cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A003415 a(n) = n' = arithmetic derivative of n: a(0) = a(1) = 0, a(prime) = 1, a(m*n) = m*a(n) + n*a(m).

Original entry on oeis.org

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, 8, 32, 1, 21, 1, 24, 10, 13, 1, 44, 10, 15, 27, 32, 1, 31, 1, 80, 14, 19, 12, 60, 1, 21, 16, 68, 1, 41, 1, 48, 39, 25, 1, 112, 14, 45, 20, 56, 1, 81, 16, 92, 22, 31, 1, 92, 1, 33, 51, 192, 18, 61, 1, 72, 26, 59, 1, 156, 1, 39, 55, 80, 18, 71
Offset: 0

Views

Author

Keywords

Comments

Can be extended to negative numbers by defining a(-n) = -a(n).
Based on the product rule for differentiation of functions: for functions f(x) and g(x), (fg)' = f'g + fg'. So with numbers, (ab)' = a'b + ab'. This implies 1' = 0. - Kerry Mitchell, Mar 18 2004
The derivative of a number x with respect to a prime number p as being the number "dx/dp" = (x-x^p)/p, which is an integer due to Fermat's little theorem. - Alexandru Buium, Mar 18 2004
The relation (ab)' = a'b + ab' implies 1' = 0, but it does not imply p' = 1 for p a prime. In fact, any function f defined on the primes can be extended uniquely to a function on the integers satisfying this relation: f(Product_i p_i^e_i) = (Product_i p_i^e_i) * (Sum_i e_i*f(p_i)/p_i). - Franklin T. Adams-Watters, Nov 07 2006
See A131116 and A131117 for record values and where they occur. - Reinhard Zumkeller, Jun 17 2007
Let n be the product of a multiset P of k primes. Consider the k-dimensional box whose edges are the elements of P. Then the (k-1)-dimensional surface of this box is 2*a(n). For example, 2*a(25) = 20, the perimeter of a 5 X 5 square. Similarly, 2*a(18) = 42, the surface area of a 2 X 3 X 3 box. - David W. Wilson, Mar 11 2011
The arithmetic derivative n' was introduced, probably for the first time, by the Spanish mathematician José Mingot Shelly in June 1911 with "Una cuestión de la teoría de los números", work presented at the "Tercer Congreso Nacional para el Progreso de las Ciencias, Granada", cf. link to the abstract on Zentralblatt MATH, and L. E. Dickson, History of the Theory of Numbers. - Giorgio Balzarotti, Oct 19 2013
a(A235991(n)) odd; a(A235992(n)) even. - Reinhard Zumkeller, Mar 11 2014
Sequence A157037 lists numbers with prime arithmetic derivative, i.e., indices of primes in this sequence. - M. F. Hasler, Apr 07 2015
Maybe the simplest "natural extension" of the arithmetic derivative, in the spirit of the above remark by Franklin T. Adams-Watters (2006), is the "pi based" version where f(p) = primepi(p), see sequence A258851. When f is chosen to be the identity map (on primes), one gets A066959. - M. F. Hasler, Jul 13 2015
When n is composite, it appears that a(n) has lower bound 2*sqrt(n), with equality when n is the square of a prime, and a(n) has upper bound (n/2)*log_2(n), with equality when n is a power of 2. - Daniel Forgues, Jun 22 2016
If n = p1*p2*p3*... where p1, p2, p3, ... are all the prime factors of n (not necessarily distinct), and h is a real number (we assume h nonnegative and < 1), the arithmetic derivative of n is equivalent to n' = lim_{h->0} ((p1+h)*(p2+h)*(p3+h)*... - (p1*p2*p3*...))/h. It also follows that the arithmetic derivative of a prime is 1. We could assume h = 1/N, where N is an integer; then the limit becomes {N -> oo}. Note that n = 1 is not a prime and plays the role of constant. - Giorgio Balzarotti, May 01 2023

Examples

			6' = (2*3)' = 2'*3 + 2*3' = 1*3 + 2*1 = 5.
Note that, for example, 2' + 3' = 1 + 1 = 2, (2+3)' = 5' = 1. So ' is not linear.
G.f. = x^2 + x^3 + 4*x^4 + x^5 + 5*x^6 + x^7 + 12*x^8 + 6*x^9 + 7*x^10 + ...
		

