Original entry on oeis.org
0, 1, 5, 31, 267, 3027, 42599, 715191, 13942995, 309522515, 7707841015, 212783127799, 6449579387715, 212939326904131, 7606688596589431, 292321288041079671, 12025358303201356019, 527265684696785414387
Offset: 1
a(5) = 0 + 1 + 4 + 26 + 236 = 267 = 3 * 89.
-
A001863 := proc(n) if n = 1 then 0; else add( (n-2)!*n^k/k!,k=0..n-2) ; end if; end proc:
A177453 := proc(n) add(A001863(i),i=0..n) ; end proc: seq(A177453(n),n=1..20) ; # R. J. Mathar, May 28 2010
-
Accumulate[Table[Sum[(n-2)! n^k/k!,{k,0,n-2}],{n,20}]] (* Harvey P. Dale, Jun 19 2016 *)
-
from math import comb
def A177453(n): return sum(((sum(comb(i,k)*(i-k)**(i-k)*k**k for k in range(1,(i+1>>1)))<<1) + (0 if i&1 else comb(i,m:=i>>1)*m**i))//i//(i-1) for i in range(2,n+1)) # Chai Wah Wu, Apr 25-26 2023
A001865
Number of connected functions on n labeled nodes.
Original entry on oeis.org
1, 3, 17, 142, 1569, 21576, 355081, 6805296, 148869153, 3660215680, 99920609601, 2998836525312, 98139640241473, 3478081490967552, 132705415800984825, 5423640496274200576, 236389784118231290049, 10944997108429625524224, 536484538620663729658993
Offset: 1
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 112.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..380 (first 50 terms from T. D. Noe)
- H. Bergeron, E. M. F. Curado, J. P. Gazeau and L. M. C. S. Rodrigues, A note about combinatorial sequences and Incomplete Gamma function, arXiv preprint arXiv: 1309.6910 [math.CO], 2013.
- Christian Brouder, William J. Keith, and Ângela Mestre, Closed forms for a multigraph enumeration, arXiv preprint arXiv:1301.0874 [math.CO], 2013.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See pp. 8, 19.
- Camille Combe, A geometric and combinatorial exploration of Hochschild lattices, arXiv:2007.00048 [math.CO], 2020. See p. 22.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 37
- Leo Katz, Probability of indecomposability of a random mapping function, Ann. Math. Statist. 26, (1955), 512-517.
- John Riordan, Letter to N. J. A. Sloane, Aug. 1970
- Frank Schmidt and Rodica Simion, Card shuffling and a transformation on S_n, Aequationes Math. 44 (1992), no. 1, 11-34.
- Bernd Sturmfels and Ngoc Mai Tran, Combinatorial Types of Tropical Eigenvectors, arXiv:1105.5504 [math.CO], 2011-2012.
-
spec := [B, {A=Prod(Z,Set(A)), B=Cycle(A)}, labeled]; [seq(combstruct[count](spec,size=n), n=0..20)];
seq(simplify(GAMMA(n,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
t=Sum[n^(n-1)x^n/n!,{n,1,20}];
Range[0,20]! CoefficientList[Series[Log[1/(1-t)]+1,{x,0,20}],x] (* Geoffrey Critzer, Mar 12 2011 *)
f[n_] := Sum[n! n^(n - k - 1)/(n - k)!, {k, n}]; Array[f, 18] (* Robert G. Wilson v *)
a[n_] := Exp[n]*Gamma[n, n]; Table[a[n] // FunctionExpand, {n, 1, 18}] (* Jean-François Alcover, May 13 2013, after Vladeta Jovovic *)
-
a(n)=if(n<0,0,n!*sum(k=1,n,n^(n-k-1)/(n-k)!))
-
a(n)=(1/n)*sum(k=1,n,binomial(n,k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013
-
N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, (k*x)^k/k!)))) \\ Seiichi Manyama, May 27 2019
-
from math import comb
def A001865(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n + n**(n-1) # Chai Wah Wu, Apr 25-26 2023
A000435
Normalized total height of all nodes in all rooted trees with n labeled nodes.
Original entry on oeis.org
0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1
For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
o
|
o o o
| \ /
O O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
o
|
o o o o
| | \ /
o o o o o o o
| \ / | \|/
O O O O
(1) (2) (3) (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 100 terms from T. D. Noe)
- Vijayakumar Ambat, Article in the Malayalam newspaper Ayala Manorama - Padhippura, 12 June 2015, that mentions the OEIS, and in particular this sequence.
