cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A137932 Terms in an n X n spiral that do not lie on its principal diagonals.

Original entry on oeis.org

0, 0, 0, 4, 8, 16, 24, 36, 48, 64, 80, 100, 120, 144, 168, 196, 224, 256, 288, 324, 360, 400, 440, 484, 528, 576, 624, 676, 728, 784, 840, 900, 960, 1024, 1088, 1156, 1224, 1296, 1368, 1444, 1520, 1600, 1680, 1764, 1848, 1936, 2024, 2116, 2208, 2304, 2400, 2500, 2600, 2704, 2808
Offset: 0

Views

Author

William A. Tedeschi, Feb 29 2008

Keywords

Comments

The count of terms not on the principal diagonals is always even.
The last digit is the repeating pattern 0,0,0,4,8,6,4,6,8,4, which is palindromic if the leading 0's are removed, 4864684.
The sum of the last digits is 40, which is the count of the pattern times 4.
A 4 X 4 spiral is the only spiral, aside from a 0 X 0, whose count of terms that do not lie on its principal diagonals equal the count of terms that do [A137932(4) = A042948(4)] making the 4 X 4 the "perfect spiral".
Yet another property is mod(a(n), A042948(n)) = 0 iff n is even. This is a large family that includes the 4 X 4 spiral.
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an [n+1] X [n+1] chessboard, when the lone queen is in the most vulnerable position on the board, i.e., on a center square. - Bob Selcoe, Feb 12 2015
Also the circumference of the (n-1) X (n-1) grid graph for n > 2. - Eric W. Weisstein, Mar 25 2018
Also the crossing number of the complete bipartite graph K_{5,n}. - Eric W. Weisstein, Sep 11 2018

Examples

			a(0) = 0^2 - (2(0) - mod(0,2)) = 0.
a(3) = 3^2 - (2(3) - mod(3,2)) = 4.
		

Crossrefs

Cf. A042948.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 - (2*n - mod(n,2)) = n^2 - A042948(n).
a(n) = 2*A007590(n-1). - Enrique Pérez Herrero, Jul 04 2012
G.f.: -4*x^3 / ( (1+x)*(x-1)^3 ). a(n) = 4*A002620(n-1). - R. J. Mathar, Jul 06 2012
From Bob Selcoe, Feb 12 2015: (Start)
a(n) = (n-1)^2 when n is odd; a(n) = (n-1)^2 - 1 when n is even.
a(n) = A002378(n) - A047238(n+1). (End)
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/24 + 1/4.
Sum_{n>=3} (-1)^(n+1)/a(n) = Pi^2/24 - 1/4. (End)
E.g.f.: x*(x - 1)*cosh(x) + (x^2 - x + 1)*sinh(x). - Stefano Spezia, Oct 17 2022

A317186 One of many square spiral sequences: a(n) = n^2 + n - floor((n-1)/2).

Original entry on oeis.org

1, 2, 6, 11, 19, 28, 40, 53, 69, 86, 106, 127, 151, 176, 204, 233, 265, 298, 334, 371, 411, 452, 496, 541, 589, 638, 690, 743, 799, 856, 916, 977, 1041, 1106, 1174, 1243, 1315, 1388, 1464, 1541, 1621, 1702, 1786, 1871, 1959, 2048, 2140, 2233, 2329, 2426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2018