References

  • G. Balzarotti, P. P. Lava, La derivata aritmetica, Editore U. Hoepli, Milano, 2013.
  • E. J. Barbeau, Problem, Canad. Math. Congress Notes, 5 (No. 8, April 1973), 6-7.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chapter XIX, p. 451, Dover Edition, 2005. (Work originally published in 1919.)
  • A. M. Gleason et al., The William Lowell Putnam Mathematical Competition: Problems and Solutions 1938-1964, Math. Assoc. America, 1980, p. 295.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A086134 (least prime factor of n').
Cf. A086131 (greatest prime factor of n').
Cf. A068719 (derivative of 2n).
Cf. A068720 (derivative of n^2).
Cf. A068721 (derivative of n^3).
Cf. A001787 (derivative of 2^n).
Cf. A027471 (derivative of 3^(n-1)).
Cf. A085708 (derivative of 10^n).
Cf. A068327 (derivative of n^n).
Cf. A024451 (derivative of p#).
Cf. A068237 (numerator of derivative of 1/n).
Cf. A068238 (denominator of derivative of 1/n).
Cf. A068328 (derivative of squarefree numbers).
Cf. A068311 (derivative of n!).
Cf. A168386 (derivative of n!!).
Cf. A260619 (derivative of hyperfactorial(n)).
Cf. A260620 (derivative of superfactorial(n)).
Cf. A068312 (derivative of triangular numbers).
Cf. A068329 (derivative of Fibonacci(n)).
Cf. A096371 (derivative of partition number).
Cf. A099301 (derivative of d(n)).
Cf. A099310 (derivative of phi(n)).
Cf. A342925 (derivative of sigma(n)).
Cf. A349905 (derivative of prime shift).
Cf. A327860 (derivative of primorial base exp-function).
Cf. A369252 (derivative of products of three odd primes), A369251 (same sorted).
Cf. A068346 (second derivative of n).
Cf. A099306 (third derivative of n).
Cf. A258644 (fourth derivative of n).
Cf. A258645 (fifth derivative of n).
Cf. A258646 (sixth derivative of n).
Cf. A258647 (seventh derivative of n).
Cf. A258648 (eighth derivative of n).
Cf. A258649 (ninth derivative of n).
Cf. A258650 (tenth derivative of n).
Cf. A185232 (n-th derivative of n).
Cf. A258651 (A(n,k) = k-th arithmetic derivative of n).
Cf. A085731 (gcd(n,n')), A083345 (n'/gcd(n,n')), A057521 (gcd(n, (n')^k) for k>1).
Cf. A342014 (n' mod n), A369049 (n mod n').
Cf. A341998 (A003557(n')), A342001 (n'/A003557(n)).
Cf. A098699 (least x such that x' = n, antiderivative of n).
Cf. A098700 (n such that x' = n has no integer solution).
Cf. A099302 (number of solutions to x' = n).
Cf. A099303 (greatest x such that x' = n).
Cf. A051674 (n such that n' = n).
Cf. A083347 (n such that n' < n).
Cf. A083348 (n such that n' > n).
Cf. A099304 (least k such that (n+k)' = n' + k').
Cf. A099305 (number of solutions to (n+k)' = n' + k').
Cf. A328235 (least k > 0 such that (n+k)' = u * n' for some natural number u).
Cf. A328236 (least m > 1 such that (m*n)' = u * n' for some natural number u).
Cf. A099307 (least k such that the k-th arithmetic derivative of n is zero).
Cf. A099308 (k-th arithmetic derivative of n is zero for some k).
Cf. A099309 (k-th arithmetic derivative of n is nonzero for all k).
Cf. A129150 (n-th derivative of 2^3).
Cf. A129151 (n-th derivative of 3^4).
Cf. A129152 (n-th derivative of 5^6).
Cf. A189481 (x' = n has a unique solution).
Cf. A190121 (partial sums).
Cf. A258057 (first differences).
Cf. A229501 (n divides the n-th partial sum).
Cf. A165560 (parity).
Cf. A235991 (n' is odd), A235992 (n' is even).
Cf. A327863, A327864, A327865 (n' is a multiple of 3, 4, 5).
Cf. A157037 (n' is prime), A192192 (n'' is prime), A328239 (n''' is prime).
Cf. A328393 (n' is squarefree), A328234 (squarefree and > 1).
Cf. A328244 (n'' is squarefree), A328246 (n''' is squarefree).
Cf. A328303 (n' is not squarefree), A328252 (n' is squarefree, but n is not).
Cf. A328248 (least k such that the (k-1)-th derivative of n is squarefree).
Cf. A328251 (k-th arithmetic derivative is never squarefree for any k >= 0).
Cf. A256750 (least k such that the k-th derivative is either 0 or has a factor p^p).
Cf. A327928 (number of distinct primes p such that p^p divides n').
Cf. A342003 (max. exponent k for any prime power p^k that divides n').
Cf. A327929 (n' has at least one divisor of the form p^p).
Cf. A327978 (n' is primorial number > 1).
Cf. A328243 (n' is a partial sum of primorial numbers and larger than one).
Cf. A328310 (maximal prime exponent of n' minus maximal prime exponent of n).
Cf. A328320 (max. prime exponent of n' is less than that of n).
Cf. A328321 (max. prime exponent of n' is >= that of n).
Cf. A328383 (least k such that the k-th derivative of n is either a multiple or a divisor of n, but not both).
Cf. A263111 (the ordinal transform of a).
Cf. A300251, A319684 (Möbius and inverse Möbius transform).
Cf. A305809 (Dirichlet convolution square).
Cf. A349133, A349173, A349394, A349380, A349618, A349619, A349620, A349621 (for miscellaneous Dirichlet convolutions).
Cf. A069359 (similar formula which agrees on squarefree numbers).
Cf. A258851 (the pi-based arithmetic derivative of n).
Cf. A328768, A328769 (primorial-based arithmetic derivatives of n).
Cf. A328845, A328846 (Fibonacci-based arithmetic derivatives of n).
Cf. A302055, A327963, A327965, A328099 (for other variants and modifications).
Cf. A038554 (another sequence using "derivative" in its name, but involving binary expansion of n).
Cf. A322582, A348507 (lower and upper bounds), also A002620.