- V. I. Arnold, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with the same number of edges and vertices, Functional Anal. Appl., 30 (1996), 1-17.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, arXiv:1607.05776 [math.CO], 2016.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, Version on DZ's home page with more links; Local copy, pdf file only, no active links
- I. P. Goulden and D. M. Jackson, A proof of a conjecture for the number of ramified coverings of the sphere by the torus, arXiv:math/9902009 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, arXiv:math/9902125 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera Ann. Comb. 4 (2000), no. 1, 27-46. (See Theorem 1.1.)
- Brady Haran, The Number Collector (with Neil Sloane), Numberphile Podcast (2019)
- Andrew Lohr and Doron Zeilberger, On the limiting distributions of the total height on families of trees, Integers (2018) 18, Article #A32.
- T. Kyle Petersen, Exponential generating functions and Bell numbers, Inquiry-Based Enumerative Combinatorics (2019) Chapter 7, Undergraduate Texts in Mathematics, Springer, Cham, 98-99.
- A. Rényi and G. Szekeres, On the height of trees, Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
- Marko Riedel et al., Connected endofunctions with no fixed points, Mathematics Stack Exchange, Dec 2014.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- N. J. A. Sloane, Page from 1964 notebook showing start of OEIS [includes A000027, A000217, A000292, A000332, A000389, A000579, A000110, A007318, A000058, A000215, A000289, A000324, A234953 (= A001854(n)/n), A000435, A000169, A000142, A000272, A000312, A000111]
- N. J. A. Sloane, Cover of same notebook
- N. J. A. Sloane, Lengths of Cycle Times in Random Neural Networks, Ph. D. Dissertation, Cornell University, February 1967; also Report No. 10, Cognitive Systems Research Program, Cornell University, 1967. This sequence appears on page 119.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Illustration of a(3) and a(4)
- Yukun Yao and Doron Zeilberger, An Experimental Mathematics Approach to the Area Statistic of Parking Functions, arXiv:1806.02680 [math.CO], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
-
x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
-
A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
-
from math import comb
def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023
A001864
Total height of rooted trees with n labeled nodes.
Original entry on oeis.org
0, 2, 24, 312, 4720, 82800, 1662024, 37665152, 952401888, 26602156800, 813815035000, 27069937855488, 972940216546896, 37581134047987712, 1552687346633913000, 68331503866677657600, 3191386068123595166656, 157663539876436721860608
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..100
- Hien D. Nguyen and G. J. McLachlan, Progress on a Conjecture Regarding the Triangular Distribution, arXiv preprint arXiv:1607.04807 [stat.OT], 2016.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- N. J. A. Sloane, Illustration of terms a(3) and a(4) in A000435
- D. Zvonkine, Home Page
- D. Zvonkine, An algebra of power series arising in the intersection theory of moduli spaces of curves and in the enumeration of ramified coverings of the sphere, arXiv:0403092v2 [math.AG], 2004.
- D. Zvonkine, Enumeration of ramified coverings of the sphere and 2-dimensional gravity, arXiv:math/0506248 [math.AG], 2005.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, vol. 7 (2007), no. 1, 135-162.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
-
A001864 := proc(n) local k; add(n!*n^k/k!, k=0..n-2); end;
-
Table[Sum[Binomial[n,k](n-k)^(n-k) k^k,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Oct 10 2011 *)
a[n_] := n*(n-1)*Exp[n]*Gamma[n-1, n] // Round; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Jun 24 2013 *)
-
a(n)=sum(k=1,n-1,binomial(n,k)*(n-k)^(n-k)*k^k)
-
from math import comb
def A001864(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) # Chai Wah Wu, Apr 25-26 2023
A001866
Number of connected graphs with n nodes and n edges.
