cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A303814 Generalized 24-gonal (or icositetragonal) numbers: m*(11*m - 10) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 21, 24, 64, 69, 129, 136, 216, 225, 325, 336, 456, 469, 609, 624, 784, 801, 981, 1000, 1200, 1221, 1441, 1464, 1704, 1729, 1989, 2016, 2296, 2325, 2625, 2656, 2976, 3009, 3349, 3384, 3744, 3781, 4161, 4200, 4600, 4641, 5061, 5104, 5544, 5589, 6049, 6096, 6576, 6625
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

a(25) = 1729 is the Hardy-Ramanujan number.
Numbers k such that 11*k + 25 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317320. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), this sequence (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    With[{pp = 24, nn = 55}, {0}~Join~Riffle[Array[PolygonalNumber[pp, #] &, Ceiling[nn/2]], Array[PolygonalNumber[pp, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    Table[(22 n (n + 1) + 9 (2 n + 1) (-1)^n - 9)/8, {n, 0, 50}] (* Bruno Berselli, Jun 08 2018 *)
    CoefficientList[ Series[-x (x^2 + 20x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 21, 24, 64}, 50] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 20*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 08 2018: (Start)
G.f.: x*(1 + 20*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (22*n*(n + 1) + 9*(2*n + 1)*(-1)^n - 9)/8. Therefore:
a(n) = n*(11*n + 20)/4, if n is even, or (n + 1)*(11*n - 9)/4 otherwise.
(2*n - 1)*a(n) + (2*n + 1)*a(n-1) - n*(11*n^2 - 10) = 0. (End)
Sum_{n>=1} 1/a(n) = (11 + 10*Pi*cot(Pi/11))/100. - Amiram Eldar, Mar 01 2022

A316724 Generalized 26-gonal (or icosihexagonal) numbers: m*(12*m - 11) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 23, 26, 70, 75, 141, 148, 236, 245, 355, 366, 498, 511, 665, 680, 856, 873, 1071, 1090, 1310, 1331, 1573, 1596, 1860, 1885, 2171, 2198, 2506, 2535, 2865, 2896, 3248, 3281, 3655, 3690, 4086, 4123, 4541, 4580, 5020, 5061, 5523, 5566, 6050, 6095, 6601, 6648, 7176, 7225, 7775
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

48*a(n) + 121 is a square. - Bruno Berselli, Jul 11 2018
Partial sums of A317322. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), this sequence (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [(12*n*(n+1) + 5*(-1)^n*(2*n+1) -5)/4: n in [0..60]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    Table[(12 n (n + 1) + 5 (2 n + 1) (-1)^n - 5)/4, {n, 0, 60}] (* Bruno Berselli, Jul 11 2018 *)
    CoefficientList[ Series[-x (x^2 + 22x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 60}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 23, 26, 70}, 60] (* Robert G. Wilson v, Jul 28 2018 *)
    nn=30; Sort[Table[n (12 n - 11), {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 22*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^60))) \\ Colin Barker, Jul 12 2018
    
  • SageMath
    [(12*n*(n+1) + 5*(-1)^n*(2*n+1) -5)//4 for n in range(61)] # G. C. Greubel, Sep 24 2024

Formula

From Bruno Berselli, Jul 11 2018: (Start)
O.g.f.: x*(1 + 22*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-1-n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (12*n*(n + 1) + 5*(2*n + 1)*(-1)^n - 5)/4. Therefore:
a(n) = n*(6*n + 11)/2 for n even; otherwise, a(n) = (n + 1)*(6*n - 5)/2.
(2*n - 1)*a(n) + (2*n + 1)*a(n-1) - n*(12*n^2 - 11) = 0. (End)
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = 12/121 + (sqrt(3)+2)*Pi/11.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(3)*log(sqrt(3)+2) + 6*log(2) + 3*log(3))/11 - 12/121. (End)
E.g.f.: (1/4)*(5*(1 - 2*x)*exp(-x) + (-5 + 24*x + 12*x^2)*exp(x)). - G. C. Greubel, Sep 24 2024

