cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A002479 Numbers of the form x^2 + 2*y^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 17, 18, 19, 22, 24, 25, 27, 32, 33, 34, 36, 38, 41, 43, 44, 48, 49, 50, 51, 54, 57, 59, 64, 66, 67, 68, 72, 73, 75, 76, 81, 82, 83, 86, 88, 89, 96, 97, 98, 99, 100, 102, 107, 108, 113, 114, 118, 121, 123, 128, 129, 131
Offset: 1

Views

Author

Keywords

Comments

A positive number k belongs to this sequence if and only if every prime p == 5, 7 (mod 8) dividing k occurs to an even power. - Sharon Sela (sharonsela(AT)hotmail.com), Mar 23 2002
Norms of numbers in Z[sqrt(-2)]. - Alonso del Arte, Sep 23 2014
Euler (E256) shows that these numbers are closed under multiplication, according to the Euler Archive. - Charles R Greathouse IV, Jun 16 2016
In addition to the previous comment: The proof was already given 1100 years before Euler by Brahmagupta's identity (a^2 + m*b^2)*(c^2 + m*d^2) = (a*c - m*b*d)^2 + m*(a*d + b*c)^2. - Klaus Purath, Oct 07 2023

References

  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 421.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A097700. Subsequence of A000408. For primes see A033203.

Programs

  • Haskell
    a002479 n = a002479_list !! (n-1)
    a002479_list = 0 : filter f [1..] where
       f x = all (even . snd) $ filter ((`elem` [5,7]) . (`mod` 8) . fst) $
                                zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Feb 20 2014
    
  • Magma
    [n: n in [0..131] | NormEquation(2, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    lis:={}; M:=50; M2:=M^2;
    for x from 0 to M do for y from 0 to M do
    if x^2+2*y^2 <= M2 then lis:={op(lis),x^2+2*y^2}; fi; od: od:
    sort(convert(lis,list)); # N. J. A. Sloane, Apr 30 2015
  • Mathematica
    q = 16; imax = q^2; Select[Union[Flatten[Table[x^2 + 2y^2, {y, 0, q/Sqrt[2]}, {x, 0, q}]]], # <= imax &] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    Union[#[[1]]+2#[[2]]&/@Tuples[Range[0,10]^2,2]] (* Harvey P. Dale, Nov 24 2014 *)
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,1]%8>4 && f[i,2]%2, return(0)));1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    list(lim)=my(v=List()); for(a=0,sqrtint(lim\=1), for(b=0,sqrtint((lim-a^2)\2), listput(v,a^2+2*b^2))); Set(v) \\ Charles R Greathouse IV, Jun 16 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A002479_gen(): # generator of terms
        return filter(lambda n:all(p & 7 < 5 or e & 1 == 0 for p, e in factorint(n).items()),count(0))
    A002479_list = list(islice(A002479_gen(),30)) # Chai Wah Wu, Jun 27 2022

A014566 Sierpiński numbers of the first kind: n^n + 1.

Original entry on oeis.org

2, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 10000000001, 285311670612, 8916100448257, 302875106592254, 11112006825558017, 437893890380859376, 18446744073709551617, 827240261886336764178, 39346408075296537575425, 1978419655660313589123980
Offset: 0

Views

Author

Keywords

Comments

Sierpiński primes of the form n^n + 1 are {2,5,257,...} = A121270. The prime p divides a((p-1)/2) for p = {5,7,13,23,29,31,37,47,53,61,71,...} = A003628 Primes congruent to {5, 7} mod 8. p^2 divides a((p-1)/2) for prime p = {29,37,3373,...}. - Alexander Adamchuk, Sep 11 2006
n divides a(n-1) for even n, or 2n divides a(2n-1). a(2n-1)/(2n) = A124899(n) = {1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, ...}. 2^n divides a(2^n-1). A014566[2^n - 1] / 2^n = A081216[2^n - 1] = A122000[n] = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}. p+1 divides a(p) for prime p. a(p)/(p+1) = A056852[n] = {7, 521, 102943, 23775972551, 21633936185161, ...}. p^2 divides a((p-1)/2) for prime p = {29, 37, 3373} = A121999(n). - Alexander Adamchuk, Nov 12 2006

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Maohua Le, Primes in the sequences n^n+1 and n^n-1, Smarandache Notions Journal, Vol. 10, No. 1-2-3, 1999, pp. 156-157.
  • Paulo Ribenboim, The Book of Prime Number Records, 2nd ed. New York: Springer-Verlag, p. 74, 1989.