Programs

  • GAP
    A003415:= Concatenation([0,0],List(List([2..10^3],Factors),
    i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Aug 31 2017
    (APL, Dyalog dialect) A003415 ← { ⍺←(0 1 2) ⋄ ⍵≤1:⊃⍺ ⋄ 0=(3⊃⍺)|⍵:((⊃⍺+(2⊃⍺)×(⍵÷3⊃⍺)) ((2⊃⍺)×(3⊃⍺)) (3⊃⍺)) ∇ ⍵÷3⊃⍺ ⋄ ((⊃⍺) (2⊃⍺) (1+(3⊃⍺))) ∇ ⍵} ⍝ Antti Karttunen, Feb 18 2024
  • Haskell
    a003415 0 = 0
    a003415 n = ad n a000040_list where
      ad 1 _             = 0
      ad n ps'@(p:ps)
         | n < p * p     = 1
         | r > 0         = ad n ps
         | otherwise     = n' + p * ad n' ps' where
           (n',r) = divMod n p
    -- Reinhard Zumkeller, May 09 2011
    
  • Magma
    Ad:=func; [n le 1 select 0 else Ad(n): n in [0..80]]; // Bruno Berselli, Oct 22 2013
    
  • Maple
    A003415 := proc(n) local B,m,i,t1,t2,t3; B := 1000000000039; if n<=1 then RETURN(0); fi; if isprime(n) then RETURN(1); fi; t1 := ifactor(B*n); m := nops(t1); t2 := 0; for i from 1 to m do t3 := op(i,t1); if nops(t3) = 1 then t2 := t2+1/op(t3); else t2 := t2+op(2,t3)/op(op(1,t3)); fi od: t2 := t2-1/B; n*t2; end;
    A003415 := proc(n)
            local a,f;
            a := 0 ;
            for f in ifactors(n)[2] do
                    a := a+ op(2,f)/op(1,f);
            end do;
            n*a ;
    end proc: # R. J. Mathar, Apr 05 2012
  • Mathematica
    a[ n_] := If[ Abs @ n < 2, 0, n Total[ #2 / #1 & @@@ FactorInteger[ Abs @ n]]]; (* Michael Somos, Apr 12 2011 *)
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Total[n*f[[2]]/f[[1]]]]]; Table[dn[n], {n, 0, 100}] (* T. D. Noe, Sep 28 2012 *)
  • PARI
    A003415(n) = {local(fac);if(n<1,0,fac=factor(n);sum(i=1,matsize(fac)[1],n*fac[i,2]/fac[i,1]))} /* Michael B. Porter, Nov 25 2009 */
    
  • PARI
    apply( A003415(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]), [0..99]) \\ M. F. Hasler, Sep 25 2013, updated Nov 27 2019
    
