cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A008545 Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).

Original entry on oeis.org

1, 3, 21, 231, 3465, 65835, 1514205, 40883535, 1267389585, 44358635475, 1729986783525, 74389431691575, 3496303289504025, 178311467764705275, 9807130727058790125, 578620712896468617375, 36453104912477522894625, 2442358029135994033939875
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n-1), n >= 1, enumerates increasing plane (a.k.a. ordered) trees with n vertices (one of them a root labeled 1) with one version of a vertex with out-degree r = 0 (a leaf or a root) and each vertex with out-degree r >= 1 comes in binomial(r + 2, 2) types (like a binomial(r + 2, 2)-ary vertex). See the increasing tree comments under A001498. For example, a(1) = 3 from the three trees with n = 2 vertices (a root (out-degree r = 1, label 1) and a leaf (r = 0), label 2). There are three such trees because of the three types of out-degree r = 1 vertices. - Wolfdieter Lang, Oct 05 2007 [corrected by Karen A. Yeats, Jun 17 2013]
a(n) is the product of the positive integers less than or equal to 4n that have modulo 4 = 3. - Peter Luschny, Jun 23 2011

Examples

			G.f. = 1 + 3*x + 21*x^2 + 231*x^3 + 3465*x^4 + 65835*x^5 + 1514205*x^6 + ...
a(3) = sigma[4,3]^{3}_3 = 3*7*11 = 231. See the name. - _Wolfdieter Lang_, May 29 2017
		

Crossrefs

a(n)= A000369(n+1, 1) (first column of triangle).
Partial products of A004767.
Cf. A007696, A014601, A225471 (first column).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 4*k+3) ); # G. C. Greubel, Aug 18 2019
  • Haskell
    a008545 n = a008545_list !! n
    a008545_list = scanl (*) 1 a004767_list
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [1] cat [(&*[4*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    f := n->product( (4*k-1),k=0..n);
    A008545 := n -> mul(k, k = select(k-> k mod 4 = 3, [$1 .. 4*n])): seq(A008545(n), n=0..15); # Peter Luschny, Jun 23 2011
  • Mathematica
    FoldList[Times, 1, 4 Range[0, 20] + 3] (* Harvey P. Dale, Jan 19 2013 *)
    a[n_]:= Pochhammer[3/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
    a[n_]:= If[n < 0, 1 / Product[ -k, {k, 1, -4 n - 3, 4}], Product[k, {k, 3, 4 n - 1, 4}]]; (* Michael Somos, Jan 17 2014 *)
  • PARI
    a(n)=prod(k=0,n-1,4*k+3) \\ Charles R Greathouse IV, Jun 23 2011
    
  • PARI
    {a(n) = if( n<0, 1 / prod(k=1, -n, 3 - 4*k), prod(k=1, n, 4*k - 1))}; /* Michael Somos, Jan 17 2014 */
    
  • Sage
    [product(4*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = 3*A034176(n) = (4*n-1)(!^4), n >= 1, a(0) := 1.
E.g.f.: (1-4*x)^(-3/4).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(3/4)^(-1)*n^(1/4)*2^(2*n)*e^(-n)*n^n*{1 - 1/96*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: 1/(1 - 3x/(1 - 4x/(1 - 7x/(1 - 8x/(1 - 11x/(1 - 12x/(1 - 15x/(1 - 16x/(1 - 19x/(1 - 20x/(1 - 23x/(1 - 24x/(1 - ...))))))))))))) (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-1)^n*Sum_{k = 0..n} 4^k*s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
D-finite with recurrence: a(n) + (-4*n + 1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
G.f.: 1/x - G(0)/(2*x), where G(k)= 1 + 1/(1 - x*(4*k-1)/(x*(4*k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(-n) = (-1)^n / A007696(n). - Michael Somos, Jan 17 2014
G.f.: 1/(1 - b(1)*x / (1 - b(2)*x / ...)) where b = A014601. - Michael Somos, Jan 17 2014
a(n) = 4^n * Gamma(n+3/4) / Gamma(3/4). - Vaclav Kotesovec, Jan 28 2015
G.f.: 1/(1 - 3*x - 12*x^2/(1 - 11*x - 56*x^2/(1 - 19*x - 132*x^2/(1 - 27*x - 240*x^2/(1 - ...))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 28 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(3/4) - Gamma(3/4, 1/4))/sqrt(2). - Amiram Eldar, Dec 18 2022

A004981 a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 1).

