A208890
a(n) = A000984(n)*A004981(n), the term-wise product of the coefficients in (1-4*x)^(-1/2) and (1-8*x)^(-1/4).
Original entry on oeis.org
1, 4, 60, 1200, 27300, 668304, 17153136, 455083200, 12372574500, 342766138000, 9638583800560, 274341178587840, 7887308884400400, 228685287180840000, 6678543795015960000, 196260140322869011200, 5798873833602270315300, 172160337343624495866000
Offset: 0
G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
The terms are the term-wise products of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...],
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 136, 2880, 67800, 1699008, 44368704, 1193107968, ...],
A^4: [1, 16, 336, 7936, 200176, 5266176, 142657536, 3948773376, ...],
A^8: [1, 32, 928, 26624, 767200, 22270976, 651331072, 19178651648, ...].
-
{A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2),n)}
{A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4),n)}
{a(n)=A000984(n)*A004981(n)}
for(n=0,20,print1(a(n),", "))
A007696
Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).
Original entry on oeis.org
1, 1, 5, 45, 585, 9945, 208845, 5221125, 151412625, 4996616625, 184874815125, 7579867420125, 341094033905625, 16713607661375625, 885821206052908125, 50491808745015763125, 3080000333445961550625, 200200021673987500790625, 13813801495505137554553125
Offset: 0
G.f. = 1 + x + 5*x^2 + 45*x^3 + 585*x^4 + 9945*x^5 + 208845*x^6 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq. 3 (2000), Article 00.2.4.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Integer Seq. 13 (2010), Article 10.6.7; see page 39.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integer Seq. 9 (2006), Article 06.1.1.
a(n) =
A049029(n, 1) for n >= 1 (first column of triangle).
-
a:=[1,1];; for n in [3..20] do a[n]:=(4*(n-1)-7)*(a[n-1]+4*a[n-2]); od; a; # G. C. Greubel, Aug 15 2019
-
[n le 2 select 1 else (4*(n-1)-7)*(Self(n-1) + 4*Self(n-2)): n in [1..20]]; // G. C. Greubel, Aug 15 2019
-
x:='x'; G(x):=(1-4*x)^(-1/4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: seq(eval(f[n],x=0),n=0..17);# Zerinvary Lajos, Apr 03 2009
A007696 := n -> mul(k, k = select(k-> k mod 4 = 1, [$ 1 .. 4*n])): seq(A007696(n), n=0..17); # Peter Luschny, Jun 23 2011
-
a[ n_]:= Pochhammer[ 1/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
a[ n_]:= If[n < 0, 1 / Product[ -k, {k, 3, -4n-1, 4}], Product[ k, {k, 1, 4n-3, 4}]]; (* Michael Somos, Jan 17 2014 *)
Range[0, 19]! CoefficientList[Series[((1-4x)^(-1/4)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
-
A007696(n):=prod(4*k+1,k,0,n-1)$
makelist(A007696(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
{a(n) = if( n<0, 1 / prod(k=1, -n, 1 - 4*k), prod(k=1, n, 4*k - 3))}; /* Michael Somos, Jan 17 2014 */
-
[4^n*rising_factorial(1/4, n) for n in (0..20)] # G. C. Greubel, Aug 15 2019
A059304
a(n) = 2^n * (2*n)! / (n!)^2.
Original entry on oeis.org
1, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Tucker J. Ervin, Blake Jackson, Jay Lane, Kyungyong Lee, Son Dang Nguyen, Jack O'Donohue and Michael Vaughan, Permutations whose Reverse Shares the Same Recording Tableau in the Robinson-Schensted Correspondence, Séminaire Lotharingien de Combinatoire 86 (2022), Article B86a.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
-
[2^n*Binomial(2*n,n): n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
-
seq(binomial(2*n,n)*2^n,n=0..19); # Zerinvary Lajos, Dec 08 2007
-
Table[2^n Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Dec 16 2014 *)
-
{a(n)=if(n<0, 0, 2^n*(2*n)!/n!^2)} /* Michael Somos, Jan 31 2007 */
-
{ for (n = 0, 200, write("b059304.txt", n, " ", 2^n * (2*n)! / n!^2); ) } \\ Harry J. Smith, Jun 25 2009
-
/* as lattice paths: same as in A092566 but use */
steps=[[1, 0], [1, 0], [0, 1]]; /* note the double [1, 0] */
/* Joerg Arndt, Jul 01 2011 */
-
def A059304(n): return pow(2,n)*binomial(2*n,n)
print([A059304(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025
A034171
Related to triple factorial numbers A007559(n+1).
Original entry on oeis.org
1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0
-
CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)
A004982
a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 3).
Original entry on oeis.org
1, 6, 42, 308, 2310, 17556, 134596, 1038312, 8046918, 62587140, 488179692, 3816677592, 29897307804, 234578876616, 1843119744840, 14499208659408, 114181268192838, 900017055167076, 7100134546318044, 56053693786721400, 442824180915099060, 3500419715805068760, 27685137752276452920
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+3)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
-
[1] cat [2^n*&*[4*k+3: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
-
A004982 := n -> (-8)^n*binomial(-3/4, n):
seq(A004982(n), n=0..25); # Peter Luschny, Oct 23 2018
-
Table[2^n/n! Product[4k+3,{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
Table[Sum[2^k*Binomial[2*n-2*k,n-k]*Binomial[n+k,n],{k,0,n}],{n,0,25}] (* Vaclav Kotesovec, Sep 15 2013 *)
FullSimplify[Table[8^n*Gamma[n+3/4]/(n!*Gamma[3/4]), {n, 0, 25}]] (* Vaclav Kotesovec, Sep 15 2013 *)
max = 30; s = Hypergeometric1F1[3/4, 1, 8x] + O[x]^(max+1);
CoefficientList[s, x]*(Range[0, max]!) (* Jean-François Alcover, Dec 19 2015, after Karol A. Penson *)
-
a(n)=2^n/n!*prod(k=0,n-1,4*k+3)
for(n=0,25,print(a(n)))
-
x='x+O('x^66); Vec((1-8*x)^(-3/4)) \\ Joerg Arndt, Apr 20 2013
-
[8^n*rising_factorial(3/4, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
A004984
a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).
