cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 9101 results. Next

A102896 Number of ACI algebras (or semilattices) on n generators with no annihilator.

Original entry on oeis.org

1, 2, 7, 61, 2480, 1385552, 75973751474, 14087648235707352472
Offset: 0

Views

Author

Mitch Harris, Jan 18 2005

Keywords

Comments

Or, number of Moore families on an n-set, that is, families of subsets that contain the universal set {1,...,n} and are closed under intersection.
Or, number of closure operators on a set of n elements.
An ACI algebra or semilattice is a system with a single binary, idempotent, commutative and associative operation.
Also the number of set-systems on n vertices that are closed under union. The BII-numbers of these set-systems are given by A326875. - Gus Wiseman, Jul 31 2019
From Bernhard Ganter, Jul 08 2025: (Start)
Also the number of union-free families of subsets of an n-set; i.e., families of nonempty sets on n elements such that no set is a union of some others.
Also the number of intersection-free families of subsets of an n-set; i.e., of families of proper subsets on n elements such that no set is an intersection of some others.
(Note that every union-free family on an n-set is the set of union-irreducible elements of exactly one union-closed family, and each family of union-irreducible elements is union-free. Same for intersection.) (End)

Examples

			From _Gus Wiseman_, Jul 31 2019: (Start)
The a(0) = 1 through a(2) = 7 set-systems closed under union:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{1,2}}
             {{2},{1,2}}
             {{1},{2},{1,2}}
(End)
		

References

  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967.
  • Maria Paola Bonacina and Nachum Dershowitz, Canonical Inference for Implicational Systems, in Automated Reasoning, Lecture Notes in Computer Science, Volume 5195/2008, Springer-Verlag.
  • P. Colomb, A. Irlande and O. Raynaud, Counting of Moore Families for n=7, International Conference on Formal Concept Analysis (2010). [From Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010]
  • E. H. Moore, Introduction to a Form of General Analysis, AMS Colloquium Publication 2 (1910), pp. 53-80.

Crossrefs

For set-systems closed under union:
- The covering case is A102894.
- The unlabeled case is A193674.
- The case also closed under intersection is A306445.
- Set-systems closed under overlapping union are A326866.
- The BII-numbers of these set-systems are given by A326875.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],SubsetQ[#,Union@@@Tuples[#,2]]&]],{n,0,3}] (* Gus Wiseman, Jul 31 2019 *)

Formula

a(n) = Sum_{k=0..n} C(n, k)*A102894(k), where C(n, k) is the binomial coefficient.
For asymptotics see A102897.
a(n) = A102897(n)/2. - Gus Wiseman, Jul 31 2019

Extensions

N. J. A. Sloane added a(6) from the Habib et al. reference, May 26 2005
Additional comments from Don Knuth, Jul 01 2005
a(7) from Pierre Colomb (pierre(AT)colomb.me), Sep 04 2010

A175607 Largest number k such that the greatest prime factor of k^2 - 1 is prime(n).

Original entry on oeis.org

3, 17, 161, 8749, 19601, 246401, 672281, 23718421, 10285001, 354365441, 3222617399, 9447152318, 127855050751, 842277599279, 2218993446251, 2907159732049, 41257182408961, 63774701665793, 25640240468751, 238178082107393, 4573663454608289, 19182937474703818751, 34903240221563713, 332110803172167361, 99913980938200001
Offset: 1

Views

Author

Keywords

Comments

For any prime p, there are finitely many k such that k^2-1 has p as its largest prime factor.
For every prime p, is there some k where the greatest prime factor of k^2-1 is p? Answer from Artur Jasinski, Oct 22 2010: Yes.
As mentioned by Luca and Najman, this problem is closely related to the one in A002071.
The terms give an upper bound with a method for the simultaneous computation of logarithms of small primes, see the fxtbook link. - Joerg Arndt, Jul 03 2012

Crossrefs

Cf. A214093 (largest primes p such that the greatest prime factor of p^2-1 is prime(n)).
Cf. A076605 (largest prime divisor of n^2-1).
Cf. A285283 (equivalent for k^2+1). - Tomohiro Yamada, Apr 22 2017
Cf. A006530, A005563. - M. F. Hasler, Jun 13 2018

Programs

  • PARI
    /* up to term for p=97 */
    /* S[] is the list computed by Filip Najman (16223 elements) */
    S=[2,3,4, ... ,332110803172167361, 19182937474703818751];
    lpf(n)={ vecmax(factor(n)[, 1]) } /* largest prime factor */
    { forprime (p=2, 97,
      t = 0;
      for (n=1,#S, if ( lpf(S[n]^2-1)==p, t=n ) );
      print1(S[t],", ");
    );}
    /* Joerg Arndt, Jul 03 2012 */

Extensions

More terms (using Filip Najman's list) by Joerg Arndt, Jul 03 2012

A006558 Start of first run of n consecutive integers with same number of divisors.