Keywords

Comments

Draw a square spiral on a piece of graph paper, and label the cells starting at the center with the positive (resp. nonnegative) numbers. This produces two versions of the labeled square spiral, shown in the Example section below.
The spiral may proceed clockwise or counterclockwise, and the first arm of the spiral may be along any of the four axes, so there are eight versions of each spiral. However, this has no effect on the resulting sequences, and it is enough to consider just two versions of the square spiral (starting at 1 or starting at 0).
The present sequence is obtained by reading alternate entries on the X-axis (say) of the square spiral started at 1.
The cross-references section lists many sequences that can be read directly off the two spirals. Many other sequences can be obtained from them by using them to extract subsequences from other important sequences. For example, the subsequence of primes indexed by the present sequence gives A317187.
a(n) is also the number of free polyominoes with n + 4 cells whose difference between length and width is n. In this comment the length is the longer of the two dimensions and the width is the shorter of the two dimensions (see the examples of polyominoes). Hence this is also the diagonal 4 of A379625. - Omar E. Pol, Jan 24 2025
From John Mason, Feb 19 2025: (Start)
The sequence enumerates polyominoes of width 2 having precisely 2 horizontal bars. By classifying such polyominoes according to the following templates, it is possible to define a formula that reduces to the one below:
.
OO O O
O OO OO
O O O
O O OO
OO OO O
.
(End)

Examples

			The square spiral when started with 1 begins:
.
  100--99--98--97--96--95--94--93--92--91
                                        |
   65--64--63--62--61--60--59--58--57  90
    |                               |   |
   66  37--36--35--34--33--32--31  56  89
    |   |                       |   |   |
   67  38  17--16--15--14--13  30  55  88
    |   |   |               |   |   |   |
   68  39  18   5---4---3  12  29  54  87
    |   |   |   |       |   |   |   |   |
   69  40  19   6   1---2  11  28  53  86
    |   |   |   |           |   |   |   |
   70  41  20   7---8---9--10  27  52  85
    |   |   |                   |   |   |
   71  42  21--22--23--24--25--26  51  84
    |   |                           |   |
   72  43--44--45--46--47--48--49--50  83
    |                                   |
   73--74--75--76--77--78--79--80--81--82
.
For the square spiral when started with 0, subtract 1 from each entry. In the following diagram this spiral has been reflected and rotated, but of course that makes no difference to the sequences:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3   0   7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13   2---1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31  12--11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57  30--29--28--27--26--25  48  79
    |   |                           |   |
   91  56--55--54--53--52--51--50--49  80
    |                                   |
   90--89--88--87--86--85--84--83--82--81
.
From _Omar E. Pol_, Jan 24 2025: (Start)
For n = 0 there is only one free polyomino with 0 + 4 = 4 cells whose difference between length and width is 0 as shown below, so a(0) = 1.
   _ _
  |_|_|
  |_|_|
.
For n = 1 there are two free polyominoes with 1 + 4 = 5 cells whose difference between length and width is 1 as shown below, so a(1) = 2.
   _ _     _ _
  |_|_|   |_|_|
  |_|_|   |_|_
  |_|     |_|_|
.
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Filling in these two squares spirals with greedy algorithm: A274640, A274641.
Cf. also A317187.

Programs

  • Mathematica
    a[n_] := n^2 + n - Floor[(n - 1)/2]; Array[a, 50, 0] (* Robert G. Wilson v, Aug 01 2018 *)
    LinearRecurrence[{2, 0, -2 , 1},{1, 2, 6, 11},50] (* or *)
    CoefficientList[Series[(- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)), {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Daniel Forgues, Aug 01 2018: (Start)
a(n) = (1/4) * (4 * n^2 + 2 * n + (-1)^n + 3), n >= 0.
a(0) = 1; a(n) = - a(n-1) + 2 * n^2 - n + 2, n >= 1.
a(0) = 1; a(1) = 2; a(2) = 6; a(3) = 11; a(n) = 2 * a(n-1) - 2 * a(n-3) + a(n-4), n >= 4.
G.f.: (- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)). (End)
E.g.f.: ((2 + 3*x + 2*x^2)*cosh(x) + (1 + 3*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
a(n)+a(n+1)=A033816(n). - R. J. Mathar, Mar 21 2025
a(n)-a(n-1) = A042948(n), n>=1. - R. J. Mathar, Mar 21 2025