Original entry on oeis.org
1, -2, -6, -28, -154, -924, -5852, -38456, -259578, -1788204, -12517428, -88759944, -636112932, -4599585816, -33511268088, -245749299312, -1812401082426, -13433090375628, -100001895018564, -747382583822952, -5605369378672140, -42173731515723720
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
List([0..25],n->(2^n/Factorial(n))*Product([0..n-1],k->4*k-1)); # Muniru A Asiru, Apr 28 2018
-
[1] cat [2^n*(&*[4*k-1: k in [0..n-1]])/Factorial(n): n in [1..30]]; // G. C. Greubel, Aug 22 2019
-
seq(-(1/4)*8^n*GAMMA(n-1/4)/(GAMMA(3/4)*n!), n=0..30); # Robert Israel, Sep 29 2014
-
Table[8^n*Pochhammer[-1/4, n]/n!, {n,0,30}] (* G. C. Greubel, Aug 22 2019 *)
CoefficientList[Series[Surd[1-8x,4],{x,0,30}],x] (* Harvey P. Dale, Dec 08 2019 *)
-
a(n):=-1/n*(if n=1 then (2)^n else sum(sum(binomial(k,j)* binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j),j,0,k)*binomial(k+n-1,n-1)*(2)^n,k,1,n-1)); /* Vladimir Kruchinin, Sep 14 2010 */
-
a(n):=binomial(1/4,n)*(-8)^n; /* Tani Akinari, Sep 28 2014 */
-
for(n=0,28,print1(2^n/n!*prod(k=0,n-1,(4*k-1)),","))
-
[8^n*rising_factorial(-1/4, n)/factorial(n) for n in (0..30)] # G. C. Greubel, Aug 22 2019
A214764
G.f. satisfies: A(x) = 1/A(-x*A(x)^4).
Original entry on oeis.org
1, 2, 10, 60, 390, 2660, 18772, 138984, 1107686, 9576100, 87944188, 830857464, 7876505340, 73967614584, 685644645896, 6289047266480, 57465415636166, 528315307772004, 4947263762389484, 47785581838822232, 480797992896880788, 5058812497153271912
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2660*x^5 + 18772*x^6 +...
A(x)^4 = 1 + 8*x + 64*x^2 + 512*x^3 + 4096*x^4 + 32800*x^5 + 263168*x^6 +...
-
{a(n)=local(A=1+2*x);for(i=0,n,A=(A+1/subst(A,x,-x*A^4+x*O(x^n)))/2);polcoeff(A,n)}
for(n=0,31,print1(a(n),", "))
A004130
Numerators in expansion of (1-x)^{-1/4}.
Original entry on oeis.org
1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
Offset: 0
-
Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
-
{a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */
A127776
a(n) = ( (2^n / n!) * Product_{k=0..n-1} (4*k + 1) )^2.
Original entry on oeis.org
1, 4, 100, 3600, 152100, 7033104, 344622096, 17582760000, 924193822500, 49701090010000, 2721631688947600, 151241747739534400, 8507348310348810000, 483459012855561960000, 27715027900230072360000, 1600820011517288979513600, 93072675982122379574532900
Offset: 0
G.f. = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 + ...
- A. Cayley, An Identity, Messenger of Mathematics, 7 (1878), p. 69
-
[1] cat [n le 1 select 4 else (4*(4*n-3)^2*Self(n-1)/ n^2): n in [1..30]]; // Vincenzo Librandi, Aug 26 2016
-
From Michael Somos, Jun 25 2012 (Start)
a[ n_] := If[ n < 0, 0, (Pochhammer[ 1/4, n] 8^n / n!)^2];
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/4, 1/4, 1, 64 x], {x, 0, n}];
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64 x]^(1/2), {x, 0, n}];
(End)
Join[{1}, RecurrenceTable[{a[1] == 4, a[n] == (4 (4 n - 3)^2 a[n-1] / n^2)}, a, {n, 20}]] (* Vincenzo Librandi, Aug 26 2016 *)
-
{a(n) = if( n<0, 0, prod( k=1, n, (8*k - 6) / k)^2)};
-
{a(n) = my(A); if( n<1, n==0, A = x * O(x^n); polcoeff( subst( 1 / agm(1, sqrt(1 - 16*x + A) ), x, serreverse( x*(1 - 16*x) + A )), n))};
-
seq(N) = {
my(a = vector(N)); a[1] = 4;
for (n=2, N, a[n] = 4*(4*n-3)^2*a[n-1]/n^2);
concat(1,a);
};
seq(15) \\ Gheorghe Coserea, Aug 26 2016
A224881
Expansion of 1/(1 - 16*x)^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
-
List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
-
CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
-
{a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
for(n=0,30,print1(a(n),", "))
Showing 1-10 of 22 results.
Comments