Original entry on oeis.org

1, 2, 33, 242, 11605, 28374, 171893, 1043710445721, 2197379769820, 2642166652554075
Offset: 1

Views

Author

Keywords

Comments

The entry 40311 given by Guy and by Wells is incorrect. - Jud McCranie, Jan 20 2002
a(10) <= 2642166652554075, a(11) <= 17707503256664346, a(12) <= 9827470582657267545. - David Wasserman, Feb 22 2008
a(10) > 10^13. - Giovanni Resta, Jul 13 2015
a(12) <= 3842083249515874843. - Hugo van der Sanden, Sep 20 2022
a(13) <= 34169215324203592637988571. - Hugo van der Sanden, Apr 13 2022
a(14) <= 9721439902882994590514319997146. - Hugo van der Sanden, Jun 14 2022
a(15) <= 80215613469168729088982885848674841. - Natalia Makarova, Sep 18 2022
a(16) <= 37981337212463143311694743672867136611416. - Vladimir Letsko, Mar 17 2017
a(17) <= 768369049267672356024049141254832375543516. - Vladimir Letsko, Sep 12 2017
a(18) <= 488900003598703704335810037459507226590256411. - Vladimir Letsko, Jun 03 2022
a(19) <= 5908388043825578351730345292813071711296723319324. - Vladimir Letsko, Apr 09 2022
a(20) <= 17668887847524548413038893976018715843277693308027547. Vladimir Letsko, May 30 2022
Spătaru proves that the longest such run up to N is at most exp(C*sqrt(log N log log N)) for some constant C, hence a(n) >> exp(exp(W((log^2 n)/C))) which is approximately exp(log^2 n/(2 log log n)). - Charles R Greathouse IV, Feb 06 2023

Examples

			33 has four divisors (1, 3, 11, and 33), 34 has four divisors (1, 2, 17, and 34), 35 has four divisors (1, 5, 7, and 35).  These are the first three consecutive numbers with the same number of divisors, so a(3)=33.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp 12, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, section B18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 87.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, pages 147 and 176.

Crossrefs

Programs

  • Mathematica
    tau = DivisorSigma[0, #]&;
    A006558[q_, w_] := Module[{a, k, j, ok, n}, For[j = 0, j <= w, j++, For[n = 1, n <= q, n++, ok = 1; a = tau[n]; For[k = 1, k <= j, k++, If[a != tau[n + k], ok = 0; Break[]]]; If [ok == 1, Print[n]; Break[]]]]];
    A006558[2*10^5, 7] (* Jean-François Alcover, Dec 10 2017 *)
  • PARI
    isok(n, k)=nb = numdiv(k); for (j=k+1, k+n-1, if (numdiv(j) != nb, return(0));); 1;
    a(n) = {k=1; while (!isok(n, k), k++); k;} \\ Michel Marcus, Feb 17 2016

Extensions

a(8) from Jud McCranie, Jan 20 2002
a(9) conjectured by David Wasserman, Jan 08 2006
a(9) confirmed by Jud McCranie, Jan 14 2006
a(10) by Jud McCranie, Nov 27 2018

A127106 Numbers k such that k^2 divides 6^k-1.

Original entry on oeis.org

1, 5, 1555, 9673655, 187159211791705, 776119592182705
Offset: 1

Views

Author

Alexander Adamchuk, Jan 05 2007

Keywords

Comments

Subsequence of A014946.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[(PowerMod[6, #, #^2 ]-1)/#^2 ]&]

Extensions

Two more terms from Max Alekseyev, May 05 2010

A377031 Numbers k such that (27^k - 2^k)/25 is prime.

Original entry on oeis.org

2, 3, 269, 401, 631, 701, 1321, 2707, 5471, 6581
Offset: 1

Views

Author

Robert Price, Oct 13 2024

Keywords

Comments

The definition implies that k must be a prime.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(27^# - 2^#)/25] &]

A002860 Number of Latin squares of order n; or labeled quasigroups.