  • PARI
    A003415(n) = { my(s=0, m=1, spf); while(n>1, spf = A020639(n); n /= spf; s += m*n; m *= spf); (s); }; \\ Antti Karttunen, Mar 10 2021
    
  • PARI
    a(n) = my(f=factor(n), r=[1/(e+!e)|e<-f[,1]], c=f[,2]); n*r*c; \\ Ruud H.G. van Tol, Sep 03 2023
    
  • Python
    from sympy import factorint
    def A003415(n):
        return sum([int(n*e/p) for p,e in factorint(n).items()]) if n > 1 else 0
    # Chai Wah Wu, Aug 21 2014
    
  • Sage
    def A003415(n):
        F = [] if n == 0 else factor(n)
        return n * sum(g / f for f, g in F)
    [A003415(n) for n in range(79)] # Peter Luschny, Aug 23 2014
    

Formula

If n = Product p_i^e_i, a(n) = n * Sum (e_i/p_i).
a(m*p^p) = (m + a(m))*p^p, p prime: a(m*A051674(k))=A129283(m)*A051674(k). - Reinhard Zumkeller, Apr 07 2007
For n > 1: a(n) = a(A032742(n)) * A020639(n) + A032742(n). - Reinhard Zumkeller, May 09 2011
a(n) = n * Sum_{p|n} v_p(n)/p, where v_p(n) is the largest power of the prime p dividing n. - Wesley Ivan Hurt, Jul 12 2015
For n >= 2, Sum_{k=2..n} floor(1/a(k)) = pi(n) = A000720(n) (see K. T. Atanassov article). - Ivan N. Ianakiev, Mar 22 2019
From A.H.M. Smeets, Jan 17 2020: (Start)
Limit_{n -> oo} (1/n^2)*Sum_{i=1..n} a(i) = A136141/2.
Limit_{n -> oo} (1/n)*Sum_{i=1..n} a(i)/i = A136141.
a(n) = n if and only if n = p^p, where p is a prime number. (End)
Dirichlet g.f.: zeta(s-1)*Sum_{p prime} 1/(p^s-p), see A136141 (s=2), A369632 (s=3) [Haukkanen, Merikoski and Tossavainen]. - Sebastian Karlsson, Nov 25 2021
From Antti Karttunen, Nov 25 2021: (Start)
a(n) = Sum_{d|n} d * A349394(n/d).
For all n >= 1, A322582(n) <= a(n) <= A348507(n).
If n is not a prime, then a(n) >= 2*sqrt(n), or in other words, for all k >= 1 for which A002620(n)+k is not a prime, we have a(A002620(n)+k) > n. [See Ufnarovski and Åhlander, Theorem 9, point (3).]
(End)

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A047994 Unitary totient (or unitary phi) function uphi(n).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 6, 12, 6, 8, 15, 16, 8, 18, 12, 12, 10, 22, 14, 24, 12, 26, 18, 28, 8, 30, 31, 20, 16, 24, 24, 36, 18, 24, 28, 40, 12, 42, 30, 32, 22, 46, 30, 48, 24, 32, 36, 52, 26, 40, 42, 36, 28, 58, 24, 60, 30, 48, 63, 48, 20, 66, 48, 44, 24, 70
Offset: 1

Views

Author

Keywords

Comments

A divisor d of n is called a unitary divisor if gcd(d, n/d) = 1. Define gcd*(k,n) to be the largest divisor d of k that is also a unitary divisor of n (that is, such that gcd(d, n/d) = 1). The unitary totient function a(n) = number of k with 1 <= k <= n such that gcd*(k,n) = 1. - N. J. A. Sloane, Aug 08 2021
Unitary convolution of A076479 and A000027. - R. J. Mathar, Apr 13 2011
Multiplicative with a(p^e) = p^e - 1. - N. J. A. Sloane, Apr 30 2013

Examples

			a(12) = a(3)*a(4) = 2*3 = 6.
		

