cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A086123 a(n) = A004061(n) - 1.

Original entry on oeis.org

2, 6, 10, 12, 46, 126, 148, 180, 618, 928, 3406, 10948, 13240, 13872, 16518, 201358, 396412, 1888278, 3300592
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Crossrefs

Cf. A004061.

Extensions

a(16)-a(19) added using the data at A004061 by Amiram Eldar, Jun 04 2024

A003463 a(n) = (5^n - 1)/4.

Original entry on oeis.org

0, 1, 6, 31, 156, 781, 3906, 19531, 97656, 488281, 2441406, 12207031, 61035156, 305175781, 1525878906, 7629394531, 38146972656, 190734863281, 953674316406, 4768371582031, 23841857910156, 119209289550781, 596046447753906, 2980232238769531
Offset: 0

Views

Author

Keywords

Comments

5^a(n) is the highest power of 5 dividing (5^n)!. - Benoit Cloitre, Feb 04 2002
n such that A002294(n) is not divisible by 5. - Benoit Cloitre, Jan 14 2003
Without leading zero, i.e., sequence {a(n+1) = (5*5^n-1)/4}, this is the binomial transform of A003947. - Paul Barry, May 19 2003 [Edited by M. F. Hasler, Oct 31 2014]
Numbers n such that a(n) is prime are listed in A004061(n) = {3, 7, 11, 13, 47, 127, 149, 181, 619, 929, ...}. Corresponding primes a(n) are listed in A086122(n) = {31, 19531, 12207031, 305175781, 177635683940025046467781066894531, ...}. 3^(m+1) divides a(2*3^m*k). 31 divides a(3k). 13 divides a(4k). 11 divides a(5k). 71 divides a(5k). 7 divides a(6k). 19531 divides a(7k). 313 divides a(8k). 19 divides a(9k). 829 divides a(9k). 71 divides a(10k). 521 divides a(10k). 17 divides a(16k). p divides a(p-1) for all prime p except p = {2,5}. p^(m+1) divides a(p^m*(p-1)) for all prime p except p = {2,5}. p divides a((p-1)/2) for prime p = {11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, ...} = A045468, Primes congruent to {1, 4} mod 5. p divides a((p-1)/3) for prime p = {13, 67, 127, 163, 181, 199, 211, 241, 313, 337, 367, 379, 409, 457, ...}. p divides a((p-1)/4) for prime p = {101, 109, 149, 181, 269, 389, 401, 409, 449, 461, 521, 541, ...} = A107219, Primes of the form x^2+100y^2. p divides a((p-1)/5) for prime p = {31, 191, 251, 271, 601, 641, 761, 1091, 1861, ...}. p divides a((p-1)/6) for prime p = {181, 199, 211, 241, 379, 409, 631, 691, 739, 769, 1039, ...}. - Alexander Adamchuk, Jan 23 2007
Starting with 1 = convolution square of A026375: (1, 3, 11, 45, 195, 873, ...). - Gary W. Adamson, May 17 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0,1;4,5;2) = A(0,1;6,-5;0) of the family of sequences [a,b:c,d:k] considered by Gary Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
It is the Lucas sequence U(6,5). - Felix P. Muga II, Mar 21 2014
a(2*n+1) is the sum of the numerators and denominators of the reduced fractions 0 < b/5^n < 1 plus 1, with b < 5^n. - J. M. Bergot, Jul 24 2015
The sequence multiplied by 10 (0, 10, 60, 310, 1560, ...) is the maximum number of coins which can be decided by n weighings on 2 balances in the counterfeit coin problem with undecided under/overweight. [Halbeisen and Hungerbuhler, Disc. Math. 147 (1995) 139 Theorem 1]. - R. J. Mathar, Sep 10 2015
Order of the rank-n projective geometry PG(n-1,5) over the finite field GF(5). - Anthony Hernandez, Oct 05 2016
Number of zeros in the substitution system {0 -> 11100, 1 -> 11110} at step n from initial string "1" (1 -> 11110 -> 1111011110111101111011100 -> ...). - Ilya Gutkovskiy, Apr 10 2017
a(n) is the numerator of Sum_{k=1..n} 1/5^k, which approaches a limit of 1/4. The denominators are 5^n. In general, Sum_{k=1..n} 1/x^k approaches a limit of 1/(x-1). It is of interest to note that as x increases, so does the rate of convergence. See Crossrefs for numerators for other values of x which have the general form (x^n-1)/(x-1). - Gary Detlefs, Aug 31 2021

Examples

			Base 5...........decimal
0......................0
1......................1
11.....................6
111...................31
1111.................156
11111................781
111111..............3906
1111111............19531
11111111...........97656
111111111.........488281
1111111111.......2441406
etc. ...............etc.
- _Zerinvary Lajos_, Jan 14 2007
		

References

  • Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 282.