Original entry on oeis.org

1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, 7049900, 52169260, 388898120, 2916735900, 21987701400, 166478310600, 1265235160560, 9647418099270, 73774373700300, 565603531702300, 4346216612028200, 33465867912617140, 258165266754475080, 1994913424920943800
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

The convolution of this sequence with itself yields A059304. - T. D. Noe, Jun 11 2002
Conjecture: a(p*n) = a(n) (mod p^2) for prime p = 1 (mod 4) and all positive integers n. Cf. A004982 and A298799. - Peter Bala, Dec 22 2019

Crossrefs

Programs

  • GAP
    List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [2^n*&*[4*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    A004981 := n -> (-8)^n*binomial(-1/4, n):
    seq(A004981(n), n=0..25); # Peter Luschny, Oct 23 2018
  • Mathematica
    CoefficientList[Series[(1-8x)^(-1/4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    Table[8^n*Pochhammer[1/4, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
  • Maxima
    a(n):=if n=0 then 1 else (sum(m*sum(binomial(-m+2*k-1,k-1) *2^(n+m-k)*binomial(2*n-k-1,n-1),k,m,n),m,1,n))/(n); /* Vladimir Kruchinin, Dec 26 2011 */
    
  • PARI
    a(n)=if(n<0,0,prod(k=1,n,(8*k-6)/k))
    
  • PARI
    {a(n)=if(n<0, 0, polcoeff( (1-8*x+x*O(x^n))^(-1/4), n))} /* Michael Somos, Jan 31 2007 */
    
  • Sage
    [8^n*rising_factorial(1/4, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

a(n) ~ Gamma(1/4)^-1*n^(-3/4)*2^(3*n)*{1 - 3/32*n^-1 - ...}
G.f.: (1-8*x)^(-1/4).
A002897(n) = Sum_{k=0..n} a(k)^2*a(n-k)^2. - Michael Somos, Jan 31 2007
a(n) = (Sum_{m=1..n} m*Sum_{k=m..n} binomial(-m+2*k-1,k-1)*2^(n+m-k)*binomial(2*n-k-1,n-1))/n, n>0, a(0)=1. - Vladimir Kruchinin, Dec 26 2011
D-finite with recurrence: n*a(n) = 2*(4*n-3)*a(n-1). - R. J. Mathar, Mar 14 2014
From Karol A. Penson, Dec 19 2015: (Start)
a(n) = (-8)^n*binomial(-1/4,n).
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([1/4], [1], 8*x).
Representation as n-th moment of a positive function on (0, 8): a(n)=int(x^n*(sqrt(2)/(16*Pi*(x/8)^(3/4)*(1-x/8)^(1/4))), x=0..8), n=0, 1, ... . This function is the solution of the Hausdorff moment problem on (0, 8) with moments equal to a(n). As a consequence this representation is unique. (End)

Extensions

More terms from James Sellers, May 01 2000

A034171 Related to triple factorial numbers A007559(n+1).

Original entry on oeis.org

1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0

Views

Author

Keywords

Comments

Working with an offset of 1, we conjecture a(p*n) = a(n) (mod p^2) for prime p = 1 (mod 3) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/3 and 1 <= k <= (p-1)/3. Cf. A298799, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 3^n*A007559(n+1)/(n+1)! where A007559(n+1)=(3*n+1)!!!.
G.f.: (-1+(1-9*x)^(-1/3))/(3*x).
a(n) = A035529(n+1, 1) (first column of triangle).
Convolution of A004987(n) with A025748(n+1), n >= 0.
From R. J. Mathar, Jan 28 2020: (Start)
D-finite with recurrence: (n+1)*a(n) + 3*(-3*n-1)*a(n-1) = 0.
G.f.: (1F0(1/3;;9*x)-1)/(3*x). (End)
Sum_{n>=0} 1/a(n) = 3/8 + 3*sqrt(3)*Pi/32 + 9*log(3)/32. - Amiram Eldar, Dec 22 2022
a(n) ~ 3^(2*n+1) * n^(-2/3) / Gamma(1/3). - Amiram Eldar, Aug 19 2025

A067001 Triangle T(n,k) = d(n-k,n), 0 <= k <= n, where d(l,m) = Sum_{k=l..m} 2^k * binomial(2*m-2*k, m-k) * binomial(m+k, m) * binomial(k, l).

Original entry on oeis.org

1, 4, 6, 24, 60, 42, 160, 560, 688, 308, 1120, 5040, 8760, 7080, 2310, 8064, 44352, 99456, 114576, 68712, 17556, 59136, 384384, 1055040, 1572480, 1351840, 642824, 134596, 439296, 3294720, 10695168, 19536000, 21778560, 14912064, 5864640, 1038312
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2002

Keywords

Comments

For an explanation on how this triangular array is related to the Boros-Moll polynomial P_n(x) and the theory in Comtet (1967), see my comments in A223549. For example, the bivariate o.g.f. below follows from the theory in Comtet (1967). - Petros Hadjicostas, May 24 2020

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) starts:
     1;
     4,    6;
    24,   60,   42;
   160,  560,  688,  308;
  1120, 5040, 8760, 7080, 2310;
  ...
		

