cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A208890 a(n) = A000984(n)*A004981(n), the term-wise product of the coefficients in (1-4*x)^(-1/2) and (1-8*x)^(-1/4).

Original entry on oeis.org

1, 4, 60, 1200, 27300, 668304, 17153136, 455083200, 12372574500, 342766138000, 9638583800560, 274341178587840, 7887308884400400, 228685287180840000, 6678543795015960000, 196260140322869011200, 5798873833602270315300, 172160337343624495866000
Offset: 0

Views

Author

Paul D. Hanna, Mar 04 2012

Keywords

Comments

The sequences A000984 and A004981 are related by the aesthetic identity:
Sum_{n>=0} A000984(n)^3 *x^n = ( Sum_{n>=0} A004981(n)^2 *x^n )^2.

Examples

			G.f.: A(x) = 1 + 4*x + 60*x^2 + 1200*x^3 + 27300*x^4 + 668304*x^5 +...
The terms are the term-wise products of the sequences:
A000984 = [1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...],
A004981 = [1, 2, 10, 60, 390, 2652, 18564, 132600, 961350, ...].
Related sequences:
A^2: [1, 8, 136, 2880, 67800, 1699008, 44368704, 1193107968, ...],
A^4: [1, 16, 336, 7936, 200176, 5266176, 142657536, 3948773376, ...],
A^8: [1, 32, 928, 26624, 767200, 22270976, 651331072, 19178651648, ...].
		

Crossrefs

Programs

  • PARI
    {A000984(n)=polcoeff((1-4*x +x*O(x^n))^(-1/2),n)}
    {A004981(n)=polcoeff((1-8*x +x*O(x^n))^(-1/4),n)}
    {a(n)=A000984(n)*A004981(n)}
    for(n=0,20,print1(a(n),", "))

A007696 Quartic (or 4-fold) factorial numbers: a(n) = Product_{k = 0..n-1} (4*k + 1).

Original entry on oeis.org

1, 1, 5, 45, 585, 9945, 208845, 5221125, 151412625, 4996616625, 184874815125, 7579867420125, 341094033905625, 16713607661375625, 885821206052908125, 50491808745015763125, 3080000333445961550625, 200200021673987500790625, 13813801495505137554553125
Offset: 0

Views

Author

Keywords

Comments

a(n), n >= 1, enumerates increasing quintic (5-ary) trees. See David Callan's comment on A007559 (number of increasing quarterny trees).
Hankel transform is A169619. - Paul Barry, Dec 03 2009

Examples

			G.f. = 1 + x + 5*x^2 + 45*x^3 + 585*x^4 + 9945*x^5 + 208845*x^6 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A049029(n, 1) for n >= 1 (first column of triangle).

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=(4*(n-1)-7)*(a[n-1]+4*a[n-2]); od; a; # G. C. Greubel, Aug 15 2019
  • Magma
    [n le 2 select 1 else (4*(n-1)-7)*(Self(n-1) + 4*Self(n-2)): n in [1..20]]; // G. C. Greubel, Aug 15 2019
    
  • Maple
    x:='x'; G(x):=(1-4*x)^(-1/4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: seq(eval(f[n],x=0),n=0..17);# Zerinvary Lajos, Apr 03 2009
    A007696 := n -> mul(k, k = select(k-> k mod 4 = 1, [$ 1 .. 4*n])): seq(A007696(n), n=0..17); # Peter Luschny, Jun 23 2011
  • Mathematica
    a[ n_]:= Pochhammer[ 1/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
    a[ n_]:= If[n < 0, 1 / Product[ -k, {k, 3, -4n-1, 4}], Product[ k, {k, 1, 4n-3, 4}]]; (* Michael Somos, Jan 17 2014 *)
    Range[0, 19]! CoefficientList[Series[((1-4x)^(-1/4)), {x, 0, 19}], x] (* Vincenzo Librandi, Oct 08 2015 *)
  • Maxima
    A007696(n):=prod(4*k+1,k,0,n-1)$
    makelist(A007696(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    {a(n) = if( n<0, 1 / prod(k=1, -n, 1 - 4*k), prod(k=1, n, 4*k - 3))}; /* Michael Somos, Jan 17 2014 */
    