A011848 a(n) = floor(binomial(n, 2)/2).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 7, 10, 14, 18, 22, 27, 33, 39, 45, 52, 60, 68, 76, 85, 95, 105, 115, 126, 138, 150, 162, 175, 189, 203, 217, 232, 248, 264, 280, 297, 315, 333, 351, 370, 390, 410, 430, 451, 473, 495, 517, 540, 564, 588, 612, 637, 663, 689, 715, 742, 770, 798
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Column sums of an array of the odd numbers repeatedly shifted 4 places to the right:
1 3 5 7 9 11 13 15 17...
1 3 5 7 9...
1...
.........................
-------------------------
1 3 5 7 10 14 18 22 27...
Floor of the area under the polygon connecting the lattice points (n, floor(n/2)) from 0..n. - Wesley Ivan Hurt, Jun 09 2014
Beginning with a(4)=3, the sequence might be called the "off-axis" Ulam-Spiral numbers because they are the numbers in ascending order on the horizontal and vertical spokes (heading outward) starting with the first turning points on the spiral (i.e., 3, 5, 7 and 10). That is, starting with: 3 (upward); 5 (leftward); 7 (downward) and 10 (rightward). These are A033991 (starting at a(1)), A007742 (starting at a(1)), A033954 (starting at a(1)) and A001107 (starting at a(2)), respectively. These quadri-sections are summarized in the formulas of Sep 26 2015. - Bob Selcoe, Oct 05 2015
Conjecture: For n = 2, a(n) is the greatest k such that A123663(k) < A000217(n - 2). - Peter Kagey, Nov 18 2016
a(n) is also the matching number of the n-triangular graph, (n-1)-triangular honeycomb queen graph, (n-1)-triangular honeycomb bishop graphs, and (for n > 7) (n-1)-triangular honeycomb obtuse knight graphs. - Eric W. Weisstein, Jun 02 2017 and Apr 03 2018
After 0, 0, 0, add 1, then add 2 three times, then add 3, then add 4 three times, then add 5, etc.; i.e., first differences are A004524 = (0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, ...). - M. F. Hasler, May 09 2018
Let s(0) = s(1) = 1, s(-1) = s(2) = x, and s(n+2)*s(n-2) = s(n+1)*s(n-1) + s(n)^2 for all n in Z. Then s(n) = p(n) / x^e(n) is a Laurent polynomial in x with p(n) a polynomial with nonnegative integer coefficients of degree a(n) for all n in Z. If x = 1, then s(n) = p(n) = A006720(n+1). - Michael Somos, Mar 22 2023

Examples

			G.f. = x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 10*x^7 + 14*x^8 + 18*x^9 + 22*x^10 + ...
p(0) = p(1) = 1, p(2) = 1 + x, p(3) = 1 + x + x^3, p(4) = 1 + 2*x + 2*x^2 + x^3 + x^5. - _Michael Somos_, Mar 22 2023
		

Crossrefs

A column of triangle A011857.
First differences are in A004524.
Cf. A007318, A033991, A007742, A033954, A001107, A006720, A035608 (bisection), A156859 (bisection).

Programs

  • GAP
    List([0..60],n->Int(Binomial(n,2)/2)); # Muniru A Asiru, Apr 05 2018
    
  • Haskell
    a011848 n = if n < 2 then 0 else flip div 2 $ a007318 n 2
    -- Reinhard Zumkeller, Mar 04 2015
    
  • Magma
    [ Floor(n*(n-1)/4) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    seq(floor(binomial(n,2)/2), n=0..57); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Table[Floor[n (n - 1)/4], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
    CoefficientList[Series[x^3/((1 + x^2) (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 21 2013 *)
    LinearRecurrence[{3, -4, 4, -4, 1}, {0, 0, 1, 3, 5}, {0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[Floor[Binomial[n, 2]/2], {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Table[1/4 (-1 + (-1 + n) n + Cos[n Pi/2] + Sin[n Pi/2]), {n, 0, 20}] (* Eric W. Weisstein, Jun 02 2017 *)
    Floor[Binomial[Range[0, 20], 2]/2] (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    a(n) = binomial(n, 2)\2;
    