Crossrefs

Programs

  • Haskell
    a047994 n = f n 1 where
       f 1 uph = uph
       f x uph = f (x `div` sppf) (uph * (sppf - 1)) where sppf = a028233 x
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Maple
    A047994 := proc(n)
        local a, f;
        a := 1 ;
        for f in ifactors(n)[2] do
            a := a*(op(1,f)^op(2,f)-1) ;
        end do:
        a ;
    end proc:
    seq(A047994(n),n=1..20) ; # R. J. Mathar, Dec 22 2011
  • Mathematica
    uphi[n_] := (Times @@ (Table[ #[[1]]^ #[[2]] - 1, {1} ] & /@ FactorInteger[n]))[[1]]; Table[ uphi[n], {n, 2, 75}] (* Robert G. Wilson v, Sep 06 2004 *)
    uphi[n_] := If[n==1, 1, Product[{p, e} = pe; p^e-1, {pe, FactorInteger[n]}] ]; Array[uphi, 80] (* Jean-François Alcover, Nov 17 2018 *)
  • PARI
    A047994(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1);
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 2*X + p*X^2)/(1-X)/(1-p*X))[n], ", ")) \\ Vaclav Kotesovec, Jun 15 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def A047994(n): return prod(p**e-1 for p, e in factorint(n).items()) # Chai Wah Wu, Sep 24 2021

Formula

If n = Product p_i^e_i, uphi(n) = Product (p_i^e_i - 1).
a(n) = A000010(n)*A000203(A003557(n))/A003557(n). - Velin Yanev and Charles R Greathouse IV, Aug 23 2017
From Amiram Eldar, May 29 2020: (Start)
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(d) * n/d.
Sum_{d|n, gcd(d, n/d) = 1} a(d) = n.
a(n) >= phi(n) = A000010(n), with equality if and only if n is squarefree (A005117). (End)
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3). - Vaclav Kotesovec, Jun 15 2020
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 2/p^s + 1/p^(2*s-1)). - Amiram Eldar, May 22 2025

Extensions

More terms from Jud McCranie

A004070 Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 4, 7, 5, 1, 1, 2, 4, 8, 11, 6, 1, 1, 2, 4, 8, 15, 16, 7, 1, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 2, 4, 8, 16, 32, 63, 99, 93, 46, 11, 1, 1, 2, 4, 8, 16, 32, 64, 120, 163
Offset: 0

Views

Author

Keywords

Comments

As a number triangle, this is given by T(n,k)=sum{j=0..n, C(n,j)(-1)^(n-j)sum{i=0..j, C(j+k,i-k)}}. - Paul Barry, Aug 23 2004
As a number triangle, this is the Riordan array (1/(1-x), x(1+x)) with T(n,k)=sum{i=0..n, binomial(k,i-k)}. Diagonal sums are then A023434(n+1). - Paul Barry, Feb 16 2005
Form partial sums across rows of square array of binomial coefficients A026729; see also A008949. - Philippe Deléham, Aug 28 2005
Square array A026729 -> Partial sums across rows
1 0 0 0 0 0 0 . . . . 1 1 1 1 1 1 1 . . . . . .
1 1 0 0 0 0 0 . . . . 1 2 2 2 2 2 2 . . . . . .
1 2 1 0 0 0 0 . . . . 1 3 4 4 4 4 4 . . . . . .
1 3 3 1 0 0 0 . . . . 1 4 7 8 8 8 8 . . . . . .
For other Whitney numbers see A007799.
W(n,k) is the number of length k binary sequences containing no more than n 1's. - Geoffrey Critzer, Mar 15 2010
From Emeric Deutsch, Jun 15 2010: (Start)
Viewed as a number triangle, T(n,k) is the number of internal nodes of the Fibonacci tree of order n+2 at level k. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
(End)
Named after the American mathematician Hassler Whitney (1907-1989). - Amiram Eldar, Jun 13 2021

Examples

			Table W(n,k) begins:
  1 1 1 1  1  1  1 ...
  1 2 3 4  5  6  7 ...
  1 2 4 7 11 16 22 ...
  1 2 4 8 15 26 42 ...
W(2,4) = 11 because there are 11 length 4 binary sequences containing no more than 2 1's: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}. - _Geoffrey Critzer_, Mar 15 2010
Table T(n, k) begins:
  1
  1  1
  1  2  1
  1  2  3  1
  1  2  4  4  1
  1  2  4  7  5  1
  1  2  4  8 11  6  1
...
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Cf. A007799. As a triangle, mirror A052509.
Rows converge to powers of two (A000079). Subdiagonals include A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, A035042. Antidiagonal sums are A000071.