Crossrefs

Programs

Formula

For n>0, resultant of x^n+1 and nx-1. - Ralf Stephan, Nov 20 2004
E.g.f.: exp(x) + 1/(1+LambertW(-x)). - Vaclav Kotesovec, Dec 20 2014
Sum_{n>=1} 1/a(n) = A134883. - Amiram Eldar, Nov 15 2020

Extensions

More terms from Erich Friedman

A033203 Primes p congruent to {1, 2, 3} (mod 8); or primes p of form x^2 + 2*y^2; or primes p such that x^2 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683
Offset: 1

Views

Author

Keywords

Comments

Sequence naturally partitions into two sequences: all primes p with ord_p(-2) odd (A163183, the primes dividing 2^j +1 for some odd j) and certain primes p with ord_p(-2) even (A163185). - Christopher J. Smyth, Jul 23 2009
Terms m in A047476 with A010051(m) = 1. - Reinhard Zumkeller, Dec 29 2012

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Cf. A039706, A003628 (complement with respect to A000040).
Primes in A002479.
Cf. A051100 (see Mathar's comment).
Apart from leading term the same as A033200.

Programs

  • Haskell
    a033203 n = a033203_list !! (n-1)
    a033203_list = filter ((== 1) . a010051) a047476_list
    -- Reinhard Zumkeller, Dec 29 2012, Jan 22 2012
    
  • Magma
    [p: p in PrimesUpTo(600) | p mod 8 in [1..3]]; // Vincenzo Librandi, Aug 11 2012
    
  • Magma
    [p: p in PrimesUpTo(800) | NormEquation(2,p) eq true]; // Bruno Berselli, Jul 03 2016
    
  • Mathematica
    QuadPrimes2[1, 0, 2, 10000] (* see A106856 *)
    Select[Prime[Range[200]],MemberQ[{1,2,3},Mod[#,8]]&] (* Harvey P. Dale, Mar 16 2013 *)
  • PARI
    is(n)=isprime(n) && issquare(Mod(-2,n)) \\ Charles R Greathouse IV, Nov 29 2016

Formula

a(n) = A002332(n) + 2*A002333(n)^2. - Zak Seidov, May 29 2014

A005968 Sum of cubes of first n Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 10, 37, 162, 674, 2871, 12132, 51436, 217811, 922780, 3908764, 16558101, 70140734, 297121734, 1258626537, 5331629710, 22585142414, 95672204155, 405273951280, 1716768021816, 7272346018247, 30806152127640, 130496954475672, 552793970116297, 2341672834801754
Offset: 0

Views

Author

Keywords

Comments

From Alexander Adamchuk, Aug 07 2006: (Start)
The only two prime terms are a(2) = 2 and a(4) = 37.
The prime p divides a(p-1) iff p is in A045468.
The prime p divides a((p-1)/2) iff p is in A047650.
3^4 divides a(p) iff p is in A003628.
3^5 divides a(p) for p = {37,53,109,181,197,269,397,431,541,...}.
3^6 divides a(p) for p = {109,541,...}.
3^7 divides a(p) for p = {557,...}. (End)

References

  • Art Benjamin, Timothy A. Carnes, and Benoit Cloitre, Recounting the Sums of Cubes of Fibonacci Numbers, Congressus Numerantium, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, (William Webb, ed.), Vol 194, pp. 45-51, 2009.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A056570. Cf. A119284 (alternating sum).
Sums of other powers: A000071, A001654, A005969, A098531, A098532, A098533, A128697.

Programs

  • Magma
    [(1/10)*( Fibonacci(3*n+2)-(-1)^(n)*6*Fibonacci(n-1)+5 ): n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Maple
    with(combinat): l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+fibonacci(i)^3; printf(`%d,`,l[i]) od: # James Sellers, May 29 2000
    A005968:=(-1+2*z+z**2)/(z-1)/(z**2+4*z-1)/(z**2-z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_]:=(Fibonacci[n]*Fibonacci[n+1]^2+(-1)^(n-1)*Fibonacci[n-1]+1)/2;Table[f[n],{n,0,5!}] (* Vladimir Joseph Stephan Orlovsky, Nov 22 2010 *)
    Accumulate[Fibonacci[Range[0,20]]^3]
    CoefficientList[Series[x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
  • PARI
    a(n)=(fibonacci(n)*fibonacci(n+1)^2+(-1)^(n-1)*fibonacci(n-1)+1)/2
    