  • Sage
    [4^n*rising_factorial(1/4, n) for n in (0..20)] # G. C. Greubel, Aug 15 2019
    

Formula

E.g.f.: (1 - 4*x)^(-1/4).
a(n) ~ 2^(1/2) * Pi^(1/2) * Gamma(1/4)^(-1) * n^(-1/4) * 2^(2*n) * e^(-n) * n^n * (1 - 1/96 * n^(-1) - ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001 [corrected by Vaclav Kotesovec, Jul 19 2025]
a(n) = Sum_{k = 0..n} (-4)^(n-k) * A048994(n, k). - Philippe Deléham, Oct 29 2005
G.f.: 1/(1 - x/(1 - 4*x/(1 - 5*x/(1 - 8*x/(1 - 9*x/(1 - 12*x/(1 - 13*x/(1 - .../(1 - A042948(n+1)*x/(1 -... (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-3)^n * Sum_{k = 0..n} (4/3)^k * s(n+1, n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/T(0), where T(k) = 1 - x * (4*k + 1)/(1 - x * (4*k + 4)/T(k+1)) (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: 1 + x/Q(0), where Q(k) = 1 + x + 2*(2*k - 1)*x - 4*x*(k+1)/Q(k+1) (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x * (4*k + 1)/(x * (4*k + 1) + 1/G(k+1))) (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
0 = a(n) * (4*a(n+1) - a(n+2)) + a(n+1) * a(n+1) for all n in Z. - Michael Somos, Jan 17 2014
a(-n) = (-1)^n / A008545(n). - Michael Somos, Jan 17 2014
Let T(x) = 1/(1 - 3*x)^(1/3) be the e.g.f. for the sequence of triple factorial numbers A007559. Then the e.g.f. A(x) for the quartic factorial numbers satisfies T(Integral_{t = 0..x} A(t) dt) = A(x). (Cf. A007559 and A008548.) - Peter Bala, Jan 02 2015
O.g.f.: hypergeom([1, 1/4], [], 4*x). - Peter Luschny, Oct 08 2015
a(n) = A264781(4*n+1, n). - Alois P. Heinz, Nov 24 2015
a(n) = 4^n * Gamma(n + 1/4)/Gamma(1/4). - Artur Jasinski, Aug 23 2016
D-finite with recurrence: a(n) +(-4*n+3)*a(n-1)=0, n>=1. - R. J. Mathar, Feb 14 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(1/4) - Gamma(1/4, 1/4))/(2*sqrt(2)). - Amiram Eldar, Dec 18 2022

Extensions

Better description from Wolfdieter Lang, Dec 11 1999

A059304 a(n) = 2^n * (2*n)! / (n!)^2.

Original entry on oeis.org

1, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400
Offset: 0

Views

Author

Henry Bottomley, Jan 25 2001

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (0,1), and two kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
The convolution square root of this sequence is A004981. - T. D. Noe, Jun 11 2002
Also main diagonal of array: T(i,1)=2^(i-1), T(1,j)=1, T(i,j) = T(i,j-1) + 2*T(i-1,j). - Benoit Cloitre, Feb 26 2003
The Hankel transform (see A001906 for definition) of this sequence with interpolated zeros(1, 0, 4, 0, 24, 0, 160, 0, 1120, ...) = is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
The Hankel transform of this sequence gives A103488. - Philippe Deléham, Dec 02 2007
Equals the central column of the triangle A038207. - Zerinvary Lajos, Dec 08 2007
Equals number of permutations whose reverse shares the same recording tableau in the Robinson-Schensted correspondence with n=(k-1)/2 for k odd. - Dang-Son Nguyen, Jul 02 2024
Number of ternary strings of length 2*n that have the same number of 0's as the combined number of 1's and 2's. For example, a(2)=24 since the strings of length 4 are the 6 permutations of 0011, the 12 permutations of 0012, and the 6 permutations of 0022. - Enrique Navarrete, Jul 30 2025

Crossrefs

Diagonal of A013609.
Column k=0 of A067001.