  • PARI
    vector(100, n, n--; floor(n*(n-1)/4)) \\ Altug Alkan, Sep 30 2015
    
  • Python
    def a(n): return n*(n-1)//4 # Christoph B. Kassir, Oct 07 2022
  • Sage
    [floor(binomial(n,2)/2) for n in range(0,58)] # Zerinvary Lajos, Dec 01 2009
    

Formula

G.f.: x^3*(1-x^2)/((1-x)^3*(1-x^4)).
G.f.: x^3/((1+x^2)*(1-x)^3). - Jon Perry, Mar 31 2004
a(n) = +3*a(n-1) -4*a(n-2) +4*a(n-3) -3*a(n-4) +a(n-5). - R. J. Mathar, Apr 15 2010
a(n) = floor((n/(1+e^(1/n)))^2). - Richard R. Forberg, Jun 19 2013
a(n) = floor(n*(n-1)/4). - T. D. Noe, Jun 20 2013
a(n) = (1/4) * ( n^2 - n - 1 + (-1)^floor(n/2) ). - Ralf Stephan, Aug 11 2013
a(n) = A054925(n) - A133872(n+2). - Wesley Ivan Hurt, Jun 09 2014
a(4*n) = A033991(n). a(4*n+1) = A007742(n). a(4*n+2) = A033954(n). a(4*n+3) = A001107(n+1). - Bob Selcoe, Sep 26 2015
E.g.f.: (sin(x) + cos(x) + (x^2 - 1)*exp(x))/4. - Ilya Gutkovskiy, Nov 18 2016
A054925(n) = a(-n). A035608(n) = a(2*n+1). Wesley Ivan Hurt, Jun 09 2014
A156859(n) = a(2*n+2). - Michael Somos, Nov 18 2016
Euler transform of length 4 sequence [ 3, -1, 0, 1]. - Michael Somos, Nov 18 2016
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=3} 1/a(n) = 40/9 - 2*Pi/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = 32/9 - 4*log(2). (End)
0 = a(n+2)*(a(n)*(a(n) -6*a(n+1) +4*a(n+2)) +a(n+1)*(8*a(n+1) -10*a(n+2)) + 3*a(n+2)^2) +a(n+3)*(a(n)*(+a(n) -2*a(n+1)) +a(n+2)*(2*a(n+1) -a(n+2))) for all n in Z. - Michael Somos, Mar 22 2023
2*a(n) + 2*a(n-2) = (n-1)*(n-2). - R. J. Mathar, Feb 12 2024

A267682 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3, with initial terms 1, 1, 4, 8.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Mathematica
    rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((1-x+2*x^2+2*x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016
    
  • Python
    print([n*(n-1)+n//2+1 for n in range(51)]) # Karl V. Keller, Jr., Jul 14 2021

Formula

G.f.: (1 - x + 2*x^2 + 2*x^3) / ((1-x)^3*(1+x)). - Colin Barker, Jan 19 2016
a(n) = n*(n-1) + floor(n/2) + 1. - Karl V. Keller, Jr., Jul 14 2021
E.g.f.: (exp(x)*(2 + x + 2*x^2) - sinh(x))/2. - Stefano Spezia, Jul 16 2021

Extensions

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.

A115258 Isolated primes in Ulam's lattice (1, 2, ... in spiral).