Original entry on oeis.org

1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800, 5524751496156892842531225600, 9982437658213039871725064756920320000, 776966836171770144107444346734230682311065600000
Offset: 1

Views

Author

Keywords

Comments

Also the number of minimum vertex colorings in the n X n rook graph. - Eric W. Weisstein, Mar 02 2024

References

  • David Nacin, "Puzzles, Parity Maps, and Plenty of Solutions", Chapter 15, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 245.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A098679 (Latin cubes).
A row of the array in A249026.

Programs

  • Mathematica
    Table[Length[ResourceFunction["FindProperColorings"][GraphProduct[CompleteGraph[n], CompleteGraph[n], "Cartesian"], n]], {n, 5}]

Formula

a(n) = n!*A000479(n) = n!*(n-1)!*A000315(n).

Extensions

One more term (from the McKay-Wanless article) from Richard Bean, Feb 17 2004

A003182 Dedekind numbers: inequivalent monotone Boolean functions of n or fewer variables, or antichains of subsets of an n-set.

Original entry on oeis.org

2, 3, 5, 10, 30, 210, 16353, 490013148, 1392195548889993358, 789204635842035040527740846300252680
Offset: 0

Views

Author

Keywords

Comments

NP-equivalence classes of unate Boolean functions of n or fewer variables.
Also the number of simple games with n players in minimal winning form up to isomorphism. - Fabián Riquelme, Mar 13 2018
The labeled case is A000372. - Gus Wiseman, Feb 23 2019
First differs from A348260(n + 1) at a(5) = 210, A348260(6) = 233. - Gus Wiseman, Nov 28 2021
Pawelski & Szepietowski show that a(n) = A001206(n) (mod 2) and that a(9) = 6 (mod 210). - Charles R Greathouse IV, Feb 16 2023

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(3) = 10 antichains:
  {}    {}     {}         {}
  {{}}  {{}}   {{}}       {{}}
        {{1}}  {{1}}      {{1}}
               {{1,2}}    {{1,2}}
               {{1},{2}}  {{1},{2}}
                          {{1,2,3}}
                          {{1},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Arocha, Jorge Luis (1987) "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21.
  • J. Berman, Free spectra of 3-element algebras, in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38, Table 2.3.2. - Row 13.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. H. Wiedemann, personal communication.

Crossrefs

Formula

a(n) = A306505(n) + 1. - Gus Wiseman, Jul 02 2019

Extensions

a(7) added by Timothy Yusun, Sep 27 2012
a(8) from Pawelski added by Michel Marcus, Sep 01 2021
a(9) from Pawelski added by Michel Marcus, May 11 2023

A006052 Number of magic squares of order n composed of the numbers from 1 to n^2, counted up to rotations and reflections.

Original entry on oeis.org

1, 0, 1, 880, 275305224, 17753889197660635632
Offset: 1

Views

Author

Keywords

Comments

a(4) computed by Frenicle de Bessy (1605? - 1675), published in 1693. The article mentions the 880 squares and considers also 5*5, 6*6, 8*8, and other squares. - Paul Curtz, Jul 13 and Aug 12 2011
a(5) computed by Richard C. Schroeppel in 1973.
According to Pinn and Wieczerkowski, a(6) = (0.17745 +- 0.00016) * 10^20. - R. K. Guy, May 01 2004
a(6) computed by Hidetoshi Mino in 2024 - Hidetoshi Mino, May 31 2024

Examples

			An illustration of the unique (up to rotations and reflections) magic square of order 3:
  +---+---+---+
  | 2 | 7 | 6 |
  +---+---+---+
  | 9 | 5 | 1 |
  +---+---+---+
  | 4 | 3 | 8 |
  +---+---+---+
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Vol. II, pp. 778-783 gives the 880 4 X 4 squares.
  • M. Gardner, Mathematical Games, Sci. Amer. Vol. 249 (No. 1, 1976), p. 118.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 216.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Definition corrected by Max Alekseyev, Dec 25 2015
a(6) from Hidetoshi Mino, Jul 17 2023
Incorrect a(6) removed by Hidetoshi Mino, Sep 07 2023
a(6) from Hidetoshi Mino, May 31 2024

A006560 Smallest starting prime for n consecutive primes in arithmetic progression.

