A000262 Number of "sets of lists": number of partitions of {1,...,n} into any number of lists, where a list means an ordered subset.
1, 1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091, 824073141, 12470162233, 202976401213, 3535017524403, 65573803186921, 1290434218669921, 26846616451246353, 588633468315403843, 13564373693588558173, 327697927886085654441, 8281153039765859726341
Offset: 0
Examples
Illustration of first terms as sets of ordered lists of the first n integers: a(1) = 1 : (1) a(2) = 3 : (12), (21), (1)(2). a(3) = 13 : (123) (6 ways), (12)(3) (2*3 ways) (1)(2)(3) (1 way) a(4) = 73 : (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (2*2*3 ways), (12)(3)(4) (2*6 ways), (1)(2)(3)(4) (1 way). G.f. = 1 + x + 3*x^2 + 13*x^3 + 73*x^4 + 501*x^4 + 4051*x^5 + 37633*x^6 + 394353*x^7 + ...
References
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 194.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..444 (first 101 terms from T. D. Noe)
- A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
- Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Ramified inverse and planar monoids, arXiv:2210.17461 [math.RT], 2022.
- Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 13.
- David Angell, A family of continued fractions, Journal of Number Theory, Volume 130, Issue 4, April 2010, Pages 904-911. Section 2.
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
- Paul Barry, The Restricted Toda Chain, Exponential Riordan Arrays, and Hankel Transforms, J. Int. Seq. 13 (2010) # 10.8.4, example 4.
- Paul Barry, Exponential Riordan Arrays and Permutation Enumeration, J. Int. Seq. 13 (2010) # 10.9.1, example 6.
- Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 18.
- Paul Barry, Combinatorial polynomials as moments, Hankel transforms and exponential Riordan arrays, arXiv preprint arXiv:1105.3044 [math.CO], 2011, also J. Int. Seq. 14 (2011) 11.6.7.
- Andreas Bärtschi, Daniel Graf, and Paolo Penna, Truthful Mechanisms for Delivery with Agents, 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OASIcs, Volume 59, 2017.
- Beáta Bényi, Miguel Méndez, and José L. Ramirez, Generalized Ordered Set Partitions, arXiv:2006.02794 [math.CO], 2020.
- P. Blasiak, A. Horzela, K. A. Penson, G. H. E. Duchamp, and A. I. Solomon, Boson normal ordering via substitutions and Sheffer-type polynomials, arXiv:quant-ph/0501155, 2005.
- P. Blasiak, K. A. Penson, and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson, and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Richard P. Brent, M. L. Glasser, and Anthony J. Guttmann, A Conjectured Integer Sequence Arising From the Exponential Integral, arXiv:1812.00316 [math.NT], 2018.
- J.-P. Bultel, A, Chouria, J.-G. Luque, and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, HAL Id: hal-00793788, 2013.
- David Callan, Sets, Lists and Noncrossing Partitions, arXiv:0711.4841 [math.CO], 2007-2008.
- David Callan and Emeric Deutsch, The Run Transform, Discrete Math. 312 (2012), no. 19, 2927-2937, arXiv:1112.3639 [math.CO], 2011.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Clintin P. Davis-Stober, Jean-Paul Doignon, Samuel Fiorini, François Glineur, and Michel Regenwetter, Extended Formulations for Order Polytopes through Network Flows, arXiv:1710.02679 [math.OC], 2017.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 125.
- S. Garrabrant and I. Pak, Words in linear groups, computability and p-recursiveness, 2015.
- Stefan Gerhold, Counting finite languages by total word length, INTEGERS 11 (2011), #A44.
- Bai-Ni Guo and Feng Qi, An Explicit Formula for Bell Numbers in Terms of Stirling Numbers and Hypergeometric Functions, Global Journal of Mathematical Analysis, 2 (No. 4, 2014), DOI: 10.14419/gjma.v2i4.3310 (Warning, this Journal is run by the 'Science Publishing Corporation', which is listed in Jeffrey Beall's List of predatory publishers).
- Bai-Ni Guo and Feng Qi, An Explicit Formula for Bell Numbers in Terms of Stirling Numbers and Hypergeometric Functions, arXiv:1402.2361 [math.CO], 2014.
- T.-X. He, A symbolic operator approach to power series transformation-expansion formulas, JIS 11 (2008) 08.2.7.
- A. Hennessy and P. Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2.