Programs

  • Magma
    [2^n*Binomial(2*n,n): n in [0..25]]; // Vincenzo Librandi, Oct 08 2015
    
  • Maple
    seq(binomial(2*n,n)*2^n,n=0..19); # Zerinvary Lajos, Dec 08 2007
  • Mathematica
    Table[2^n Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Dec 16 2014 *)
  • PARI
    {a(n)=if(n<0, 0, 2^n*(2*n)!/n!^2)} /* Michael Somos, Jan 31 2007 */
    
  • PARI
    { for (n = 0, 200, write("b059304.txt", n, " ", 2^n * (2*n)! / n!^2); ) } \\ Harry J. Smith, Jun 25 2009
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1, 0], [1, 0], [0, 1]]; /* note the double [1, 0] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • SageMath
    def A059304(n): return pow(2,n)*binomial(2*n,n)
    print([A059304(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = 2^n * C(2*n,n).
D-finite with recurrence a(n) = 4*(2-1/n)*a(n-1).
a(n) = A000079(n)*A000984(n)
G.f.: 1/sqrt(1-8*x) - T. D. Noe, Jun 11 2002
E.g.f.: exp(4*x)*BesselI(0, 4*x). - Vladeta Jovovic, Aug 20 2003
a(n) = A038207(n,n). - Joerg Arndt, Jul 01 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 4*x/(4*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: Q(0)/(1+2*sqrt(x)), where Q(k) = 1 + 2*sqrt(x)/(1 - 2*sqrt(x)*(2*k+1)/(2*sqrt(x)*(2*k+1) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
O.g.f.: hypergeom([1/2], [], 8*x). - Peter Luschny, Oct 08 2015
a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(3*n-2*k,n)* binomial(n+k,n). - Peter Bala, Aug 04 2016
a(n) ~ 8^n/sqrt(Pi*n). - Ilya Gutkovskiy, Aug 04 2016
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 8/7 + 8*sqrt(7)*arcsin(1/sqrt(8))/49.
Sum_{n>=0} (-1)^n/a(n) = (8/27)*(3 - arcsinh(1/sqrt(8))). (End)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)*binomial(k,n). In general, for m >= 1, Sum_{k = n..m*n} binomial(m*n,k)*binomial(k,n) = 2^((m-1)*n)*binomial(m*n,n). - Peter Bala, Mar 25 2023
Conjecture: a(n) = Sum_{0 <= j, k <= n} binomial(n, j)*binomial(n, k)* binomial(k+j, n). - Peter Bala, Jul 16 2024

A034171 Related to triple factorial numbers A007559(n+1).

Original entry on oeis.org

1, 6, 42, 315, 2457, 19656, 160056, 1320462, 11003850, 92432340, 781473420, 6642524070, 56716936290, 486145168200, 4180848446520, 36059817851235, 311811366125385, 2702365173086670, 23467908082068450, 204170800313995515, 1779202688450532345, 15527587099204645920
Offset: 0

Views

Author

Keywords

Comments

Working with an offset of 1, we conjecture a(p*n) = a(n) (mod p^2) for prime p = 1 (mod 3) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/3 and 1 <= k <= (p-1)/3. Cf. A298799, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-1 + (1 - 9 x)^(-1/3))/(3 x), {x, 0, 19}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 3^n*A007559(n+1)/(n+1)! where A007559(n+1)=(3*n+1)!!!.
G.f.: (-1+(1-9*x)^(-1/3))/(3*x).
a(n) = A035529(n+1, 1) (first column of triangle).
Convolution of A004987(n) with A025748(n+1), n >= 0.
From R. J. Mathar, Jan 28 2020: (Start)
D-finite with recurrence: (n+1)*a(n) + 3*(-3*n-1)*a(n-1) = 0.
G.f.: (1F0(1/3;;9*x)-1)/(3*x). (End)
Sum_{n>=0} 1/a(n) = 3/8 + 3*sqrt(3)*Pi/32 + 9*log(3)/32. - Amiram Eldar, Dec 22 2022
a(n) ~ 3^(2*n+1) * n^(-2/3) / Gamma(1/3). - Amiram Eldar, Aug 19 2025

A004982 a(n) = (2^n/n!) * Product_{k=0..n-1} (4*k + 3).