Original entry on oeis.org
0, 0, 1, 24, 936, 56640, 4968000, 598328640, 94916183040, 19200422062080, 4826695329792000, 1476585999504000000, 540272647694971699200, 233019960215154829516800, 117009251702203840384204800, 67680314823703303654732800000, 44677678066673631080900198400000
Offset: 0
- V. S. Shevelev, On the permanent of the stochastic (0,1)-matrices with equal row sums, Izvestia Vuzov of the North-Caucasus region, Nature sciences 1 (1997), 21-38 (in Russian). - Vladimir Shevelev, Mar 25 2010
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Join[{0}, Table[(n!^2*n^(n - 1)/2)*Sum[n^(-k)/(n - k)!, {k, 2, n}], {n, 20}]] (* T. D. Noe, Aug 10 2012 *)
A320064
The number of F_2 graphs on { 1, 2, ..., n } with a unique cycle of weight 1, which corresponds to the number of reflectable bases of the root system of type D_n.
Original entry on oeis.org
0, 1, 16, 312, 7552, 220800, 7597824, 301321216, 13545271296, 681015214080, 37879390720000, 2309968030334976, 153275504883695616, 10995166075754119168, 847974316241667686400, 69971459959477921382400, 6151490510604350965940224, 574035430519008722436489216, 56669921387839814123670994944
Offset: 1
- Vaclav Kotesovec, Table of n, a(n) for n = 1..350
- Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
- S. Azam, M. B. Soltani, M. Tomie and Y. Yoshii, A graph theoretical classification for reflectable bases, PRIMS, Vol 55 no 4, (2019), 689-736.
- Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&+[j^(j-1)*(2*x)^j/Factorial(j): j in [1..m+2]])^k/(4*k): k in [2..m+1]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 10 2018
-
nmax = 20; Rest[CoefficientList[Series[Sum[1/(4*m)*(Sum[k^(k-1)*(2*x)^k/k!, {k, 1, nmax}])^m, {m, 2, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Oct 23 2018 *)
-
seq(n)={Vec(serlaplace(sum(m=2, n, (sum(k=1, n, k^(k-1)*(2*x)^k/k!) + O(x^n))^m/(4*m))), -n)} \\ Andrew Howroyd, Nov 07 2018
-
apply( A320064(n)=A001863(n)*(n-1)<<(n-2), [1..20]) \\ Defines the function A320064. The additional apply(...) provides a check and illustration. - M. F. Hasler, Dec 09 2018
-
from math import comb
def A320064(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<Chai Wah Wu, Apr 25-26 2023
A321233
a(n) is the number of reflectable bases of the root system of type D_n.
Original entry on oeis.org
0, 4, 128, 4992, 241664, 14131200, 972521472, 77138231296, 6935178903552, 697359579217920, 77576992194560000, 9461629052252061696, 1255632936007234486272, 180144800985155488448512, 27786422394606966747955200, 4585649599904345055716966400, 806288164205933489807717040128
Offset: 1
- J. E. Humphreys, Introduction to Lie algebras and representation theory, 2nd ed, Springer-Verlag, New York, 1972.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[ (&+[ j^(j-1)*(4*x)^j/Factorial(j) :j in [1..m+3]])^k/(4*k) :k in [2..m+2]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 09 2018
-
Rest[With[{m = 25}, CoefficientList[Series[Sum[Sum[j^(j - 1)*(4*x)^j/j!, {j, 1, m + 1}]^k/(4*k), {k, 2, m}], {x, 0, m}], x]*Range[0, m]!]] (* G. C. Greubel, Dec 09 2018 *)
-
a(n)={n!*polcoef(sum(m=2, n, (sum(k=1, n, k^(k-1)*(4*x)^k/k!) + O(x^(n-m+2)))^m/(4*m)), n)} \\ Andrew Howroyd, Nov 01 2018
-
A321233(n)=A001863(n)*(n-1)*4^(n-1) \\ M. F. Hasler, Dec 09 2018
-
from math import comb
def A321233(n): return 0 if n<2 else ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n<<(n-1<<1) # Chai Wah Wu, Apr 26 2023
A134558
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
Cf. a(n, 0) =
A000142(n); a(n, 1) =
A000522(n); a(n, 2) =
A010842(n); a(n, 3) =
A053486(n); a(n, 4) =
A053487(n); a(n, 5) =
A080954(n); a(n, 6) =
A108869(n); a(1, k) =
A000027(k+1); a(2, k) =
A002522(k+1); a(n, n) =
A063170(n); a(n, n+1) =
A001865(n+1); a(n, n+2) =
A001863(n+2).
-
T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)
Showing 1-8 of 8 results.
Comments