Crossrefs

Column k=0 gives A059304.
Row sums give A002458.
Main diagonal gives A004982.

Programs

  • Maple
    d := proc(l,m) local k; add(2^k*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end:
    T:= (n, k)-> d(n-k, n):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    T[n_, k_] := SeriesCoefficient[Sqrt[(1+y)/(1 - 8x (1+y))/(1 + y Sqrt[1 - 8x (1+y)])], {x, 0, n}, {y, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 05 2020 *)
  • PARI
    d(l, m) = sum(kk=l, m, 2^kk*binomial(2*m-2*kk,m-kk)*binomial(m+kk,m)*binomial(kk,l));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(d(n-k, n), ", ");); print(););} \\ Michel Marcus, Jul 18 2015

Formula

From Petros Hadjicostas, May 24 2020: (Start)
T(n,k) = 2^(2*n)*A223549(n,n-k)/A223550(n,n-k).
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = sqrt((1 + y)/(1 - 8*x*(1 + y))/(1 + y*sqrt(1 - 8*x*(1 + y)))). (End)

A298799 Expansion of (1-27*x)^(-1/9).

Original entry on oeis.org

1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Comments

Conjecture: a(p*n) == a(n) (mod p^2) for prime p == 1 (mod 9) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/9 and 1 <= k <= (p-1)/9. Cf. A034171, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), A224881 (b=16), A034688 (b=25), this sequence (b=27), A004993 (b=36), A034835 (b=49).

Programs

  • GAP
    List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
    # Alternative:
    A298799 := n -> (-27)^n*binomial(-1/9, n):
    seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
  • PARI
    N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
    

Formula

a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

A097179 Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 4^n, where R_n(y) forms the initial (n+1) terms of g.f. A077860(y)^(n+1).

Original entry on oeis.org

1, 1, 6, 1, 9, 42, 1, 12, 74, 308, 1, 15, 115, 595, 2310, 1, 18, 165, 1020, 4746, 17556, 1, 21, 224, 1610, 8722, 37730, 134596, 1, 24, 292, 2392, 14778, 73080, 299508, 1038312, 1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2004

Keywords

Comments

Row sums form A097180. Diagonal is A004982. Ratio of g.f.s of any two adjacent diagonals equals g.f. of A048779, where the g.f.s satisfy: A077860(x*A048779(x)) = A048779(x).

Examples

			Row polynomials evaluated at y=1/2 equals powers of 4:
4^1 = 1 + 6/2;
4^2 = 1 + 9/2 + 42/2^2;
4^3 = 1 + 12/2 + 74/2^2 + 308/2^3;
4^4 = 1 + 15/2 + 115/2^2 + 595/2^3 + 2310/2^4;
where A077860(y)^(n+1) has the same initial terms as the n-th row:
A077860(y) = 1 +3*y +5*y^2 +5*y^3 +1*y^4 -7*y^5 -15*y^6 -15*y^7 +...
A077860(y)^2 = 1 + 6*y +...
A077860(y)^3 = 1 + 9*y + 42*y^2 +...
A077860(y)^4 = 1 + 12*y + 74*y^2 + 308*y^3 +...
A077860(y)^5 = 1 + 15*y + 115*y^2 + 595*y^3 + 2310*y^4 +...
Rows begin with n=0:
  1;
  1,  6;
  1,  9,  42;
  1, 12,  74,  308;
  1, 15, 115,  595,  2310;
  1, 18, 165, 1020,  4746, 17556;
  1, 21, 224, 1610,  8722, 37730,  134596;
  1, 24, 292, 2392, 14778, 73080,  299508, 1038312;
  1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918; ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[2*y/((1-8*x*y) +(2*y-1)*(1-8*x*y)^(3/4)), {x, 0, n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
  • PARI
    {T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n-sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}

Formula

G.f.: A(x, y) = 2*y/((1-8*x*y) + (2*y-1)*(1-8*x*y)^(3/4)).
G.f.: A(x, y) = A004982(x*y)/(1 - x*A048779(x*y)).

A126936 Coefficients of a polynomial representation of the integral of 1/(x^4 + 2*a*x^2 + 1)^(n+1) from x = 0 to infinity.