Programs

  • Mathematica
    Transpose[ Table[Table[Sum[Binomial[n, k], {k, 0, m}], {m, 0, 15}], {n, 0, 15}]] // Grid (* Geoffrey Critzer, Mar 15 2010 *)
    T[ n_, k_] := Sum[ Binomial[n, j] (-1)^(n - j) Sum[ Binomial[j + k, i - k], {i, 0, j}], {j, 0, n}]; (* Michael Somos, May 31 2016 *)
  • PARI
    /* array read by antidiagonals up coordinate index functions */
    t1(n) = binomial(floor(3/2 + sqrt(2+2*n)), 2) - (n+1); /* A025581 */
    t2(n) = n - binomial(floor(1/2 + sqrt(2+2*n)), 2); /* A002262 */
    /* define the sequence array function for A004070 */
    W(n, k) = sum(i=0, n, binomial(k, i));
    /* visual check ( origin 0,0 ) */
    printp(matrix(7, 7, n, k, W(n-1, k-1)));
    /* print the sequence entries by antidiagonals going up ( origin 0,0 ) */
    print1("S A004070 "); for(n=0, 32, print1(W(t1(n), t2(n))","));
    print1("T A004070 "); for(n=33, 61, print1(W(t1(n), t2(n))","));
    print1("U A004070 "); for(n=62, 86, print1(W(t1(n), t2(n))",")); /* Michael Somos, Apr 28 2000 */
    
  • PARI
    T(n, k)=sum(m=0, n-k, binomial(k, m)) \\ Jianing Song, May 30 2022

Formula

W(n, k) = Sum_{i=0..n} binomial(k, i). - Bill Gosper
W(n, k) = if k=0 or n=0 then 1 else W(n, k-1)+W(n-1, k-1). - David Broadhurst, Jan 05 2000
The table W(n,k) = A000012 * A007318(transform), where A000012 = (1; 1,1; 1,1,1; ...). - Gary W. Adamson, Nov 15 2007
E.g.f. for row n: (1 + x + x^2/2! + ... + x^n/n!)* exp(x). - Geoffrey Critzer, Mar 15 2010
G.f.: 1 / (1 - x - x*y*(1 - x^2)) = Sum_{0 <= k <= n} x^n * y^k * T(n, k). - Michael Somos, May 31 2016
W(n, n) = 2^n. - Michael Somos, May 31 2016
From Jianing Song, May 30 2022: (Start)
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=1, 2, ..., n-1, n >= 2.
T(n, k) = Sum_{m=0..n-k} binomial(k, m).
T(n,k) = 2^k for 0 <= k <= floor(n/2). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

A005318 Conway-Guy sequence: a(n + 1) = 2a(n) - a(n - floor( 1/2 + sqrt(2n) )).

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 24, 44, 84, 161, 309, 594, 1164, 2284, 4484, 8807, 17305, 34301, 68008, 134852, 267420, 530356, 1051905, 2095003, 4172701, 8311101, 16554194, 32973536, 65679652, 130828948, 261127540, 521203175, 1040311347, 2076449993, 4144588885, 8272623576
Offset: 0

Views

Author

Keywords

Comments

Conway and Guy conjecture that the set of k numbers {s_i = a(k) - a(k-i) : 1 <= i <= k} has the property that all its subsets have distinct sums - see Guy's book. These k-sets are the rows of A096858. [This conjecture has apparently now been proved by Bohman. - I. Halupczok (integerSequences(AT)karimmi.de), Feb 20 2006]

References

  • J. H. Conway and R. K. Guy, Solution of a problem of Erdos, Colloq. Math. 20 (1969), p. 307.
  • R. K. Guy, Unsolved Problems in Number Theory, C8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Wald, Problem 1192, Unequal sums, J. Rec. Math., 15 (No. 2, 1983-1984), pp. 148-149.

Crossrefs

A276661 is the main entry for the distinct subset sums problem.

Programs

  • Haskell
    a005318 n = a005318_list !! n
    a005318_list = 0 : 1 : zipWith (-)
       (map (* 2) $ tail a005318_list) (map a005318 a083920_list)
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Mathematica
    a[n_] := a[n] = 2*a[n-1] - a[n - Floor[Sqrt[2]*Sqrt[n-1] + 1/2] - 1]; a[0]=0; a[1]=1; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, May 15 2013 *)
  • PARI
    a(n)=if(n<=1,n==1,2*a(n-1)-a(n-1-(sqrtint(8*n-15)+1)\2))
    
  • PARI
    A=[]; /* This is the program above with memoization. */
    a(n)=if(n<3, return(n)); if(n>#A, A=concat(A,vector(n-#A)), if(A[n], return(A[n]))); A[n]=2*a(n-1)-a(n-1-(sqrtint(8*n-15)+1)\2) \\ Charles R Greathouse IV, Sep 09 2016
    
  • Python
    from sympy import sqrt, floor
    def a(n): return n if n<2 else 2*a(n - 1) - a(n - floor(sqrt(2)*sqrt(n - 1) + 1/2) - 1) # Indranil Ghosh, Jun 03 2017

Formula

a(n+1) = 2*a(n)-A205744(n), A205744(n) = a(A083920(n)), A083920(n) = n - A002024(n). - N. J. A. Sloane, Feb 11 2012

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 21 2000

A177754 Partial sums of A047994.

