A008545
Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).
Original entry on oeis.org
1, 3, 21, 231, 3465, 65835, 1514205, 40883535, 1267389585, 44358635475, 1729986783525, 74389431691575, 3496303289504025, 178311467764705275, 9807130727058790125, 578620712896468617375, 36453104912477522894625, 2442358029135994033939875
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 + 3*x + 21*x^2 + 231*x^3 + 3465*x^4 + 65835*x^5 + 1514205*x^6 + ...
a(3) = sigma[4,3]^{3}_3 = 3*7*11 = 231. See the name. - _Wolfdieter Lang_, May 29 2017
a(n)=
A000369(n+1, 1) (first column of triangle).
-
List([0..20], n-> Product([0..n-1], k-> 4*k+3) ); # G. C. Greubel, Aug 18 2019
-
a008545 n = a008545_list !! n
a008545_list = scanl (*) 1 a004767_list
-- Reinhard Zumkeller, Oct 25 2013
-
[1] cat [(&*[4*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
-
f := n->product( (4*k-1),k=0..n);
A008545 := n -> mul(k, k = select(k-> k mod 4 = 3, [$1 .. 4*n])): seq(A008545(n), n=0..15); # Peter Luschny, Jun 23 2011
-
FoldList[Times, 1, 4 Range[0, 20] + 3] (* Harvey P. Dale, Jan 19 2013 *)
a[n_]:= Pochhammer[3/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
a[n_]:= If[n < 0, 1 / Product[ -k, {k, 1, -4 n - 3, 4}], Product[k, {k, 3, 4 n - 1, 4}]]; (* Michael Somos, Jan 17 2014 *)
-
a(n)=prod(k=0,n-1,4*k+3) \\ Charles R Greathouse IV, Jun 23 2011
-
{a(n) = if( n<0, 1 / prod(k=1, -n, 3 - 4*k), prod(k=1, n, 4*k - 1))}; /* Michael Somos, Jan 17 2014 */
-
[product(4*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
A004981
a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 1).
Original entry on oeis.org
1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, 7049900, 52169260, 388898120, 2916735900, 21987701400, 166478310600, 1265235160560, 9647418099270, 73774373700300, 565603531702300, 4346216612028200, 33465867912617140, 258165266754475080, 1994913424920943800
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
-
[1] cat [2^n*&*[4*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
-
A004981 := n -> (-8)^n*binomial(-1/4, n):
seq(A004981(n), n=0..25); # Peter Luschny, Oct 23 2018
-
CoefficientList[Series[(1-8x)^(-1/4), {x, 0, 25}], x] (* Vincenzo Librandi, Mar 16 2014 *)
Table[8^n*Pochhammer[1/4, n]/n!, {n,0,25}] (* G. C. Greubel, Aug 22 2019 *)
-
a(n):=if n=0 then 1 else (sum(m*sum(binomial(-m+2*k-1,k-1) *2^(n+m-k)*binomial(2*n-k-1,n-1),k,m,n),m,1,n))/(n); /* Vladimir Kruchinin, Dec 26 2011 */
-
a(n)=if(n<0,0,prod(k=1,n,(8*k-6)/k))
-
{a(n)=if(n<0, 0, polcoeff( (1-8*x+x*O(x^n))^(-1/4), n))} /* Michael Somos, Jan 31 2007 */
-
[8^n*rising_factorial(1/4, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
A034171
Related to triple factorial numbers A007559(n+1).
Original entry on oeis.org
1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0
-
CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)
A067001
Triangle T(n,k) = d(n-k,n), 0 <= k <= n, where d(l,m) = Sum_{k=l..m} 2^k * binomial(2*m-2*k, m-k) * binomial(m+k, m) * binomial(k, l).
Original entry on oeis.org
1, 4, 6, 24, 60, 42, 160, 560, 688, 308, 1120, 5040, 8760, 7080, 2310, 8064, 44352, 99456, 114576, 68712, 17556, 59136, 384384, 1055040, 1572480, 1351840, 642824, 134596, 439296, 3294720, 10695168, 19536000, 21778560, 14912064, 5864640, 1038312
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) starts:
1;
4, 6;
24, 60, 42;
160, 560, 688, 308;
1120, 5040, 8760, 7080, 2310;
...
- Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
- George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
- Louis Comtet, Fonctions génératrices et calcul de certaines intégrales, Publikacije Elektrotechnickog faculteta - Serija Matematika i Fizika, No. 181/196 (1967), 77-87.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- V. H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Combin. no 2 (2007) #4.
-
d := proc(l,m) local k; add(2^k*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end:
T:= (n, k)-> d(n-k, n):
seq(seq(T(n, k), k=0..n), n=0..10);
-
T[n_, k_] := SeriesCoefficient[Sqrt[(1+y)/(1 - 8x (1+y))/(1 + y Sqrt[1 - 8x (1+y)])], {x, 0, n}, {y, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 05 2020 *)
-
d(l, m) = sum(kk=l, m, 2^kk*binomial(2*m-2*kk,m-kk)*binomial(m+kk,m)*binomial(kk,l));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(d(n-k, n), ", ");); print(););} \\ Michel Marcus, Jul 18 2015
A298799
Expansion of (1-27*x)^(-1/9).
Original entry on oeis.org
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
-
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
# Alternative:
A298799 := n -> (-27)^n*binomial(-1/9, n):
seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
A097179
Triangle read by rows in which row n gives coefficients of polynomial R_n(y) that satisfies R_n(1/2) = 4^n, where R_n(y) forms the initial (n+1) terms of g.f. A077860(y)^(n+1).
Original entry on oeis.org
1, 1, 6, 1, 9, 42, 1, 12, 74, 308, 1, 15, 115, 595, 2310, 1, 18, 165, 1020, 4746, 17556, 1, 21, 224, 1610, 8722, 37730, 134596, 1, 24, 292, 2392, 14778, 73080, 299508, 1038312, 1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918
Offset: 0
Row polynomials evaluated at y=1/2 equals powers of 4:
4^1 = 1 + 6/2;
4^2 = 1 + 9/2 + 42/2^2;
4^3 = 1 + 12/2 + 74/2^2 + 308/2^3;
4^4 = 1 + 15/2 + 115/2^2 + 595/2^3 + 2310/2^4;
where A077860(y)^(n+1) has the same initial terms as the n-th row:
A077860(y) = 1 +3*y +5*y^2 +5*y^3 +1*y^4 -7*y^5 -15*y^6 -15*y^7 +...
A077860(y)^2 = 1 + 6*y +...
A077860(y)^3 = 1 + 9*y + 42*y^2 +...
A077860(y)^4 = 1 + 12*y + 74*y^2 + 308*y^3 +...
A077860(y)^5 = 1 + 15*y + 115*y^2 + 595*y^3 + 2310*y^4 +...
Rows begin with n=0:
1;
1, 6;
1, 9, 42;
1, 12, 74, 308;
1, 15, 115, 595, 2310;
1, 18, 165, 1020, 4746, 17556;
1, 21, 224, 1610, 8722, 37730, 134596;
1, 24, 292, 2392, 14778, 73080, 299508, 1038312;
1, 27, 369, 3393, 23535, 130851, 604707, 2376099, 8046918; ...
-
Table[SeriesCoefficient[2*y/((1-8*x*y) +(2*y-1)*(1-8*x*y)^(3/4)), {x, 0, n}, {y,0,k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 17 2019 *)
-
{T(n,k)=if(n==0,1,if(k==0,1,if(k==n, 2^n*(4^n-sum(j=0,n-1, T(n,j)/2^j)), polcoeff((Ser(vector(n,i,T(n-1,i-1)), x) +x*O(x^k))^((n+1)/n),k,x))))}
A126936
Coefficients of a polynomial representation of the integral of 1/(x^4 + 2*a*x^2 + 1)^(n+1) from x = 0 to infinity.
Original entry on oeis.org
1, 6, 4, 42, 60, 24, 308, 688, 560, 160, 2310, 7080, 8760, 5040, 1120, 17556, 68712, 114576, 99456, 44352, 8064, 134596, 642824, 1351840, 1572480, 1055040, 384384, 59136, 1038312, 5864640, 14912064, 21778560, 19536000, 10695168, 3294720
Offset: 0
The table T(n,l) (with rows n >= 0 and columns l = 0..n) starts:
1;
6, 4;
42, 60, 24;
308, 688, 560, 160;
2310, 7080, 8760, 5040, 1120;
17556, 68712, 114576, 99456, 44352, 8064;
...