Original entry on oeis.org

1, 6, 4, 42, 60, 24, 308, 688, 560, 160, 2310, 7080, 8760, 5040, 1120, 17556, 68712, 114576, 99456, 44352, 8064, 134596, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1038312, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2007

Keywords

Comments

The integral N(a;n) = Integral_{x=0..infinity} 1/(x^4 + 2*a*x^2 + 1)^(n+1) has a polynomial representation P_n(a) = 2^(n + 3/2) * (a+1)^(n + 1/2) * N(a;n) / Pi (known as the Boros-Moll polynomial). The table contains the coefficients T(n,l) of P_n(a) = 2^(-2*n)*Sum_{l=0..n} T(n,l)*a^l in row n and column l (with n >= 0 and 0 <= l <= n).

Examples

			The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
      1;
      6,     4;
     42,    60,     24;
    308,   688,    560,   160;
   2310,  7080,   8760,  5040,  1120;
  17556, 68712, 114576, 99456, 44352, 8064;
  ...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - _Petros Hadjicostas_, May 25 2020
		

Crossrefs

Cf. A002458 (row sums), A004982 (column l=0), A059304 (main diagonal), A067001 (rows reversed), A223549, A223550, A334907.

Programs

  • Maple
    A126936 := proc(m, l)
        add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
    end:
    seq(seq(A126936(m,l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
  • Mathematica
    t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)

Formula

From Petros Hadjicostas, May 25 2020: (Start)
T(n,l) = A067001(n, n-l) = 2^(2*n) * A223549(n,l)/A223550(n,l).
Sum_{l=0..n} T(n,l) = A002458(n) = A334907(n)*2^n/n!.
Bivariate o.g.f.: Sum_{n,l >= 0} T(n,l)*x^n*y^l = sqrt((1 + y)/(1 - 8*x*(1 + y))/(y + sqrt(1 - 8*x*(1 + y)))). (End)

Extensions

Corrected by Petros Hadjicostas, May 23 2020

A383602 Expansion of 1/( (1-x) * (1-9*x)^3 )^(1/4).

Original entry on oeis.org

1, 7, 55, 453, 3819, 32637, 281409, 2441715, 21285411, 186225253, 1633973125, 14370441055, 126631522005, 1117707358515, 9879287145855, 87428272217853, 774533435844531, 6868083093333285, 60952616213098789, 541342619512077967, 4811079933571973329
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x) * (1-9*x)^3 )^(1/4))); // Vincenzo Librandi, May 05 2025
  • Mathematica
    Table[Sum[(-8)^k* Binomial[-3/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-8)^k*binomial(-3/4, k)*binomial(n, k));
    

Formula

a(n) = Sum_{k=0..n} (-8)^k * binomial(-3/4,k) * binomial(n,k).
n*a(n) = (10*n-3)*a(n-1) - 9*(n-1)*a(n-2) for n > 1.
a(n) ~ Gamma(1/4) * 3^(2*n + 1/2) / (Pi * 2^(5/4) * n^(1/4)). - Vaclav Kotesovec, May 02 2025
a(n) = hypergeom([3/4, -n], [1], -8). - Stefano Spezia, May 05 2025

A122882 Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.

Original entry on oeis.org

1, 2, 6, 10, 6, 42, 60, 20, 28, 308, 390, 90, 70, 154, 2310, 2652, 468, 252, 308, 924, 17556, 18564, 2652, 1092, 924, 1540, 5852, 134596, 132600, 15912, 5304, 3432, 3960, 8360, 38456, 1038312, 961350, 99450, 27846, 14586, 12870, 18810, 48070
Offset: 0

Views

Author

Michael Somos, Sep 16 2006

Keywords

Comments

T(n,m)=2*A(m,n) in Problem A10527 Solution.

Examples

			       1        6       42      308     2310    17556 ...
       2        6       28      154      924     5852 ...
      10       20       70      308     1540     8360 ...
      60       90      252      924     3960    18810 ...
     390      468     1092     3432    12870    54340 ...
    2652     2652     5304    14586    48620   184756 ...
   18564    15912    27846    68068   204204   705432 ...
  132600    99450   154700   340340   928200  2939300 ...
  961350   640900   897260  1794520  4486300 13113800 ...
 7049900  4229940  5383560  9869860 22776600 61822200 ...
		

Crossrefs

Cf. A004981(n)=T(n, 0), A004982(n)=T(0, n), A001448(n)=T(n, n).

Programs

  • Maple
    A122882 := proc(n,m)
        mul(4*i-3,i=1..n)*mul(4*i-1,i=1..m) ;
        %*2^(n+m)/(n+m)! ;
    end proc: # R. J. Mathar, Sep 24 2021
  • PARI
    {T(n,m)=if(n<0||m<0, 0, 2^(n+m)/(n+m)!*prod(k=1, m, 4*k-1)*prod(k=1, n, 4*k-3))}

Formula

T(n,m) = T(n,m-1)*(8*m-2)/(n+m) = T(n-1,m)*(8*n-6)/(n+m). T(0,0) = 1.
Showing 1-9 of 9 results.