- F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 40
- Salvador Jacobi, Planning in Multi-Agent Systems, Thesis, Technical University of Denmark, Department of Applied Mathematics and Computer Science, 2800 Kongens Lyngby, Denmark, 2014.
- D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA], 1992; The Mathematica J., 2 (1992), 67-78.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- A. Laradji and A. Umar, On the number of nilpotents in the partial symmetric semigroup, Comm. Algebra 32 (2004), 3017-3023.
- Toufik Mansour, Augustine Munagi, and Mark Shattuck, Set partitions with colored singleton blocks, Discrete Mathematics Letters, 13. 100, (2024). See pp. 100-101.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- Jean-Christophe Novelli and Jean-Yves Thibon, On composition polynomials, arXiv:1510.03033 [math.CO], 11 October 2015.
- OEIS Wiki, Sorting numbers
- Satya R. T. Peddada, Daniel R. Herber, Herschel C. Pangborn, Andrew G. Alleyne, and James T. Allison, Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management, J. Mech. Des. (2019) 141(8), Paper No. MD-18-1843, 083401.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, J. Phys. A 37 (2004), 3475-3487.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math.CO/0606404, Jan 05 2007.
- Feng Qi, On sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function, Research Gate, 2015.
- Feng Qi, An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers, Mediterranean Journal of Mathematics, November 2015, DOI: 10.1007/s00009-015-0655-7.
- John Riordan, Letter to N. J. A. Sloane, Oct. 1970
- John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
- Mark A. Shattuck and Carl G. Wagner, Parity Theorems for Statistics on Lattice Paths and Laguerre Configurations, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.1.
- Mark Shattuck, Combinatorial proofs of some Bell number formulas, arXiv preprint arXiv:1401.6588 [math.CO], 2014.
- Mark Shattuck, Generalized r-Lah numbers, arXiv preprint arXiv:1412.8721 [math.CO], 2014.
- Tomi Silander, Janne Leppä-aho, Elias Jääsaari, and Teemu Roos, Quotient Normalized Maximum Likelihood Criterion for Learning Bayesian Network Structures, International Conference on Artificial Intelligence and Statistics, 2018.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126
- Thomas Wieder, Further comments on this sequence
- Y. Yakubovich, Ergodicity of multiplicative statistics, Journal of Combinatorial Theory, Series A 119 (2012) 1250-1279, alternative copy.
- Index entries for "core" sequences
- Index entries for sequences related to Laguerre polynomials
- Index entries for related partition-counting sequences
Crossrefs
Programs
-
GAP
a:=[1,1];; for n in [3..10^2] do a[n]:=(2*n-3)*a[n-1]-(n-2)*(n-3)*a[n-2]; od; A000262:=a; # Muniru A Asiru, Oct 01 2017
-
Haskell
a000262 n = a000262_list !! n a000262_list = 1 : 1 : zipWith (-) (tail $ zipWith (*) a005408_list a000262_list) (zipWith (*) a002378_list a000262_list) -- Reinhard Zumkeller, Mar 06 2014
-
Magma
I:=[1,3]; [1] cat [n le 2 select I[n] else (2*n-1)*Self(n-1) - (n-1)*(n-2)*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 14 2019
-
Magma
[Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), -1): n in [0..30]]; // G. C. Greubel, Feb 23 2021
-
Maple