Original entry on oeis.org

83, 101, 127, 137, 163, 199, 233, 311, 373, 443, 463, 491, 541, 587, 613, 631, 641, 659, 673, 683, 691, 733, 757, 797, 859, 881, 911, 919, 953, 971, 991, 1013, 1051, 1061, 1103, 1109, 1117, 1193, 1201, 1213, 1249, 1307, 1319, 1409, 1433, 1459, 1483, 1487
Offset: 1

Views

Author

Keywords

Comments

Isolated prime numbers have no adjacent primes in a lattice generated by writing consecutive integers starting from 1 in a spiral distribution. If n0 is the number of isolated primes and p the number of primes less than N, the ratio n0/p approaches 1 as N increases. If n1, n2, n3, n4 denote the number of primes with respectively 1, 2, 3, 4 adjacent primes in the lattice, the ratios n1/n0, n2/n1, n3/n2, n4/n3 approach 0 as N increases. The limits stand for any 2D lattice of integers generated by a priori criteria (i.e., not knowing distributions of primes) as Ulam's lattice.

Examples

			83 is an isolated prime as the adjacent numbers in lattice 50, 51, 81, 82, 84, 123, 124, 125 are not primes.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 17^2 showing only primes, with the isolated primes in parentheses (redrawn by _Jon E. Schoenfield_, Aug 06 2017):
  257 .  .  .  .  . 251 .  .  .  .  .  .  .  .  . 241
   . 197 .  .  . 193 . 191 .  .  .  .  .  .  .  .  .
   .  .  .  .  .  .  .  . 139 .(137).  .  .  .  . 239
   .(199).(101).  .  . 97  .  .  .  .  .  .  . 181 .
   .  .  .  .  .  .  .  . 61  . 59  .  .  . 131 .  .
   .  .  . 103 . 37  .  .  .  .  . 31  . 89  . 179 .
  263 . 149 . 67  . 17  .  .  . 13  .  .  .  .  .  .
   .  .  .  .  .  .  .  5  .  3  . 29  .  .  .  .  .
   .  . 151 .  .  . 19  .  .  2 11  . 53  .(127).(233)
   .  .  . 107 . 41  .  7  .  .  .  .  .  .  .  .  .
   .  .  .  . 71  .  .  . 23  .  .  .  .  .  .  .  .
   .  .  . 109 . 43  .  .  . 47  .  .  .(83) . 173 .
  269 .  .  . 73  .  .  .  .  . 79  .  .  .  .  . 229
   .  .  .  .  . 113 .  .  .  .  .  .  .  .  .  .  .
  271 . 157 .  .  .  .  .(163).  .  . 167 .  .  . 227
   . 211 .  .  .  .  .  .  .  .  .  .  . 223 .  .  .
   .  .  .  . 277 .  .  . 281 . 283 .  .  .  .  .  .
(End)
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 22.

Crossrefs

Cf. A113688 (isolated semiprimes in the semiprime spiral), A156859.

Programs

  • Maple
    # A is Ulam's lattice
    if (isprime(A[x,y])and(not(isprime(A[x+1,y]) or isprime(A[x-1,y])or isprime(A[x,y+1])or isprime(A[x,y-1])or isprime(A[x-1,y-1])or isprime(A[x+1,y+1])or isprime(A[x+1,y-1])or isprime(A[x-1,y+1])))) then print (A[x,y]) ; fi;
  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; f[spiral@ 21 /. n_ /; CompositeQ@ n -> 0] (* Michael De Vlieger, Dec 22 2015, Version 10 *)

A139596 A033587(n) followed by even hexagonal number A014635(n+1).

Original entry on oeis.org

0, 6, 14, 28, 44, 66, 90, 120, 152, 190, 230, 276, 324, 378, 434, 496, 560, 630, 702, 780, 860, 946, 1034, 1128, 1224, 1326, 1430, 1540, 1652, 1770, 1890, 2016, 2144, 2278, 2414, 2556, 2700, 2850, 3002, 3160, 3320, 3486, 3654, 3828
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 6,... and the same line from 0, in the direction 0, 14,..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
0, 6
14, 28
44, 66
90, 120
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,6,14,28},50] (* Harvey P. Dale, Jan 20 2024 *)

Formula

Array read by rows: row n gives 8*n^2 + 6*n, 8*(n+1)^2 - 2(n+1).
O.g.f.: -2*x*(x+3)/((x-1)^3*(1+x)). - R. J. Mathar, May 06 2008
a(n) = 2*A156859(n). - R. J. Mathar, Feb 28 2018

A172294 Sequence of the "Natural Jewels": a natural jewel is a number that is totally enclosed by prime numbers in a version of Ulam Spiral.