Original entry on oeis.org

1, 6, 42, 308, 2310, 17556, 134596, 1038312, 8046918, 62587140, 488179692, 3816677592, 29897307804, 234578876616, 1843119744840, 14499208659408, 114181268192838, 900017055167076, 7100134546318044, 56053693786721400, 442824180915099060, 3500419715805068760, 27685137752276452920
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Conjecture: a(p*n) = a(n) (mod p^2) for prime p == 1 (mod 4) and all positive integers n. Cf. A004981. - Peter Bala, Dec 22 2019

Crossrefs

Main diagonal of A067001. Cf. A004981.

Programs

  • GAP
    List([0..25], n-> 2^n*Product([0..n-1], k-> 4*k+3)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [2^n*&*[4*k+3: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    A004982 := n -> (-8)^n*binomial(-3/4, n):
    seq(A004982(n), n=0..25); # Peter Luschny, Oct 23 2018
  • Mathematica
    Table[2^n/n! Product[4k+3,{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
    Table[Sum[2^k*Binomial[2*n-2*k,n-k]*Binomial[n+k,n],{k,0,n}],{n,0,25}] (* Vaclav Kotesovec, Sep 15 2013 *)
    FullSimplify[Table[8^n*Gamma[n+3/4]/(n!*Gamma[3/4]), {n, 0, 25}]] (* Vaclav Kotesovec, Sep 15 2013 *)
    max = 30; s = Hypergeometric1F1[3/4, 1, 8x] + O[x]^(max+1);
    CoefficientList[s, x]*(Range[0, max]!) (* Jean-François Alcover, Dec 19 2015, after Karol A. Penson *)
  • PARI
    a(n)=2^n/n!*prod(k=0,n-1,4*k+3)
    for(n=0,25,print(a(n)))
    
  • PARI
    x='x+O('x^66); Vec((1-8*x)^(-3/4)) \\ Joerg Arndt, Apr 20 2013
    
  • Sage
    [8^n*rising_factorial(3/4, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 8*x)^(-3/4).
a(n) ~ Gamma(3/4)^-1*n^(-1/4)*2^(3*n)*{1 - 3/32*n^-1 + ...}
a(n) = 8^n*Gamma(n+3/4)/(n!*Gamma(3/4)). - Vaclav Kotesovec, Sep 15 2013
From Karol A. Penson, Dec 19 2015: (Start)
a(n) = (-8)^n*binomial(-3/4,n).
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([3/4], [1], 8*x).
Representation as n-th moment of a positive function on (0, 8): a(n) = Integral_{x=0..8} ( x^n*2^(1/4)/(8*Pi*x^(1/4)*(1-x/8)^(3/4)) ) dx, n >= 0. This function is the solution of the Hausdorff moment problem on (0, 8) with moments equal to a(n). As a consequence this representation is unique. (End)
D-finite with recurrence: n*a(n) +2*(-4*n+1)*a(n-1)=0. - R. J. Mathar, Jan 16 2020

Extensions

More terms from Rick L. Shepherd, Mar 03 2002

A004984 a(n) = (2^n/n!)*Product_{k=0..n-1} (4*k - 1).

Original entry on oeis.org

1, -2, -6, -28, -154, -924, -5852, -38456, -259578, -1788204, -12517428, -88759944, -636112932, -4599585816, -33511268088, -245749299312, -1812401082426, -13433090375628, -100001895018564, -747382583822952, -5605369378672140, -42173731515723720
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Programs

  • GAP
    List([0..25],n->(2^n/Factorial(n))*Product([0..n-1],k->4*k-1)); # Muniru A Asiru, Apr 28 2018
    
  • Magma
    [1] cat [2^n*(&*[4*k-1: k in [0..n-1]])/Factorial(n): n in [1..30]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    seq(-(1/4)*8^n*GAMMA(n-1/4)/(GAMMA(3/4)*n!), n=0..30); # Robert Israel, Sep 29 2014
  • Mathematica
    Table[8^n*Pochhammer[-1/4, n]/n!, {n,0,30}] (* G. C. Greubel, Aug 22 2019 *)
    CoefficientList[Series[Surd[1-8x,4],{x,0,30}],x] (* Harvey P. Dale, Dec 08 2019 *)
  • Maxima
    a(n):=-1/n*(if n=1 then (2)^n else sum(sum(binomial(k,j)* binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j),j,0,k)*binomial(k+n-1,n-1)*(2)^n,k,1,n-1)); /* Vladimir Kruchinin, Sep 14 2010 */
    