A000262 := proc(n) option remember: if n=0 then RETURN(1) fi: if n=1 then RETURN(1) fi: (2*n-1)*procname(n-1) - (n-1)*(n-2)*procname(n-2) end proc: for n from 0 to 20 do printf(`%d,`,a(n)) od: spec := [S, {S = Set(Prod(Z,Sequence(Z)))}, labeled]; [seq(combstruct[count](spec, size=n), n=0..40)]; with(combinat):seq(sum(abs(stirling1(n, k))*bell(k), k=0..n), n=0..18); # Zerinvary Lajos, Nov 26 2006 B:=[S,{S = Set(Sequence(Z,1 <= card),card <=13)},labelled]: seq(combstruct[count](B, size=n), n=0..19);# Zerinvary Lajos, Mar 21 2009 a := n -> `if`(n=0, 1, n!*hypergeom([1 - n], [2], -1)): seq(simplify(a(n)), n=0..19); # Peter Luschny, Jun 05 2014
-
Mathematica
Range[0, 19]! CoefficientList[ Series[E^(x/(1-x)), {x, 0, 19}], x] (* Robert G. Wilson v, Apr 04 2005 *) a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Exp[x/(1-x)], {x, 0, n}]]; (* Michael Somos, Jul 19 2005 *) a[n_]:=If[n==0, 1, n! Sum[Binomial[n-1, j]/(j+1)!, {j, 0, n-1}]]; Table[a[n], {n, 0, 30}] (* Wilf *) a[0] = 1; a[n_]:= n!*Hypergeometric1F1[n+1, 2, 1]/E; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jun 18 2012, after Shai Covo *) Table[Sum[BellY[n, k, Range[n]!], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *) a[ n_]:= If[ n<0, 0, n! SeriesCoefficient[ Product[ QPochhammer[x^k]^(-MoebiusMu[k]/k), {k, n}], {x, 0, n}]]; (* Michael Somos, Jun 02 2019 *) Table[n!*LaguerreL[n, -1, -1], {n, 0, 30}] (* G. C. Greubel, Feb 23 2021 *) RecurrenceTable[{a[n] == (2*n - 1)*a[n-1] - (n-1)*(n-2)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 30}] (* Vaclav Kotesovec, Jul 21 2022 *)
-
Maxima
makelist(sum(abs(stirling1(n,k))*belln(k),k,0,n),n,0,24); /* Emanuele Munarini, Jul 04 2011 */
-
Maxima
makelist(hypergeometric([-n+1,-n],[],1),n,0,12); /* Emanuele Munarini, Sep 27 2016 */
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( exp( x / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Feb 10 2005 */
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, eta(x^k + x * O(x^n))^( -moebius(k) / k)), n))}; /* Michael Somos, Feb 10 2005 */
-
PARI
{a(n) = s = 1; for(k = 1, n-1, s = 1 + k * s / (k + s)); return( numerator(s))}; /* Dimitris Valianatos, Aug 03 2018 */
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n))^(-eulerphi(k) / k)), n))}; /* Michael Somos, Jun 02 2019 */
-
PARI
a(n) = if (n==0, 1, (n-1)!*pollaguerre(n-1,1,-1)); \\ Michel Marcus, Feb 23 2021; Jul 13 2024
-
Python
from sympy import hyper, hyperexpand def A000262(n): return hyperexpand(hyper((-n+1, -n), [], 1)) # Chai Wah Wu, Jan 14 2022
-
Sage
A000262 = lambda n: hypergeometric([-n+1, -n], [], 1) [simplify(A000262(n)) for n in (0..19)] # Peter Luschny, Apr 08 2015
Formula
D-finite with recurrence: a(n) = (2*n-1)*a(n-1) - (n-1)*(n-2)*a(n-2).
E.g.f.: exp( x/(1-x) ).
a(n) = (n-1)!*LaguerreL(n-1,1,-1) for n >= 1. - Vladeta Jovovic, May 10 2003
Representation as n-th moment of a positive function on positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x-1)*BesselI(1, 2*x^(1/2))/x^(1/2) dx, n >= 1. - Karol A. Penson, Dec 04 2003
a(n) = Sum_{k=0..n} A001263(n, k)*k!. - Philippe Deléham, Dec 10 2003
a(n) = n! Sum_{j=0..n-1} binomial(n-1, j)/(j+1)!, for n > 0. - Herbert S. Wilf, Jun 14 2005
Asymptotic expansion for large n: a(n) -> (0.4289*n^(-1/4) + 0.3574*n^(-3/4) - 0.2531*n^(-5/4) + O(n^(-7/4)))*(n^n)*exp(-n + 2*sqrt(n)). - Karol A. Penson, Aug 28 2002
