A001076 Denominators of continued fraction convergents to sqrt(5).
0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, 416020, 1762289, 7465176, 31622993, 133957148, 567451585, 2403763488, 10182505537, 43133785636, 182717648081, 774004377960, 3278735159921, 13888945017644, 58834515230497, 249227005939632, 1055742538989025
Offset: 0
Examples
1 2 9 38 161 (A001077) -,-,-,--,---, ... 0 1 4 17 72 (A001076) G.f. = x + 4*x^2 + 17*x^3 + 72*x^4 + 305*x^5 + 1292*x^6 + 5473*x^7 + 23184*x^8 + ... From _Enrique Navarrete_, Dec 16 2023: (Start) From the comment on compositions with 3-metallonacci sorts of parts, A006190(k), there are A006190(1)=1 type of 1, A006190(2)=3 types of 2, A006190(3)=10 types of 3, A006190(4)=33 types of 4, A006190(5)=109 types of 5 and A006190(6)=360 types of 6. The following table gives the number of compositions of n=6: Composition, number of such compositions, number of compositions of this type: 6, 1, 360; 5+1, 2, 218; 4+2, 2, 198; 3+3, 1, 100; 4+1+1, 3, 99; 3+2+1, 6, 180; 2+2+2, 1, 27; 3+1+1+1, 4, 40; 2+2+1+1, 6, 54; 2+1+1+1+1, 5, 15; 1+1+1+1+1+1, 1, 1; for a total of a(6)=1292 compositions of n=6. (End)
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 23.
- S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. See Table 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 282.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Paraskevas K. Alvanos and Konstantinos A. Draziotis, Integer Solutions of the Equation y^2 = Ax^4 + B, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.4.
- Elwyn Berlekamp and Richard K. Guy, Fibonacci Plays Billiards (2003), arXiv:2002.03705 [math.HO], 2020. See p. 5.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.
- D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233.
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Yixing Fu, E. J. König, J. H. Wilson, Yang-Zhi Chou, and J. H. Pixley, Magic-angle semimetals, arXiv:1809.04604 [cond-mat.str-el], 2018.
- Juan B. Gil and Aaron Worley, Generalized metallic means, arXiv:1901.02619 [math.NT], 2019.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 398
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Tanya Khovanova, Recursive Sequences
- C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Shaoxiong (Steven) Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,1).
Crossrefs
Programs
-
GAP
a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
-
Magma
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
Maple
A001076:=-1/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Join[{0}, Denominator[Convergents[Sqrt[5], 30]]] (* Harvey P. Dale, Dec 10 2011 *) a[ n_] := Fibonacci[3*n] / 2; (* Michael Somos, Feb 23 2014 *) a[ n_] := ((2 + Sqrt[5])^n - (2 - Sqrt[5])^n) /(2 Sqrt[5]) // Simplify; (* Michael Somos, Feb 23 2014 *) LinearRecurrence[{4, 1}, {0, 1}, 26] (* Jean-François Alcover, Sep 23 2017 *) a[ n_] := Fibonacci[n, 4]; (* Michael Somos, Nov 02 2021 *)
-
Maxima
a(n):=sum(4^(n-1-2*k)*binomial(n-k-1,n-2*k-1),k,0,floor((n)/2));/* Vladimir Kruchinin, Oct 02 2022 */
-
MuPAD
numlib::fibonacci(3*n)/2 $ n = 0..30; // Zerinvary Lajos, May 09 2008
-
PARI
{a(n) = fibonacci(3*n) / 2}; /* Michael Somos, Aug 11 2009 */
-
PARI
{a(n) = imag( (2 + quadgen(20))^n )}; /* Michael Somos, Feb 23 2014 */
-
PARI
{a(n) = polchebyshev(n-1, 2, 2*I)/I^(n-1)}; /* Michael Somos, Nov 02 2021 */
-
Sage
[lucas_number1(n,4,-1) for n in range(23)] # Zerinvary Lajos, Apr 23 2009
-
Sage
[fibonacci(3*n)/2 for n in range(23)] # Zerinvary Lajos, May 15 2009
Formula
a(n) = 4*a(n-1) + a(n-2), n > 1. a(0)=0, a(1)=1.
G.f.: x/(1 - 4*x - x^2).
a(n) = ((2+sqrt(5))^n - (2-sqrt(5))^n)/(2*sqrt(5)).
a(n) = A014445(n)/2 = F(3n)/2.
a(n) = ((-i)^(n-1))*S(n-1, 4*i), with i^2 = -1 and S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0.
a(n) = Sum_{i=0..n} Sum_{j=0..n} Fibonacci(i+j)*n!/(i!j!(n-i-j)!)/2. - Paul Barry, Feb 06 2004
E.g.f.: exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Vladeta Jovovic, Sep 01 2004
a(n) = F(1) + F(4) + F(7) + ... + F(3n-2), for n > 0.
Conjecture: 2a(n+1) = a(n+2) - A001077(n+1). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*F(j)/2. - Paul Barry, Feb 14 2005
Let M = {{0, 1}, {1, 4}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = v[n][[1]]. - Roger L. Bagula, May 29 2005
a(n) = F(n, 4), the n-th Fibonacci polynomial evaluated at x=4. - T. D. Noe, Jan 19 2006
[A015448(n), a(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = (Sum_{k=0..n} Fibonacci(3*k-2)) + 1. - Gary Detlefs, Dec 26 2010
a(n) = (3*(-1)^n*F(n) + 5*F(n)^3)/2, n >= 0. See the general D. Jennings formula given in a comment on triangle A111125, where also the reference is given. Here the second (k=1) row [3,1] applies. - Wolfdieter Lang, Sep 01 2012
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (Sum_{k>=1} (-1)^(k-1)/(F_k*F_(k+1)))^3 = phi^(-3), where F_n is the n-th Fibonacci numbers (A000045) and phi is golden ratio (A001622). - Vladimir Shevelev, Feb 23 2013
G.f.: Q(0)*x/(2-4*x), where Q(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, Feb 23 2014
The o.g.f. A(x) = x/(1 - 4*x - x^2) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0 or equivalently (1 + 8*A(x))*(1 + 8*A(-x)) = 1. The o.g.f. for A049660 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 4*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 4*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(n-1)*a(n+1) = a(n)^2 + (-1)^n (particular case of (5)!);
(7) a(2*n) = 2*a(n)*(2*a(n) + a(n-1));
(8) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(9) a(n) - a(n-2*k+1) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = (2+sqrt(5))^(2*k-1) + (2-sqrt(5))^(2*k-1);
(10) 31|Sum_{k=n..n+9} a(k), for all positive n. (End)
O.g.f.: x*exp(Sum_{n >= 1} Lucas(3*n)*x^n/n) = x + 4*x^2 + 17*x^3 + .... - Peter Bala, Oct 11 2019
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k-1)*C(n-k-1,n-2*k-1). - Vladimir Kruchinin, Oct 02 2022
a(n) = i^(n-1)*S(n-1, -4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
G.f.: x/(1 - 4*x - x^2) = Sum_{n >= 0} x^(n+1) * ( Product_{k = 1..n} (m*k + 4 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
a(n) = 4^(n-1)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4) for n > 0. - Peter Luschny, Mar 30 2025
a(n) = a(n-1) + A110679(n-1) + A110679(n-2) = a(n-1) + Fibonacci(3*n-2). - Greg Dresden and Yilin Zhu, Jul 10 2025
Comments