A316725 Generalized 27-gonal (or icosiheptagonal) numbers: m*(25*m - 23)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 24, 27, 73, 78, 147, 154, 246, 255, 370, 381, 519, 532, 693, 708, 892, 909, 1116, 1135, 1365, 1386, 1639, 1662, 1938, 1963, 2262, 2289, 2611, 2640, 2985, 3016, 3384, 3417, 3808, 3843, 4257, 4294, 4731, 4770, 5230, 5271, 5754, 5797, 6303, 6348, 6877, 6924, 7476, 7525, 8100, 8151, 8749, 8802
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 27.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Partial sums of A317323. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), this sequence (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,24,27,73];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 16 2018
  • Maple
    a:= n-> (m-> m*(25*m-23)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 11 2018
  • Mathematica
    CoefficientList[Series[-x (x^2 + 23x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 53}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 24, 27, 73, 78, 147}, 53] (* Robert G. Wilson v, Jul 28 2018; corrected by Georg Fischer, Apr 03 2019 *)
    nn=30; Sort[Table[n (25 n - 23) / 2, {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 11 2018
    

Formula

From Colin Barker, Jul 11 2018: (Start)
G.f.: x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(25*n + 46)/8 for n even.
a(n) = (25*n - 21)*(n + 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 2*(25 + 23*Pi*cot(2*Pi/25))/529. - Amiram Eldar, Mar 01 2022

A316729 Generalized 30-gonal (or triacontagonal) numbers: m*(14*m - 13) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 27, 30, 82, 87, 165, 172, 276, 285, 415, 426, 582, 595, 777, 792, 1000, 1017, 1251, 1270, 1530, 1551, 1837, 1860, 2172, 2197, 2535, 2562, 2926, 2955, 3345, 3376, 3792, 3825, 4267, 4302, 4770, 4807, 5301, 5340, 5860, 5901, 6447, 6490, 7062, 7107, 7705, 7752, 8376, 8425, 9075, 9126, 9802, 9855
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 30.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Every sequence of generalized k-gonal numbers can be represented as vertices of a rectangular spiral constructed with line segments on the square grid, with k >= 5.
56*a(n) + 169 is a square. - Vincenzo Librandi, Jul 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 27 2018
Also partial sums of A317326. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), this sequence (k=30).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 26 x + x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 55}], x] (* Vincenzo Librandi, Jul 12 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 27, 30, 82}, 47] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jul 16 2018

Formula

G.f.: x*(1 + 26*x + x^2)/((1 + x)^2*(1 - x)^3). - Vincenzo Librandi, Jul 12 2018
From Amiram Eldar, Mar 01 2022: (Start)
a(n) = (28*n*(n + 1) + 12*(2*n + 1)*(-1)^n - 12)/8.
a(n) = n*(7*n + 13)/2, if n is even, or (n + 1)*(7*n - 6)/2 otherwise.
Sum_{n>=1} 1/a(n) = 14/169 + Pi*cot(Pi/14)/13. (End)

Extensions

Duplicated term (1551) deleted by Colin Barker, Jul 16 2018

A016766 a(n) = (3*n)^2.

Original entry on oeis.org

0, 9, 36, 81, 144, 225, 324, 441, 576, 729, 900, 1089, 1296, 1521, 1764, 2025, 2304, 2601, 2916, 3249, 3600, 3969, 4356, 4761, 5184, 5625, 6084, 6561, 7056, 7569, 8100, 8649, 9216, 9801, 10404, 11025, 11664, 12321, 12996, 13689, 14400, 15129, 15876, 16641, 17424
Offset: 0

Views

Author

Keywords

Comments

Number of edges of the complete tripartite graph of order 6n, K_n, n, 4n. - Roberto E. Martinez II, Jan 07 2002
Area of a square with side 3n. - Wesley Ivan Hurt, Sep 24 2014
Right-hand side of the binomial coefficient identity Sum_{k = 0..3*n} (-1)^(n+k+1)* binomial(3*n,k)*binomial(3*n + k,k)*(3*n - k) = a(n). - Peter Bala, Jan 12 2022

Crossrefs

Numbers of the form 9*n^2 + k*n, for integer n: this sequence (k = 0), A132355 (k = 2), A185039 (k = 4), A057780 (k = 6), A218864 (k = 8). - Jason Kimberley, Nov 09 2012