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 19, 26, 34, 38, 48, 54, 66, 72, 80, 95, 111, 119, 137, 149, 161, 171, 193, 207, 231, 243, 269, 287, 315, 323, 353, 384, 404, 420, 444, 468, 504, 522, 546, 574, 614, 626, 668, 698, 730, 752, 798, 828, 876, 900, 932, 968, 1020, 1046, 1086
Offset: 1

Views

Author

Jonathan Vos Post, May 12 2010

Keywords

Comments

Partial sums of unitary totient (or unitary phi) function uphi(n). This is to A047994 as A002088 is to A000010. The subsequence of primes in the partial sum begins: 2, 7, 11, 13, 19, 137, 149, 193, 269, 353, 1523, 1543, 1609, 1657.

Examples

			a(7) = 1 + 1 + 2 + 3 + 4 + 2 + 6 = 19.
		

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); s = 0; Accumulate[Array[uphi, 60]] (* Amiram Eldar, Dec 18 2018*)

Formula

a(n) = Sum_{i=1..n} A047994(i).
a(n) ~ alpha * n^2/2 + O(n*log^2(n)) where alpha = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). - Amiram Eldar, Dec 18 2018

A049865 Number of iterations of unitary totient function (A047994) required to reach 1 from n.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 3, 4, 5, 4, 5, 3, 4, 3, 5, 6, 7, 5, 6, 4, 4, 5, 6, 4, 5, 4, 5, 6, 7, 5, 6, 7, 5, 7, 5, 5, 6, 6, 5, 7, 8, 4, 5, 6, 8, 6, 7, 6, 7, 5, 8, 6, 7, 5, 8, 5, 6, 7, 8, 5, 6, 6, 7, 8, 7, 5, 6, 7, 7, 5, 6, 6, 7, 6, 7, 6, 6, 5, 6, 6, 7, 8, 9, 6, 9, 5, 6, 6, 7, 8, 7, 6, 6, 7, 7, 7, 8, 7, 7, 7, 8, 8, 9, 7, 7, 7, 8, 6, 7, 8, 7
Offset: 1

Views

Author

Keywords

Comments

a(A003271(n)) = n and a(m) <> n for m < A003271(n). [Reinhard Zumkeller, Aug 17 2011]

Programs

  • Haskell
    a049865 n = length $ takeWhile (> 1) $ iterate a047994 n
    a049865_list = map a049865 [1..]
    -- Reinhard Zumkeller, Aug 17 2011
  • Maple
    A049865 := proc(n)
        if n = 1 then
            0 ;
        else
            1+procname( A047994(n)) ;
        end if;
    end proc: # R. J. Mathar, May 02 2013
  • Mathematica
    uphi[n_] := (f = FactorInteger[n]; Times @@ (f[[All, 1]]^f[[All, 2]] - 1)); uphi[n_ /; n <= 1] = 1; a[n_] := (k = 0; FixedPoint[ (k++; uphi[#]) & , n]; k-1); Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jan 20 2012 *)

A276661 Least k such that there is a set S in {1, 2, ..., k} with n elements and the property that each of its subsets has a distinct sum.

Original entry on oeis.org

0, 1, 2, 4, 7, 13, 24, 44, 84, 161
Offset: 0

Views

Author

Charles R Greathouse IV and J. P. Grossman, Sep 11 2016

Keywords

Comments

This sequence is the main entry for the distinct subset sums problem. See also A201052, A005318, A005255.
The Conway-Guy sequence A005318 is an upper bound. Lunnon showed that a(67) < 34808838084768972989 = A005318(67), and Bohman improved the bound to a(67) <= 34808712605260918463.
Lunnon found a(0)-a(8) and J. P. Grossman found a(9).
a(10) > 220, with A201052. - Fausto A. C. Cariboni, Apr 06 2021