  • PARI
    a(n)=(fibonacci(3*n+2)-(-1)^(n)*6*fibonacci(n-1)+5)/10
    
  • PARI
    a(n)=sum(i=1,n,fibonacci(i)^3)
    

Formula

G.f.: x*(1-2*x-x^2)/((1-x)*(1+x-x^2)*(1-4*x-x^2)). - Ralf Stephan, Apr 23 2004
a(n) = (1/2)*(F(n)*F(n+1)^2 + (-1)^(n-1)*F(n-1) + 1). - Benoit Cloitre, Aug 06 2004
a(n) = Sum_{i=1..n} A000045(i)^3.
a(n) = (1/10)*(F(3*n+2) - (-1)^(n)*6*F(n-1) + 5). - Art Benjamin and Timothy A. Carnes
a(n+5) = 4*a(n+4) + 3*a(n+3) - 9*a(n+2) + 2*a(n+1) + a(n). - Benoit Cloitre, Sep 12 2004

Extensions

More terms from James Sellers, May 29 2000

A033200 Primes congruent to {1, 3} (mod 8); or, odd primes of form x^2 + 2*y^2.

Original entry on oeis.org

3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-2)). - N. J. A. Sloane, Dec 25 2017
Fermat knew of the relationship between a prime being congruent to 1 or 3 mod 8 and its being the sum of a square and twice a square, and claimed to have a firm proof of this fact. These numbers are not primes in Z[sqrt(-2)], as they have x - y sqrt(-2) as a divisor. - Alonso del Arte, Dec 07 2012
Terms m in A047471 with A010051(m) = 1. - Reinhard Zumkeller, Dec 29 2012
This sequence gives the primes p which satisfy norm(rho(p)) = + 1 with rho(p) := 2*cos(Pi/p) (the length ratio (smallest diagonal)/side in the regular p-gon). The norm of an algebraic number (over Q) is the product over all zeros of its minimal polynomial. Here norm(rho(p)) = (-1)^delta(p)* C(p, 0), with the degree delta(p) = A055034(p) = (p-1)/2. For the minimal polynomial C see A187360. For p == 1 (mod 8) the norm is C(p, 0) (see a comment on 4*A005123) and for p == 3 (mod 8) the norm is -C(p, 0) (see a comment on A186297). For the primes with norm(rho(p)) = -1 see A003628. - Wolfdieter Lang, Oct 24 2013
If p is a member then it has a unique representation as x^2+2y^2 [Frei, Theorem 3]. - N. J. A. Sloane, May 30 2014
Primes that are the quarter perimeter of a Heronian triangle. Such primes are unique to the Heronian triangle (see Yiu link). - Frank M Jackson, Nov 30 2014

Examples

			Since 11 is prime and 11 == 3 (mod 8), 11 is in the sequence. (Also 11 = 3^2 + 2 * 1^2 = (3 + sqrt(-2))(3 - sqrt(-2)).)
Since 17 is prime and 17 == 1 (mod 8), 17 is in the sequence.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.

Crossrefs

Cf. A033203.

Programs

  • Haskell
    a033200 n = a033200_list !! (n-1)
    a033200_list = filter ((== 1) . a010051) a047471_list
    -- Reinhard Zumkeller, Dec 29 2012
    
  • Magma
    [p: p in PrimesUpTo(600) | p mod 8 in [1, 3]]; // Vincenzo Librandi, Aug 04 2012
    
  • Mathematica
    Rest[QuadPrimes2[1, 0, 2, 10000]] (* see A106856 *)
    Select[Prime[Range[200]],MemberQ[{1,3},Mod[#,8]]&] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    is(n)=n%8<4 && n%2 && isprime(n) \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = A033203(n+1). - Zak Seidov, May 29 2014
A007519 UNION A007520. - R. J. Mathar, Jun 09 2020
L(-2, a(n)) = +1, n >= 1, with the Legendre symbol L. -Wolfdieter Lang, Jul 24 2024

A341784 Norms of prime elements in Z[sqrt(-2)], the ring of integers of Q(sqrt(-2)).