Programs

Formula

a(n) = 9*n^2 = 9*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 3*A033428(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 9*(2*n-1) for n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
From Wesley Ivan Hurt, Sep 24 2014: (Start)
G.f.: 9*x*(1 + x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 3.
a(n) = A000290(A008585(n)). (End)
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/54.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/108.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/3)/(Pi/3).
Product_{n>=1} (1 - 1/a(n)) = sinh(Pi/2)/(Pi/2) = 3*sqrt(3)/(2*Pi) (A086089). (End)
a(n) = A051624(n) + 8*A000217(n). In general, if P(k,n) = the k-th n-gonal number, then (k*n)^2 = P(k^2 + 3,n) + (k^2 - 1)*A000217(n). - Charlie Marion, Mar 09 2022
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 9*x*(1 + x)*exp(x).
a(n) = n*A008591(n) = A195042(2*n). (End)

Extensions

More terms from Zerinvary Lajos, May 30 2006

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A185039 Numbers of the form 9*m^2 + 4*m, m an integer.

Original entry on oeis.org

0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, 300, 348, 413, 469, 544, 608, 693, 765, 860, 940, 1045, 1133, 1248, 1344, 1469, 1573, 1708, 1820, 1965, 2085, 2240, 2368, 2533, 2669, 2844, 2988, 3173, 3325, 3520, 3680, 3885, 4053, 4268, 4444, 4669, 4853, 5088
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2012

Keywords

Comments

Also, numbers m such that 9*m+4 is a square. After 0, therefore, there are no squares in this sequence. - Bruno Berselli, Jan 07 2016

Crossrefs

Characteristic function is A205809.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), A132355 (k=2), this sequence (k=4), A057780 (k=6), A218864 (k=8). [Jason Kimberley, Nov 08 2012]
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

  • Magma
    [0] cat &cat[[9*n^2-4*n,9*n^2+4*n]: n in [1..32]]; // Bruno Berselli, Feb 04 2011
    
  • Mathematica
    CoefficientList[Series[x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 20 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,5,13,28,44},50] (* Harvey P. Dale, Jan 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3)) \\ G. C. Greubel, Jun 20 2017

Formula

From Bruno Berselli, Feb 04 2012: (Start)
G.f.: x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3).
a(n) = a(-n+1) = (18*n*(n-1)+(2*n-1)*(-1)^n+1)/8 = A004526(n)*A156638(n). (End).

A016910 a(n) = (6*n)^2.

Original entry on oeis.org

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0

Views

Author

Keywords

Comments

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Programs

Formula

From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)

A266956 Numbers m such that 9*m+7 is a square.

Original entry on oeis.org

1, 2, 18, 21, 53, 58, 106, 113, 177, 186, 266, 277, 373, 386, 498, 513, 641, 658, 802, 821, 981, 1002, 1178, 1201, 1393, 1418, 1626, 1653, 1877, 1906, 2146, 2177, 2433, 2466, 2738, 2773, 3061, 3098, 3402, 3441, 3761, 3802, 4138, 4181, 4533, 4578, 4946, 4993, 5377, 5426
Offset: 1

Views

Author

Bruno Berselli, Jan 07 2016

Keywords

Comments

Equivalently, numbers of the form h*(9*h+8)+1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ...
Also, integer values of k*(k+8)/9 plus 1.
It is easy to see that the Diophantine equation 9*x+3*j+1 = y^2 has infinitely many solutions in integers (x,y) for any j in Z. It follows a table with j = -5..5:
...
j = -5, x: 2, 7, 15, 30, 46, 71, 95, 130, 162, 207, 247, ...
j = -4, x: 3, 4, 20, 23, 55, 60, 108, 115, 179, 188, 268, ...
j = -3, x: 1, 8, 12, 33, 41, 76, 88, 137, 153, 216, 236, ...
j = -2, x: 1, 6, 14, 29, 45, 70, 94, 129, 161, 206, 246, ...
j = -1, x: 2, 3, 19, 22, 54, 59, 107, 114, 178, 187, 267, ...
j = 0, x: 0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, ... (A132355)
j = 1, x: 0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, ... (A185039)
j = 2, x: 1, 2, 18, 21, 53, 58, 106, 113, 177, 186, 266, ... (A266956)
j = 3, x: -1, 6, 10, 31, 39, 74, 86, 135, 151, 214, 234, ... (A266957)
j = 4, x: -1, 4, 12, 27, 43, 68, 92, 127, 159, 204, 244, ... (A266958)
j = 5, x: 0, 1, 17, 20, 52, 57, 105, 112, 176, 185, 265, ... (A218864)
...
The general closed form of these sequences is:
b(n,j) = (18*(n-1)*n + s(j)*(2*n-1)*(-1)^n + t(j))/8, where s(j) = 6*(-j) + 18*floor(j/3) - (-1)^floor(2*(j+1)/3) + 6 and t(j) = 4*(-j) + 4*floor((j+1)/3) + 5.
a(2m) - a(2m-1) gives the odd numbers (A005408); a(2m+1) - a(2m) gives the multiples of 16 (A008598).