  • Maxima
    a(n):=binomial(1/4,n)*(-8)^n; /* Tani Akinari, Sep 28 2014 */
    
  • PARI
    for(n=0,28,print1(2^n/n!*prod(k=0,n-1,(4*k-1)),","))
    
  • Sage
    [8^n*rising_factorial(-1/4, n)/factorial(n) for n in (0..30)] # G. C. Greubel, Aug 22 2019

Formula

G.f.: (1 - 8*x)^(1/4).
a(n) ~ -1/4*Gamma(3/4)^-1*n^(-5/4)*2^(3*n)*{1 + 5/32*n^-1 + ...}
a(n) = -1/n*Sum_{k=1..n-1} 2^n*binomial(k+n-1, n-1) * ( Sum_{j=0..k} binomial(k,j)*binomial(j,n-1-3*k+2*j)*(3/2)^(3*k-n+1-j)*(-1)^(n-1-3*k)*(1/4)^(k-j) ), n>1. - Vladimir Kruchinin, Sep 14 2010
a(n) = 8^n*Pochhammer(-1/4, n)/n! = -(1/4)*8^n*Gamma(n-1/4)/(Gamma(3/4)*n!). - Robert Israel, Sep 29 2014
D-finite with recurrence: n*a(n) +2*(-4*n+5)*a(n-1)=0. - R. J. Mathar, Jan 16 2020

Extensions

More terms from Jason Earls, Dec 04 2001

A214764 G.f. satisfies: A(x) = 1/A(-x*A(x)^4).

Original entry on oeis.org

1, 2, 10, 60, 390, 2660, 18772, 138984, 1107686, 9576100, 87944188, 830857464, 7876505340, 73967614584, 685644645896, 6289047266480, 57465415636166, 528315307772004, 4947263762389484, 47785581838822232, 480797992896880788, 5058812497153271912
Offset: 0

Views

Author

Paul D. Hanna, Jul 29 2012

Keywords

Comments

Compare to: W(x) = 1/W(-x*W(x)^4) when W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!.
Compare to: B(x) = 1/B(-x*B(x)^4) when B(x) = 1/(1-8*x)^(1/4) = g.f. of A004981.
An infinite number of functions G(x) satisfy (*) G(x) = 1/G(-x*G(x)^4); for example, (*) is satisfied by G(x) = W(m*x), where W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!.

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 60*x^3 + 390*x^4 + 2660*x^5 + 18772*x^6 +...
A(x)^4 = 1 + 8*x + 64*x^2 + 512*x^3 + 4096*x^4 + 32800*x^5 + 263168*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+2*x);for(i=0,n,A=(A+1/subst(A,x,-x*A^4+x*O(x^n)))/2);polcoeff(A,n)}
    for(n=0,31,print1(a(n),", "))

Formula

The g.f. of this sequence is the limit of the recurrence:
(*) G_{n+1}(x) = (G_n(x) + 1/G_n(-x*G_n(x)^4))/2 starting at G_0(x) = 1+2*x.

A004130 Numerators in expansion of (1-x)^{-1/4}.

Original entry on oeis.org

1, 1, 5, 15, 195, 663, 4641, 16575, 480675, 1762475, 13042315, 48612265, 729183975, 2748462675, 20809788825, 79077197535, 4823709049635, 18443593425075, 141400882925575, 543277076503525, 8366466978154285, 32270658344309385
Offset: 0

Views

Author

Keywords

Comments

Numerators in expansion of sqrt(1/sqrt(1-4x)). - Paul Barry, Jul 12 2005
Denominators are in A088802. - Michael Somos, Aug 23 2007

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Binomial[-1/4, n] (-1)^n], {n, 0, 20}]
  • PARI
    {a(n) = if( n<0, 0, numerator( polcoeff( (1 - x +x*O(x^n))^(-1/4), n ) ) ) } /* Michael Somos, Aug 23 2007 */

Formula

a(n) = prod(k=1, n, (4k-3)/k * 2^A007814(k)), proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = 2^(e_2((2n)!)-n)/n! Product[4k+1,{k,0,n-1}], where e_2((2n)!) is the highest power of 2 that divides (2n)! (sequence A005187). - Emanuele Munarini, Jan 25 2011
Numerators in (1-4t)^(-1/4) = 1 + t + (5/2)t^2 + (15/2)t^3 + (195/8)t^4 + (663/8)t^5 + (4641/16)t^6 + (16575/16)t^7 + ... = 1 + t + 5*t^2/2! + 45*t^3/3! + 585*t^4/4! + ... = e.g.f. for the quartic factorials A007696 (cf. A094638). - Tom Copeland, Dec 04 2013

A127776 a(n) = ( (2^n / n!) * Product_{k=0..n-1} (4*k + 1) )^2.