Original entry on oeis.org

2, 3, 11, 17, 19, 25, 41, 43, 49, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 169, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 529, 547, 563
Offset: 1

Views

Author

Jianing Song, Feb 19 2021

Keywords

Comments

Also norms of prime ideals in Z[sqrt(-2)], which is a unique factorization domain. The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Consists of the primes congruent to 1, 2, 3 modulo 8 and the squares of primes congruent to 5, 7 modulo 8.
For primes p == 1, 3 (mod 8), there are two distinct ideals with norm p in Z[sqrt(2)], namely (x + y*sqrt(-2)) and (x - y*sqrt(-2)), where (x,y) is a solution to x^2 + 2*y^2 = p; for p = 2, (sqrt(-2)) is the unique ideal with norm p; for p == 5, 7 (mod 8), (p) is the only ideal with norm p^2.

Examples

			norm(1 + sqrt(-2)) = norm(1 + sqrt(-2)) = 3;
norm(3 + sqrt(-2)) = norm(3 + sqrt(-2)) = 11;
norm(3 + 2*sqrt(-2)) = norm(3 + 2*sqrt(-2)) = 17;
norm(1 + 3*sqrt(-2)) = norm(1 + 3*sqrt(-2)) = 19.
		

Crossrefs

The number of nonassociative elements with norm n (also the number of distinct ideals with norm n) is given by A002325.
The total number of elements with norm n is given by A033715.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), this sequence (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), A091727 (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA341784(n) = my(disc=-8); (isprime(n) && kronecker(disc,n)>=0) || (issquare(n, &n) && isprime(n) && kronecker(disc,n)==-1)

A047566 Numbers that are congruent to {4, 5, 6, 7} mod 8.

Original entry on oeis.org

4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 44, 45, 46, 47, 52, 53, 54, 55, 60, 61, 62, 63, 68, 69, 70, 71, 76, 77, 78, 79, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 108, 109
Offset: 1

Views

Author

Keywords

Comments

Numbers having a 1 in position 2 of their binary expansion. One of the mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421. - Jeremy Gardiner, Jan 22 2006

Crossrefs

Cf. A003628 (primes).
Mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421.

Programs

  • Haskell
    a047566 n = a047566_list !! (n-1)
    a047566_list = [n | n <- [1..], mod n 8 > 3]
    -- Reinhard Zumkeller, Dec 29 2012
  • Maple
    A047566:= n-> n+3 + 4*iquo(n-1, 4):
    seq(A047566(n), n=1..100);  # Alois P. Heinz, Aug 22 2011
  • Mathematica
    Flatten[# + {4, 5, 6, 7}&/@(8Range[0, 14])] (* Harvey P. Dale, Feb 02 2011 *)

Formula

G.f.: x*(4+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 19 2016: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.
a(n) = (4*n+1-(-1)^n-(-1)^((n+1)/2)-(-1)^(n/2)-(-1)^(-(n+1)/2)-(-1)^(-n/2))/2. (End)
E.g.f.: 1 + sin(x) - cos(x) + sinh(x) + 2*x*exp(x). - Ilya Gutkovskiy, May 20 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(2)-1)*Pi/16 - 3*log(2)/8. - Amiram Eldar, Dec 26 2021

A363409 a(n) = the real part of Product_{k = 1..n} (1 + k*sqrt(-2)).

Original entry on oeis.org

1, 1, -3, -21, 27, 927, 387, -78111, -211167, 10887129, 61228629, -2278564101, -20995423317, 669639978711, 9055735268283, -263207953694367, -4900375484030367, 133357760824723281, 3278778524907635277, -84617763517115570709, -2669012118280627019109
Offset: 0

Views

Author

Peter Bala, Jun 01 2023

Keywords

Comments

Compare with A105750(n) = the real part of Product_{k = 0..n} 1 + k*sqrt(-1).
Moll (2012) studied the prime divisors of the terms of A105750 and divided the primes into three classes. Numerical calculation suggests that a similar division also holds in this case.
Type 1: primes that do not divide any element of the sequence {a(n)}.
We conjecture that the set of type 1 primes begins {2, 5, 13, 23, 29, 31, 47, 53, 61, 71, 101, ...}.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1 or 3 (mod 8), i.e., rational primes that split in the field extension Q(sqrt(-2)) of Q. See A033200.
Moll's conjecture 5.5 extends to this sequence and takes the form: for prime p == 1 or 3 (mod 8), the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes begins {7, 37, 79, 103, ...}.
Taken together, the type 1 and type 3 primes appear to consist of all primes p == 5 or 7 (mod 8), that is, the rational primes that remain inert in the field extension Q(sqrt(-2)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-2)). See A003628.