Minor part of this asymptotic expansion is wrong! Right is (in closed form): a(n) ~ n^(n-1/4)*exp(-1/2+2*sqrt(n)-n)/sqrt(2) * (1 - 5/(48*sqrt(n)) - 95/(4608*n)), numerically a(n) ~ (0.42888194248*n^(-1/4) - 0.0446752023417*n^(-3/4) - 0.00884196713*n^(-5/4) + O(n^(-7/4))) *(n^n)*exp(-n+2*sqrt(n)). - Vaclav Kotesovec, Jun 02 2013
a(n) = exp(-1)*Sum_{m>=0} [m]^n/m!, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial. - Vladeta Jovovic, Sep 20 2006
Recurrence: D(n,k) = D(n-1,k-1) + (n-1+k) * D(n-1,k) n >= k >= 0; D(n,0)=0. From this, D(n,1) = n! and D(n,n)=1; a(n) = Sum_{i=0..n} D(n,i). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Proof: Notice two distinct subsets of the lists for [n]: 1) n is in its own list, then there are D(n-1,k-1); 2) n is in a list with other numbers. Denoting the separation of lists by |, it is not hard to see n has (n-1+k) possible positions, so (n-1+k) * D(n-1,k). - Stephen Dalton (StephenMDalton(AT)gmail.com), Jan 05 2007
Define f_1(x), f_2(x), ... such that f_1(x) = exp(x), f_{n+1}(x) = (d/dx)(x^2*f_n(x)), for n >= 2. Then a(n-1) = exp(-1)*f_n(1). - Milan Janjic, May 30 2008
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k)*k!)/((n-k)!*(k-1)!), where a(0)=1. - Thomas Wieder, Sep 10 2008
a(n) = exp(-1)*n!*M(n+1,2,1), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind. - Shai Covo (green355(AT)netvision.net.il), Jan 20 2010
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^2*d/dx. Cf. A000110, A049118, A049119 and A049120. - Peter Bala, Nov 25 2011
From Sergei N. Gladkovskii, Nov 17 2011, Aug 02 2012, Dec 11 2012, Jan 27 2013, Jul 31 2013, Dec 25 2013: (Start)
Continued fractions:
E.g.f.: Q(0) where Q(k) = 1+x/((1-x)*(2k+1)-x*(1-x)*(2k+1)/(x+(1-x)*(2k+2)/Q(k+1))).
E.g.f.: 1 + x/(G(0)-x) where G(k) = (1-x)*k + 1 - x*(1-x)*(k+1)/G(k+1).
E.g.f.: exp(x/(1-x)) = 4/(2-(x/(1-x))*G(0))-1 where G(k) = 1 - x^2/(x^2 + 4*(1-x)^2*(2*k+1)*(2*k+3)/G(k+1) ).
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + 1/(k+1)/(1-x)/(1-x/(x+1/E(k+1) )).
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - x/(x + (k+1)*(1-x)/E(k+1) )).
E.g.f.: E(0)-1, where E(k) = 2 + x/( (2*k+1)*(1-x) - x/E(k+1) ).
(End)
E.g.f.: Product {n >= 1} ( (1 + x^n)/(1 - x^n) )^( phi(2*n)/(2*n) ), where phi(n) = A000010(n) is the Euler totient function. Cf. A088009. - Peter Bala, Jan 01 2014
a(n) = n!*hypergeom([1-n],[2],-1) for n >= 1. - Peter Luschny, Jun 05 2014
a(n) = (-1)^(n-1)*KummerU(1-n,2,-1). - Peter Luschny, Sep 17 2014
a(n) = hypergeom([-n+1, -n], [], 1) for n >= 0. - Peter Luschny, Apr 08 2015
E.g.f.: Product_{k>0} exp(x^k). - Franklin T. Adams-Watters, May 11 2016
0 = a(n)*(18*a(n+2) - 93*a(n+3) + 77*a(n+4) - 17*a(n+5) + a(n+6)) + a(n+1)*(9*a(n+2) - 80*a(n+3) + 51*a(n+4) - 6*a(n+5)) + a(n+2)*(3*a(n+2) - 34*a(n+3) + 15*a(n+4)) + a(n+3)*(-10*a(n+3)) if n >= 0. - Michael Somos, Feb 27 2017
G.f. G(x)=y satisfies a differential equation: (1-x)*y-2*(1-x)*x^2*y'+x^4*y''=1. - Bradley Klee, Aug 13 2018
a(n) = n! * LaguerreL(n, -1, -1) = c_{n}(n-1; -1) where c_{n}(x; a) are the Poisson - Charlier polynomials. - G. C. Greubel, Feb 23 2021
3 divides a(3*n-1); 9 divides a(9*n-1); 11 divides a(11*n-1). - Peter Bala, Mar 26 2022
For n > 0, a(n) = Sum_{k=0..n-1}*k!*C(n-1,k)*C(n,k). - Francesca Aicardi, Nov 03 2022
For n > 0, a(n) = (n-1)! * (Sum_{i=0..n-1} A002720(i) / i!). - Werner Schulte, Mar 29 2024
a(n+1) = numerator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A002720 for the denominators. - Peter Bala, Feb 11 2025
Comments