Original entry on oeis.org

12, 42, 1152, 1452, 1950, 3672, 5520, 6660, 8232, 10890, 13218, 15288, 15360, 16062, 18042, 20898, 21018, 23562, 23628, 25998, 27918, 32190, 37812, 42018, 42462, 48858, 55818, 57192, 80832, 80910, 83232, 83340, 91368, 97848, 98640
Offset: 1

Views

Author

Emilio Apricena (emilioapricena(AT)yahoo.it), Jan 30 2010

Keywords

Comments

There is no formula to calculate these numbers. If the sequence is infinite, then there are infinitely many primes p such that p + 2 is also prime (twin prime conjecture).

Examples

			11-(top)->12, 13-(left)->12, 29-(right)->12, 31-(bottom)->12.
		

Crossrefs

Cf. A156859.

Extensions

Corrected and extended by Emilio Apricena (emilioapricena(AT)yahoo.it), May 15 2010

A231559 a(n) = floor( A000326(n)/2 ).

Original entry on oeis.org

0, 0, 2, 6, 11, 17, 25, 35, 46, 58, 72, 88, 105, 123, 143, 165, 188, 212, 238, 266, 295, 325, 357, 391, 426, 462, 500, 540, 581, 623, 667, 713, 760, 808, 858, 910, 963, 1017, 1073, 1131, 1190, 1250, 1312, 1376, 1441, 1507, 1575, 1645, 1716, 1788, 1862, 1938
Offset: 0

Views

Author

Bruno Berselli, Nov 11 2013

Keywords

Comments

First trisection of A011865.

Crossrefs

Cf. pentagonal numbers: A000326.
Cf. A011848 for the triangular numbers: floor(A000217/2); A007590 for the squares: floor(A000290/2); A156859 for the hexagonal numbers: floor(A000384/2).
First differences: A047262.

Programs

  • Magma
    [Floor(n*(3*n-1)/4): n in [0..60]];
  • Mathematica
    Table[Floor[n (3 n - 1)/4], {n, 0, 60}]
    CoefficientList[Series[x^2(2+x^2)/((1+x^2)(1-x)^3),{x,0,70}],x] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,0,2,6,11},70] (* Harvey P. Dale, Jan 28 2022 *)

Formula

G.f.: x^2*(2 + x^2)/((1 + x^2)*(1 - x)^3).
a(n) = ( n*(3*n-1) + i^(n*(n+1)) - 1 )/4, where i=sqrt(-1).

A332583 Label only the prime-numbered position cells of the infinite 2D square lattice with the square spiral (or Ulam spiral), starting with 1 at the center; sequence lists primes that are visible from square 1.

Original entry on oeis.org

2, 3, 5, 7, 19, 23, 29, 41, 47, 59, 61, 67, 71, 79, 83, 89, 97, 103, 107, 109, 113, 131, 137, 149, 167, 173, 179, 181, 191, 193, 199, 223, 227, 229, 239, 251, 263, 271, 277, 283, 293, 311, 317, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 409, 419, 433, 439, 443, 449, 457, 461, 467, 479, 487, 491, 499, 503
Offset: 1

Views

Author

Scott R. Shannon, Feb 17 2020

Keywords

Comments

Any grid point labeled with a prime number and with coordinates (x,y) relative to the central grid point, which is numbered 1, and where the greatest common divisor (gcd) of |x| and |y| equals 1 will be visible from the central point. Grid points where gcd(|x|,|y|) > 1 may have another prime grid point directly between it and the central point and will thus not be visible.
For a square spiral of size 10001 by 10001, slightly over 100 million numbers, a total of 5762536 primes are present, of which 4811013 are visible. This gives a ratio of visible primes to all primes of about 0.835.