Original entry on oeis.org

1, 4, 100, 3600, 152100, 7033104, 344622096, 17582760000, 924193822500, 49701090010000, 2721631688947600, 151241747739534400, 8507348310348810000, 483459012855561960000, 27715027900230072360000, 1600820011517288979513600, 93072675982122379574532900
Offset: 0

Views

Author

Michael Somos, Jan 14 2007

Keywords

Comments

Cayley (1878) refers to Gauss, Werke, t. iii, p. 424 for a slightly different form of a square of a hypergeometric series being hypergeometric. - Michael Somos, Jun 25 2012

Examples

			G.f. = 1 + 4*x + 100*x^2 + 3600*x^3 + 152100*x^4 + 7033104*x^5 + ...
		

References

  • A. Cayley, An Identity, Messenger of Mathematics, 7 (1878), p. 69

Crossrefs

Programs

  • Magma
    [1] cat [n le 1 select 4 else (4*(4*n-3)^2*Self(n-1)/ n^2): n in [1..30]]; // Vincenzo Librandi, Aug 26 2016
  • Mathematica
    From Michael Somos, Jun 25 2012 (Start)
    a[ n_] := If[ n < 0, 0, (Pochhammer[ 1/4, n] 8^n / n!)^2];
    a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/4, 1/4, 1, 64 x], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64 x]^(1/2), {x, 0, n}];
    (End)
    Join[{1}, RecurrenceTable[{a[1] == 4, a[n] == (4 (4 n - 3)^2 a[n-1] / n^2)}, a, {n, 20}]] (* Vincenzo Librandi, Aug 26 2016 *)
  • PARI
    {a(n) = if( n<0, 0, prod( k=1, n, (8*k - 6) / k)^2)};
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = x * O(x^n); polcoeff( subst( 1 / agm(1, sqrt(1 - 16*x + A) ), x, serreverse( x*(1 - 16*x) + A )), n))};
    
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 4;
      for (n=2, N, a[n] = 4*(4*n-3)^2*a[n-1]/n^2);
      concat(1,a);
    };
    seq(15) \\ Gheorghe Coserea, Aug 26 2016
    

Formula

Expansion of K(k) / (Pi/2) in powers of (k * k'/4)^2, where K(k) is the complete elliptic integral of first kind evaluated at modulus k.
Expansion of 1 / AGM( 1, (1 - 16*x)^(1/2) ) in powers of x * (1 - 16*x) where AGM() is the arithmetic-geometric mean.
G.f.: F(1/4, 1/4; 1; 64*x).
a(n) = A004981(n)^2. Convolution square is A002897.
a(n) ~ 64^n / (Gamma(1/4)^2 * n^(3/2)). - Vaclav Kotesovec, Sep 08 2015
From Gheorghe Coserea, Aug 26 2016: (Start)
n^2 * a(n) = 4*(4*n-3)^2 * a(n-1), with a(0) = 1.
0 = 16*x*(x+64)*y'' + 8*(3*x+128)*y' + y, where y(x) = A(x/-4096). (End)

A224881 Expansion of 1/(1 - 16*x)^(1/8).

Original entry on oeis.org

1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
		

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), this sequence (b=16), A034688 (b=25), A298799 (b=27), A004993 (b=36), A034835 (b=49).
Cf. A301271.

Programs

  • GAP
    List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    {a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
    for(n=0,30,print1(a(n),", "))
    

Formula

a(n) = (2^n/n!) * Product_{k=0..n-1} (8*k + 1).
a(n) ~ 16^n/(GAMMA(1/8)*n^(7/8)). - Vaclav Kotesovec, Jul 24 2013
Showing 1-10 of 22 results. Next