Original entry on oeis.org

2, 2, 3, 251, 9843019, 121174811
Offset: 1

Views

Author

Keywords

Comments

The primes following a(5) and a(6) occur at a(n)+30*k, k=0..(n-1). a(6) was found by Lander and Parkin. The next term requires a spacing >= 210. The expected size is a(7) > 10^21 (see link). - Hugo Pfoertner, Jun 25 2004
From Daniel Forgues, Jan 17 2011: (Start)
It is conjectured that there are arithmetic progressions of n consecutive primes for any n.
Common differences of first and smallest AP of n >= 1 consecutive primes: {0, 1, 2, 6, 30, 30, >= 210, >= 210, >= 210, >= 210, >= 2310, ...} (End)
a(7) <= 71137654873189893604531, found by P. Zimmermann, cf. J. K. Andersen link. - Bert Dobbelaere, Jul 27 2022

Examples

			First and smallest occurrence of n, n >= 1, consecutive primes in arithmetic progression:
a(1) = 2: (2) (degenerate arithmetic progression);
a(2) = 2: (2, 3) (degenerate arithmetic progression);
a(3) = 3: (3, 5, 7);
a(4) = 251: (251, 257, 263, 269);
a(5) = 9843019: (9843019, 9843049, 9843079, 9843109, 9843139);
a(6) = 121174811: (121174811, 121174841, 121174871, 121174901, 121174931, 121174961);
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(5) corresponds to A052243(20) followed by A052243(21) 9843049.
Cf. A089180: indices primes a(n).
Cf. A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4), A033451: start of CPAP-4 with common difference 6, A052239: start of first CPAP-4 with common difference 6n.
Cf. A059044: start of 5 consecutive primes in arithmetic progression, A210727: CPAP-5 with common difference 60.
Cf. A058362: start of 6 consecutive primes in arithmetic progression.

Programs

  • Mathematica
    Join[{2},Table[SelectFirst[Partition[Prime[Range[691*10^4]],n,1], Length[ Union[ Differences[ #]]] == 1&][[1]],{n,2,6}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 10 2019 *)

Formula

a(n) = A000040(A089180(n)), or A089180(n) = A000720(a(n)). - M. F. Hasler, Oct 27 2018

Extensions

Edited by Daniel Forgues, Jan 17 2011

A039951 a(n) is the smallest prime p such that p^2 divides n^(p-1) - 1.

Original entry on oeis.org

2, 1093, 11, 1093, 2, 66161, 5, 3, 2, 3, 71, 2693, 2, 29, 29131, 1093, 2, 5, 3, 281, 2, 13, 13, 5, 2, 3, 11, 3, 2, 7, 7, 5, 2, 46145917691, 3, 66161, 2, 17, 8039, 11, 2, 23, 5, 3, 2, 3
Offset: 1

Views

Author

Keywords

Comments

a(n^k) <= a(n) for any n,k > 1.
a(n) is currently unknown for n in {47, 72, 186, 187, 200, 203, 222, 231, 304, 311, 335, 355, 435, 454, 546, 554, 610, 639, 662, 760, 772, 798, 808, 812, 858, 860, 871, 983, 986, ...}. - Richard Fischer, Jul 15 2021
a(47) > 1.4*10^14, a(72) > 1.4*10^14 (see Fischer's tables).
For all nonnegative integers n and k, a(n^(n^k)) = a(n) (see Puzzle 762 in the links). Also a(n) = 3 if and only if mod(n, 36) is in the set {8, 10, 19, 26, 28, 35}. - Farideh Firoozbakht and Jahangeer Kholdi, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    Table[p = 2; While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p, {n, 33}] (* Michael De Vlieger, Nov 24 2016 *)
    f[n_] := Block[{p = 2}, While[ PowerMod[n, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 33] (* Robert G. Wilson v, Jul 18 2018 *)
  • PARI
    a(n)={forprime(p=2, oo, if(Mod(n, p^2)^(p-1)==1, return(p))); oo} \\ Felix Fröhlich, Jul 24 2014

Formula

a(4k+1) = 2.
a(n) = A096082(n) for all n > 1 that are not of the form 4k+1. Note that A096082 begins with n = 2. [Corrected and clarified by Jonathan Sondow, Jun 17-18 2010]

Extensions

a(34)-a(46) from Helmut Richter (richter(AT)lrz.de), May 17 2004
Entry revised by N. J. A. Sloane, Nov 30 2006
Edited by Max Alekseyev, Oct 06, Oct 09 2009
Edited and updated by Max Alekseyev, Jan 29 2012
Previous Showing 81-90 of 9101 results. Next