Examples

			The 2D grid is shown below. The primes that are blocked from the central 1 square are in parentheses; these all have another prime number directly between their position and the central square.
.
.
-------------61-------59------+
                              |
(37)---------------------(31) |
|                         |   |
|  (17)--------------(13) |   |
|    |                |   |   |
|    |   5--------3   |   29  |
|    |   |        |   |   |   |
|   19   |   1----2  (11) | (53)
|    |   |            |   |   |
41   |   7------------+   |   |
|    |                    |   |
|    +-------23-----------+   |
|                             |
(43)-------------47-----------+
.
.
a(1) = 2 to a(4) = 7 are all primes adjacent to the central 1 point, thus all are visible from that square.
a(5) = 19 as primes 11,13,17 are blocked from the central 1 point by points with prime numbers 2,3,5 respectively.
a(14) = 79 as although the point 79 has relative coordinates of (2,-4) from the central square, gcd(|2|,|-4|) = 2, there is no other prime at coordinate (1,-2), thus it is visible. This square is not visible from the central square when nonprime points are also considered in the spiral.
		

Crossrefs

Extensions

Edited by N. J. A. Sloane, Feb 17 2020

A241592 Degree of Somos4-oid polynomial s_n(x).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 2, 5, 6, 7, 9, 10, 12, 14, 14, 18, 20, 22, 25, 27, 30, 33, 34, 39, 42, 45, 49, 52, 56, 60, 62, 68, 72, 76, 81, 85, 90, 95, 98, 105, 110, 115, 121, 126, 132, 138, 142, 150, 156, 162, 169, 175, 182, 189, 194, 203, 210, 217, 225, 232, 240
Offset: 1

Views

Author

N. J. A. Sloane, May 16 2014

Keywords

Examples

			G.f. = x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 5*x^9 + 6*x^10 + 7*x^11 + ...
		

Crossrefs

Programs

  • Magma
    I:=[0,0,0,1,1,2,3,2,5,6]; [n le 10 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-8)-2*Self(n-9)+Self(n-10): n in [1..70]]; // Vincenzo Librandi, Jan 20 2015
  • Mathematica
    a[ n_] := If[ Divisible[ n, 8], -2 + n^2 / 16, Quotient[ 2 n^2 - 5 (-1)^n + 5, 32]]; (* Michael Somos, Jan 20 2015 *)
    CoefficientList[Series[x^3 (1 - x + x^2 - 2 x^4 + 4 x^5 - 2 x^6) / ((1 - x)^2 (1 - x^8)), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 20 2015 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{0,0,0,1,1,2,3,2,5,6},70] (* Harvey P. Dale, Feb 28 2023 *)
  • PARI
    {a(n) = if( n%8==0, -2 + n^2 / 16, (2*n^2 - 5*(-1)^n + 5) \ 32)}; /* Michael Somos, Jan 19 2015 */
    
  • PARI
    concat(vector(3), Vec(x^4*(2*x^6-4*x^5+2*x^4-x^2+x-1)/((x-1)^3*(x+1)*(x^2+1)*(x^4+1)) + O(x^100))) \\ Colin Barker, Jul 17 2015
    

Formula

Eight interlaced quadratic progressions: deg(s_{8q+r}) = (4q + r)q + [-2,0,0,0,1,1,2,3]_r, 0 <= r <= 7.
G.f.: x^4 * (1 - x + x^2 - 2*x^4 + 4*x^5 - 2*x^6) / ((1 - x)^2 * (1 - x^8)). - Michael Somos, Jan 19 2015
a(n) = a(-n) for all n in Z. - Michael Somos, Jan 19 2015
a(4*n + 1) = A035608(n), a(4*n + 2) = A002378(n), a(4*n + 3) = A156859(n). - Michael Somos, Jan 19 2015
Previous Showing 21-30 of 31 results. Next