7,  0;
  [8]    0, -2176,     0, 896,    0, -112,    0,  8,  0;
  [9] 7936,     0, -9792,   0, 2016,    0, -168,  0,  9,  0;
		

Crossrefs

V_n(k), n=0, 1, ..., k=0: A155585, k=1: A009832,
V_n(k), k=0, 1, ..., V_0: A000004, V_1: A000012, V_2: A005843, V_3: A100536.

Programs

  • Maple
    # Polynomials V_n(x):
    V := proc(n,x) local k,pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add(binomial(n,k)*euler(k)*pow(x+1,n-k),k=0..n) - pow(x,n) end:
    # Coefficients a(n):
    seq(print(seq(coeff(n!*coeff(series(exp(x*t)*tanh(t),t,16),t,n),x,k),k=0..n)),n=0..8);
  • Mathematica
    skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; v[n_, x_] := (skp[n, x+1]-skp[n, x-1])/2; t[n_, k_] := Coefficient[v[n, x], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
  • Sage
    R = PolynomialRing(QQ, 'x')
    @CachedFunction
    def skp(n, x) : # Swiss-Knife polynomials A153641.
        if n == 0 : return 1
        return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2])
    def A162660(n,k) : return 0 if k > n else R((skp(n, x+1)-skp(n, x-1))/2)[k]
    matrix(ZZ, 9, A162660) # Peter Luschny, Jul 23 2012

Formula

T(n, k) = [x^(n-k)](skp(n,x+1)-skp(n,x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Jul 23 2012
E.g.f. exp(x*t)*tanh(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2-2)*(t^3/3!) + ...
V_n(x) = -x^n + Sum_{k=0..n} C(n,k)*Euler(k)*(x+1)^(n-k).

A081733 Triangle read by rows, T(n,k) = 2^(n-k)*[x^k] Euler_polynomial(n, x), for n >= 0, k >= 0.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 2, 0, -3, 1, 0, 8, 0, -4, 1, -16, 0, 20, 0, -5, 1, 0, -96, 0, 40, 0, -6, 1, 272, 0, -336, 0, 70, 0, -7, 1, 0, 2176, 0, -896, 0, 112, 0, -8, 1, -7936, 0, 9792, 0, -2016, 0, 168, 0, -9, 1, 0, -79360, 0, 32640, 0, -4032, 0, 240, 0, -10, 1, 353792, 0, -436480, 0, 89760, 0, -7392, 0, 330, 0, -11, 1, 0, 4245504, 0
Offset: 0

Views

Author

Wouter Meeussen, Apr 06 2003

Keywords

Comments

Sum of row n equals Euler(n) (in the sense of the non-official version A122045; R. P. Stanley calls A000111 Euler numbers.)

Examples

			The coefficient lists of the first 5 Euler polynomials are {1}, {-1/2, 1}, {0, -1, 1}, {1/4, 0, -3/2, 1}, {0, 1, 0, -2, 1}. Multiply by 2^(n-k) to get
   1,
  -1,  1,
   0, -2,  1,
   2,  0, -3,  1,
   0,  8,  0, -4,  1.
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> 2^(n-k)*coeff(euler(n,x),x,k):
    T := (n,k) -> 2^(n-k)*binomial(n,k)*euler(n-k,1): # Peter Luschny, Jan 25 2009
  • Mathematica
    Table[2^n (1/2)^(Range[0, n]) CoefficientList[EulerE[n, x], x], {n, 0, 16}]
  • Sage
    def A081733(n, k) : return (-2)^(n-k)*binomial(n,k)*euler_polynomial(n-k,1)
    # Peter Luschny, Jul 18 2012

Formula

T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(0) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009
Matrix inverse is A119468 and central column is A214447. - Peter Luschny, Jul 18 2012
Let skp{n}(x) denote the Swiss-Knife polynomials A153641. Then T(n,k) = [x^(n-k)]((skp{n}(x-1) - skp{n}(x+1))/2 + x^n). - Peter Luschny, Jul 22 2012
E.g.f.: exp(z*x)*(1-tanh(x)). - Peter Luschny, Aug 01 2012
E.g.f.: [2/(e^(2t)+1)] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x - 2/[e^(-2D)+1], i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x). Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x - 1 - D + 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, and P_n(0) are the coefficients (mod signs/shift) of these sequences. The polynomials PI_n(x) of A119468 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Note that 2/[e^(2t)+1] = 2 Sum_{n >= 0} Eta(-n) (-2t)^n/n!], where Eta(s) is the Dirichlet eta function, and b_n = 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers, so P_n(x) = (b. + x)^n, as an Appell polynomial. - Tom Copeland, Sep 27 2015

Extensions

Corrected T(0,0) = Euler(0) = 1 (was 0), Peter Luschny, Sep 30 2010
New name from Peter Luschny, Jul 18 2012
Previous Showing 11-20 of 52 results. Next