Examples

			a(0) = 0: {}
a(1) = 1: {1}
a(2) = 2: {1, 2}
a(3) = 4: {1, 2, 4}
a(4) = 7: {3, 5, 6, 7}
a(5) = 13: {3, 6, 11, 12, 13}
a(6) = 24: {11, 17, 20, 22, 23, 24}
a(7) = 44: {20, 31, 37, 40, 42, 43, 44}
a(8) = 84: {40, 60, 71, 77, 80, 82, 83, 84}
a(9) = 161: {77, 117, 137, 148, 154, 157, 159, 160, 161}
		

References

  • Iskander Aliev, Siegel’s lemma and sum-distinct sets, Discrete Comput. Geom. 39 (2008), 59-66.
  • J. H. Conway and R. K. Guy, Solution of a problem of Erdos, Colloq. Math. 20 (1969), p. 307.
  • Dubroff, Q., Fox, J., & Xu, M. W. (2021). A note on the Erdos distinct subset sums problem. SIAM Journal on Discrete Mathematics, 35(1), 322-324.
  • R. K. Guy, Unsolved Problems in Number Theory, Section C8.
  • Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, Karol Węgrzycki, Equal-Subset-Sum Faster Than the Meet-in-the-Middle, arXiv:1905.02424
  • Stefan Steinerberger, Some remarks on the Erdős Distinct subset sums problem, International Journal of Number Theory, 2023 , #19:08, 1783-1800 (arXiv:2208.12182).

Crossrefs

A286067 Unitary perfect totient numbers: numbers n that equal to the sum of their iterated unitary totient uphi(n).

Original entry on oeis.org

3, 10, 21, 110, 3910, 1500988838
Offset: 1

Views

Author

Amiram Eldar, May 01 2017

Keywords

Comments

The unitary version of A082897 (perfect totient numbers), in which the unitary totient function uphi(n) (A047994) replaces the Euler totient function phi(n) (A000010).
a(7) > 5*10^9, if it exists. - Giovanni Resta, May 06 2020

Examples

			3910 is a unitary perfect totient number because 3910 = uphi(3910) + uphi(uphi(3910)) + uphi(uphi(uphi(3910))) + ... = 1408 + 1270 + 504 + 336 + 180 + 96 + 62 + 30 + 8 + 7 + 6 + 2 + 1.
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]; kmax = 10000; a = Table[0, {kmax}]; uptns = {}; Do[e = uphi[k]; a[[k]] = e + a[[e]]; If[k == a[[k]], AppendTo[uptns , k]], {k, 2, kmax}]; uptns

Extensions

a(6) from Giovanni Resta, May 06 2020

A225172 Largest number which requires n iterations of the unitary totient function (A047994) to reach 1.

Original entry on oeis.org

1, 2, 6, 14, 42, 86, 186, 462, 930, 1986, 4170, 6510, 14682, 29366, 50342, 73410, 189498, 287654, 491190, 849570, 1699142, 2433878, 4280774, 7978218, 14442690, 25900142, 44400390, 78492954, 123958794, 228018066, 355388970, 629582370, 780686294
Offset: 0

Views

Author

N. J. A. Sloane, May 01 2013

Keywords

Comments

Searched up to 10^10. a(33) >= 1609056138. a(34) >= 2275537110. a(35) >= 4171607222. - Donovan Johnson, May 02 2013

Crossrefs

Programs

  • Mathematica
    (* This is just a verification of recorded data up to a(23), assuming a(n-1)/2 <= a(n) <= 4*a(n-1) *) uphi[n_] := (cnt++; fi = FactorInteger[n]; Times @@ (fi[[All, 1]]^fi[[All, 2]] - 1)); f[n_] := (cnt = 0; NestWhile[uphi, n, # > 1 &]; cnt); a[0] = 1; a[1] = 2; a[n_] := a[n] = (For[record = k = a[n-1]/2//Floor, k <= 4*a[n-1], k++, If[f[k] == n, record = k]]; record); Table[Print[a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2013 *)

Formula

a(n) = max{x : A049865(x) = n}. - R. J. Mathar, May 02 2013

Extensions

a(16)-a(32) from Donovan Johnson, May 02 2013

A225173 Number of numbers which require n iterations of the unitary totient function (A047994) to reach 1.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 38, 82, 164, 261, 424, 749, 1097, 1721, 2592, 4351, 7319, 10725, 17013, 27773, 44767, 73914, 118990, 185059, 275055, 401059, 617679, 935331, 1379826, 2089569, 2962015, 3899417, 5202824
Offset: 0

Views

Author

N. J. A. Sloane, May 01 2013

Keywords

Crossrefs

Extensions

a(16)-a(32) from Donovan Johnson, May 02 2013
Showing 1-10 of 16 results. Next