For n = 2, N(a;2) = Integral_{x=0..oo} dx/(x^4 + 2*a*x + 1)^3 = 2^(-2*2)*(Sum_{l=0..2} T(2,l)*a^l) * Pi/(2^(2 + 3/2) * (a + 1)^(2 + 1/2) = (42 + 60*a + 24*a^2) * Pi/(32 * (2*(a+1))^(5/2)) for a > -1. - _Petros Hadjicostas_, May 25 2020
- Tewodros Amdeberhan and Victor H. Moll, A formula for a quartic integral: a survey of old proofs and some new ones, arXiv:0707.2118 [math.CA], 2007.
- George Boros and Victor H. Moll, An integral hidden in Gradshteyn and Ryzhik, Journal of Computational and Applied Mathematics, 106(2) (1999), 361-368.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, arXiv:0806.4333 [math.CO], 2009.
- William Y. C. Chen and Ernest X. W. Xia, The Ratio Monotonicity of the Boros-Moll Polynomials, Mathematics of Computation, 78(268) (2009), 2269-2282.
- Victor H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Victor H. Moll, Combinatorial sequences arising from a rational integral, Onl. J. Anal. Combin., no 2 (2007), #4.
-
A126936 := proc(m, l)
add(2^k*binomial(2*m-2*k, m-k)*binomial(m+k, m)*binomial(k, l), k=l..m):
end:
seq(seq(A126936(m,l), l=0..m), m=0..12); # R. J. Mathar, May 25 2020
-
t[m_, l_] := Sum[2^k*Binomial[2*m-2*k, m-k]*Binomial[m+k, m]*Binomial[k, l], {k, l, m}]; Table[t[m, l], {m, 0, 11}, {l, 0, m}] // Flatten (* Jean-François Alcover, Jan 09 2014, after Maple, adapted May 2020 *)
A383602
Expansion of 1/( (1-x) * (1-9*x)^3 )^(1/4).
Original entry on oeis.org
1, 7, 55, 453, 3819, 32637, 281409, 2441715, 21285411, 186225253, 1633973125, 14370441055, 126631522005, 1117707358515, 9879287145855, 87428272217853, 774533435844531, 6868083093333285, 60952616213098789, 541342619512077967, 4811079933571973329
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x) * (1-9*x)^3 )^(1/4))); // Vincenzo Librandi, May 05 2025
-
Table[Sum[(-8)^k* Binomial[-3/4,k]* Binomial[n,k],{k,0,n}],{n,0,22}] (* Vincenzo Librandi, May 05 2025 *)
-
a(n) = sum(k=0, n, (-8)^k*binomial(-3/4, k)*binomial(n, k));
A122882
Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.
Original entry on oeis.org
1, 2, 6, 10, 6, 42, 60, 20, 28, 308, 390, 90, 70, 154, 2310, 2652, 468, 252, 308, 924, 17556, 18564, 2652, 1092, 924, 1540, 5852, 134596, 132600, 15912, 5304, 3432, 3960, 8360, 38456, 1038312, 961350, 99450, 27846, 14586, 12870, 18810, 48070
Offset: 0
1 6 42 308 2310 17556 ...
2 6 28 154 924 5852 ...
10 20 70 308 1540 8360 ...
60 90 252 924 3960 18810 ...
390 468 1092 3432 12870 54340 ...
2652 2652 5304 14586 48620 184756 ...
18564 15912 27846 68068 204204 705432 ...
132600 99450 154700 340340 928200 2939300 ...
961350 640900 897260 1794520 4486300 13113800 ...
7049900 4229940 5383560 9869860 22776600 61822200 ...
-
A122882 := proc(n,m)
mul(4*i-3,i=1..n)*mul(4*i-1,i=1..m) ;
%*2^(n+m)/(n+m)! ;
end proc: # R. J. Mathar, Sep 24 2021
-
{T(n,m)=if(n<0||m<0, 0, 2^(n+m)/(n+m)!*prod(k=1, m, 4*k-1)*prod(k=1, n, 4*k-3))}
Showing 1-9 of 9 results.
Comments