Examples

			Type 2 prime p = 3: the sequence of 3-adic valuations [v_3(a(n)) : n = 0..100] = [0, 0, 1, 1, 3, 2, 2, 3, 5, 5, 4, 5, 5, 6, 6, 6, 9, 9, 9, 10, 10, 10, 11, 11, 11, 13, 13, 13, 14, 14, 14, 15, 15, 15, 17, 17, 17, 18, 18, 18, 19, 19, 19, 22, 22, 22, 23, 23, 23, 24, 24, 24, 26, 26, 26, 27, 27, 27, 28, 28, 28, 30, 30, 30, 31, 31, 31, 32, 32, 32, 37, 36, 36, 40, 37, 37, 38, 38, 38, 40, 40, 40, 41, 41, 41, 42, 42, 42, 47, 44, 44, 46, 45, 45, 46, 46, 46, 49, 49, 49, 50].
Note that v_3(a(100)) = 50 = 100/(3 - 1) in agreement with the asymptotic behavior for type 2 primes conjectured above.
Type 3 prime p = 7: the sequence of 7-adic valuations [v_7(a(n)) : n = 0..101] = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], showing the oscillatory behavior for type 3 primes conjectured above. It appears that v_7(a(7*n+3)) = 1 otherwise v_7(a(n)) = 0.
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 1 else ( (2*n - 1)*a(n-1) - n*(2*n^2 - 4*n + 3)*a(n-2) )/(n - 1) end if; end:
    seq(a(n), n = 0..20);
  • Mathematica
    Table[Re[Product[1+k*Sqrt[-2], {k, 0, n}]], {n, 0, 20}] (* James C. McMahon, Jan 28 2024 *)

Formula

a(n) = Sum_{k = 0..floor((n+1)/2)} (-2)^k*Stirling1(n+1, n+1-2*k).
a(n+1)/a(n) = 1 - (2*n + 2)*1/sqrt(2)*tan( Sum_{k = 1..n} arctan(sqrt(2)*k) ).
(n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(2*n^2 - 4*n + 3)*a(n-2) with a(0) = 1 and a(1) = 1.

A045355 Primes congruent to {2, 5, 7} mod 8.

Original entry on oeis.org

2, 5, 7, 13, 23, 29, 31, 37, 47, 53, 61, 71, 79, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 199, 223, 229, 239, 263, 269, 271, 277, 293, 311, 317, 349, 359, 367, 373, 383, 389, 397, 421, 431, 439
Offset: 1

Views

Author

Keywords

Comments

Inert rational primes in the field Q(sqrt(-2)). - Eyal Gruss, Nov 30 2022

Crossrefs

Cf. A000040.

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | p mod 8 in {2, 5, 7} ]; // Vincenzo Librandi, Aug 07 2012
  • Mathematica
    Select[Prime[Range[800]],MemberQ[{2,5, 7},Mod[#,8]]&] (* Vincenzo Librandi, Aug 07 2012 *)

Formula

{2} UNION A003628. - R. J. Mathar, Sep 19 2012

A121999 Primes p such that p^2 divides Sierpinski number A014566((p-1)/2).

Original entry on oeis.org

29, 37, 3373
Offset: 1

Views

Author

Alexander Adamchuk, Sep 11 2006

Keywords

Comments

Subsequence of A003628.
No other terms below 10^11. - Max Alekseyev, Sep 18 2010

Crossrefs

Programs

  • Mathematica
    Do[p=Prime[n];f=((p-1)/2)^((p-1)/2)+1;If[IntegerQ[f/p^2],Print[p]],{n,1,3373}]
  • PARI
    { forprime(p=3, 10^11, if(Mod((p-1)/2, p^2)^((p-1)/2)==-1, print(p); )) } \\ Max Alekseyev, Sep 18 2010

Formula

Elements of A125854 that are congruent to 5 or 7 modulo 8, i.e., primes p such that p == 5 or 7 (mod 8) and 2^(p-1) == 1+p (mod p^2). - Max Alekseyev, Sep 18 2010
Showing 1-10 of 17 results. Next