Crossrefs

Programs

Formula

Second binomial transform of A015518; binomial transform of A000302 (preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=1..n} binomial(n,k)*4^(k-1). - Paul Barry, Mar 28 2003
a(n) = (-1)^n times the (i, j)-th element of M^n (for all i and j such that i is not equal to j), where M = ((1, -1, 1, -2), (-1, 1, -2, 1), (1, -2, 1, -1), (-2, 1, -1, 1)). - Simone Severini, Nov 25 2004
a(n) = A125118(n,4) for n>3. - Reinhard Zumkeller, Nov 21 2006
a(n) = ((3+sqrt(4))^n - (3-sqrt(4))^n)/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = 6*a(n-1) - 5*a(n-2) n>1, a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x/((1-5*x)*(1-x)).
a(n) = 4*a(n-1) + 5*a(n-2) + 2, a(0)=0, a(1)=1.
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), a(0)=0, a(1)=1, a(2)=6. Observation by G. Detlefs. See the W. Lang comment and link. (End)
a(n) = 5*a(n-1) + 1 with n>0, a(0)=0. - Vincenzo Librandi, Nov 17 2010
a(n) = a(n-1) + A000351(n-1) n>0, a(0)=0. - Felix P. Muga II, Mar 19 2014
a(n) = a(n-1) + 20*a(n-2) + 5 for n > 1, a(0)=0, a(1)=1. - Felix P. Muga II, Mar 19 2014
a(n) = A060458(n)/2^(n+2), for n > 0. - R. J. Cano, Sep 25 2014
From Ilya Gutkovskiy, Oct 05 2016: (Start)
E.g.f.: (exp(4*x) - 1)*exp(x)/4.
Convolution of A000351 and A057427. (End)

A128344 Numbers k such that (7^k - 5^k)/2 is prime.

Original entry on oeis.org

3, 5, 7, 113, 397, 577, 7573, 14561, 58543, 100019, 123407, 136559, 208283, 210761, 457871, 608347, 636043
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 10^5. - Robert Price, May 28 2012
No other terms less than 10^6. - Jon Grantham, Jul 29 2023

Crossrefs

Programs

  • Mathematica
    k=7; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((7^n-5^n)/2) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, May 28 2012
a(10)-a(17) from Jon Grantham, Jul 29 2023

A204940 Numbers n such that (23^n - 1)/22 is prime.

Original entry on oeis.org

5, 3181, 61441, 91943, 121949, 221411
Offset: 1

Views

Author

Robert Price, Jan 20 2012

Keywords

Comments

No other terms < 100000.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], PrimeQ[(23^#-1)/22]&]
  • PARI
    is(n)=ispseudoprime((23^n-1)/22) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5)=121949 corresponds to a probable prime discovered by Paul Bourdelais, Oct 19 2017
a(6)=221411 corresponds to a probable prime discovered by Paul Bourdelais, Aug 04 2020

A128336 Numbers k such that (6^k + 5^k)/11 is prime.

Original entry on oeis.org

3, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms less than 100000. - Robert Price, May 11 2012

Crossrefs

Programs

  • Mathematica
    k=6; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    forprime(p=3,1e4,if(ispseudoprime((6^p+5^p)/11),print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2011

Extensions

a(7)-a(9) from Alexander Adamchuk, May 04 2010
One more term (8783) added (unknown discoverer) corresponding to a probable prime with 6834 digits by Jean-Louis Charton, Oct 06 2010

A128347 Numbers k such that (11^k - 5^k)/6 is prime.

Original entry on oeis.org

5, 41, 149, 229, 263, 739, 3457, 20269, 98221
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jan 24 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n-5^n)/6) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jan 24 2013

A128342 Numbers k such that (13^k + 5^k)/18 is prime.

Original entry on oeis.org

13, 19, 31, 359, 487, 757, 761, 1667, 2551, 3167, 6829
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
No other terms below 23600. - Max Alekseyev, Feb 01 2010
a(12) > 10^5. - Robert Price, Apr 30 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n+5^n)/18) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Four more terms from Max Alekseyev, Feb 01 2010

A128341 Numbers k such that (12^k + 5^k)/17 is prime.

Original entry on oeis.org

3, 5, 13, 347, 977, 1091, 4861, 4967, 34679
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, May 05 2013

Crossrefs

Programs

  • Mathematica
    k=12; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
    Select[Range[1100],PrimeQ[(12^#+5^#)/17]&] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    is(n)=isprime((12^n+5^n)/17) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Two more terms (a(7) and a(8)) from Harvey P. Dale, Jul 24 2012
a(9) from Robert Price, May 05 2013

A128339 Numbers k such that (9^k + 5^k)/14 is prime.

Original entry on oeis.org

3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Dec 26 2012

Crossrefs

Programs

  • Magma
    [n: n in [3..300] |IsPrime((9^n + 5^n) div 14)]; // Vincenzo Librandi, Nov 02 2018
  • Mathematica
    k=9; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((9^n+5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017
    

Extensions

3 more PRP terms from Sean A. Irvine, Oct 01 2009

A128340 Numbers k such that (11^k + 5^k)/16 is prime.

Original entry on oeis.org

7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(11) > 10^5. - Robert Price, Feb 09 2013

Crossrefs

Programs

  • Mathematica
    k=11; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((11^n+5^n)/16) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(10) from Robert Price, Feb 09 2013
Showing 1-10 of 39 results. Next