A001710 Order of alternating group A_n, or number of even permutations of n letters.
1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0
Examples
G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
- Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), Article 00.1.5.
- Camille Combe and Samuele Giraudo, Cliff operads: a hierarchy of operads on words, arXiv:2106.14552 [math.CO], 2021.
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 7.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 262.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Shirali Kadyrov and Farukh Mashurov, Generalized continued fraction expansions for Pi and E, arXiv:1912.03214 [math.NT], 2019.
- Chanchal Kumar and Amit Roy, Integer Sequences and Monomial Ideals, arXiv:2003.10098 [math.CO], 2020.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Xah Lee, Combinatorics: Loop in n points.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
- S-Z Song, S-G Hwang, S-H Rim, and G-S Cheon, Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), 197-210.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
- Eric Weisstein's World of Mathematics, Alternating Group.
- Eric Weisstein's World of Mathematics, Bruhat Graph.
- Eric Weisstein's World of Mathematics, Circular Permutation.
- Eric Weisstein's World of Mathematics, Clique Covering Number.
- Eric Weisstein's World of Mathematics, Even Permutation.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle.
- Eric Weisstein's World of Mathematics, Independence Number.
- Eric Weisstein's World of Mathematics, Odd Permutation.
- Eric Weisstein's World of Mathematics, Transposition Graph.
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 7.
- Index entries for sequences related to factorial base representation.
- Index entries for sequences related to factorial numbers.
- Index entries for sequences related to groups.
- Index to divisibility sequences.
Crossrefs
Programs
-
Magma
[1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
-
Maple
seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
-
Mathematica
a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0] a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *) a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *) a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *) Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *) Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
-
PARI
{a(n) = if( n<2, n>=0, n!/2)};
-
PARI
a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
-
PARI
A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
-
Python
from math import factorial def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
-
SageMath
def A001710(n): return (factorial(n) +int(n<2))//2 [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
-
Scheme
;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1)))))) ;; Antti Karttunen, Dec 19 2015
Formula
a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004
Comments