Crossrefs

Cf. numbers m such that 9*m+i: A132355 (i=1), A185039 (i=4), this sequence (i=7), A005563 (i=9), A266957 (i=10), A266958 (i=13), A218864 (i=16), A008865 (i=18, without -2).
Cf. A156638: square roots of 9*a(n)+7.

Programs

  • Magma
    [n: n in [0..6000] | IsSquare(9*n+7)];
    
  • Magma
    [(18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8: n in [1..50]];
  • Mathematica
    Select[Range[0, 6000], IntegerQ[Sqrt[9 # + 7]] &]
    Table[(18 (n - 1) n - 7 (2 n - 1) (-1)^n + 1)/8, {n, 1, 50}]
  • PARI
    for(n=0, 6000, if(issquare(9*n+7), print1(n, ", ")))
    
  • PARI
    vector(50, n, n; (18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8)
    
  • Python
    from gmpy2 import is_square
    [n for n in range(6000) if is_square(9*n+7)]
    
  • Python
    [(18*(n-1)*n-7*(2*n-1)*(-1)**n+1)/8 for n in range(1, 60)]
    
  • Sage
    [n for n in (0..6000) if is_square(9*n+7)]
    
  • Sage
    [(18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8 for n in (1..50)]
    

Formula

G.f.: x*(1 + x + 14*x^2 + x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n - 7*(2*n-1)*(-1)^n + 1)/8.
a(n) = A218864(n) + 1.

A057780 Multiples of 3 that are one less than a perfect square.

Original entry on oeis.org

0, 3, 15, 24, 48, 63, 99, 120, 168, 195, 255, 288, 360, 399, 483, 528, 624, 675, 783, 840, 960, 1023, 1155, 1224, 1368, 1443, 1599, 1680, 1848, 1935, 2115, 2208, 2400, 2499, 2703, 2808, 3024, 3135, 3363, 3480, 3720, 3843, 4095, 4224, 4488, 4623, 4899, 5040
Offset: 1

Views

Author

Benjamin Geiger (benjamin_geiger(AT)yahoo.com), Nov 02 2000

Keywords

Comments

Also, numbers of the form 9*m^2+6*m, m an integer. - Jason Kimberley, Nov 08 2012
k is in this list iff k+1 is in the support of A033684. - Jason Kimberley, Nov 13 2012
Exponents in the expansion of Product_{n >= 1} (1 - q^(6*n))^2 * (1 - q ^(9*n)) * (1 - q^(36*n))/((1 - q^(3*n))*(1 - q^(12*n))*(1 - q^(18*n))) = 1 + q^3 + q^15 + q^24 + q^48 + q^63 + q^99 + ... (see Oliver, Theorem 1.1). - Peter Bala, Jan 06 2025

Crossrefs

Numbers of the form 9n^2+kn, for integer n: A016766 (k=0), A132355 (k=2), A185039 (k=4), this sequence (k=6), A218864 (k=8). - Jason Kimberley, Nov 08 2012

Programs

  • Magma
    a:=func;[0]cat[a(n*m):m in[-1, 1],n in[1..24]]; // Jason Kimberley, Nov 09 2012
    
  • Mathematica
    Select[3*Range[0,2000],IntegerQ[Sqrt[#+1]]&] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,3,15,24,48},50] (* Harvey P. Dale, Sep 10 2019 *)
  • PARI
    concat(0, Vec(3*x^2*(1+4*x+x^2)/((1-x)^3*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 26 2015

Formula

a(n) = A001651(n)^2 - 1 = 3 * A001082(n).
G.f.: 3*x^2*(1+4*x+x^2) / ((1-x)^3*(1+x)^2). - Colin Barker, Nov 24 2012
From Colin Barker, Dec 26 2015: (Start)
a(n) = 3/8*(6*n^2-2*((-1)^n+3)*n+(-1)^n-1).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5. (End)

Extensions

Since this is a list, offset corrected to 1 by Jason Kimberley, Nov 09 2012
Previous Showing 21-30 of 36 results. Next