cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A227506 Schroeder triangle sums: a(2*n-1) = A010683(2*n-2) and a(2*n) = A010683(2*n-1) - A001003(2*n-1).

Original entry on oeis.org

1, 1, 7, 17, 121, 353, 2591, 8257, 61921, 207905, 1582791, 5501073, 42344121, 150827073, 1170747519, 4247388417, 33186295681, 122125206977, 959260792775, 3570473750929, 28167068630713, 105820555054241, 837838806587167, 3172136074486337
Offset: 1

Views

Author

Johannes W. Meijer, Jul 15 2013

Keywords

Comments

The terms of this sequence equal the Fi1 sums, see A180662, of the Schroeder triangle A033877 (with offset 1 and n for columns and k for rows).

Crossrefs

Programs

  • Maple
    A227506 := proc(n) local k, T; T := proc(n, k) option remember; if n=1 then return(1) fi; if kA227506(n), n = 1..24); # Peter Luschny, Jul 17 2013
    A227506 := proc(n): if type(n, odd) then A010683(n-1) else A010683(n-1) - A001003(n-1) fi: end: A010683 := proc(n): if n = 0 then 1 else (2/n)*add(binomial(n, k)* binomial(n+k+1, k-1), k=1..n) fi: end: A001003 := proc(n): if n = 0 then 1 else add(binomial(n, j)*binomial(n+j, n-1), j=0..n)/(2*n) fi: end: seq(A227506(n), n=1..24);
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n == 1, 1, k < n, 0, True, T[n, k - 1] + T[n - 1, k - 1] + T[n - 1, k]];
    a[n_] := Sum[T[2 k - 1, n], {k, 1, (n + 1)/2}];
    Array[a, 24] (* Jean-François Alcover, Jul 11 2019, from Sage *)
  • Sage
    def A227506(n):
        @CachedFunction
        def T(n, k):
            if n==1: return 1
            if k A227506(n) for n in (1..24)]  # Peter Luschny, Jul 16 2013

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A033877(2*k-1,n).
a(2*n-1) = A010683(2*n-2) and a(2*n) = A010683(2*n-1) - A001003(2*n-1).
G.f.: (1-4*x+x^2 - sqrt(1-6*x+x^2) + x*sqrt(1+6*x+x^2))/(8*x).

A001003 Schroeder's second problem (generalized parentheses); also called super-Catalan numbers or little Schroeder numbers.

Original entry on oeis.org

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, 2646723, 13648869, 71039373, 372693519, 1968801519, 10463578353, 55909013009, 300159426963, 1618362158587, 8759309660445, 47574827600981, 259215937709463, 1416461675464871
Offset: 0

Views

Author

Keywords

Comments

If you are looking for the Schroeder numbers (a.k.a. large Schroder numbers, or big Schroeder numbers), see A006318.
Yang & Jiang (2021) call these the small 2-Schroeder numbers. - N. J. A. Sloane, Mar 28 2021
There are two schools of thought about the index for the first term. I prefer the indexing a(0) = a(1) = 1, a(2) = 3, a(3) = 11, etc.
a(n) is the number of ways to insert parentheses in a string of n+1 symbols. The parentheses must be balanced but there is no restriction on the number of pairs of parentheses. The number of letters inside a pair of parentheses must be at least 2. Parentheses enclosing the whole string are ignored.
Also length of list produced by a variant of the Catalan producing iteration: replace each integer k with the list 0,1,..,k,k+1,k,...,1,0 and get the length a(n) of the resulting (flattened) list after n iterations. - Wouter Meeussen, Nov 11 2001
Stanley gives several other interpretations for these numbers.
Number of Schroeder paths of semilength n (i.e., lattice paths from (0,0) to (2n,0), with steps H=(2,0), U=(1,1) and D(1,-1) and not going below the x-axis) with no peaks at level 1. Example: a(2)=3 because among the six Schroeder paths of semilength two HH, UHD, UUDD, HUD, UDH and UDUD, only the first three have no peaks at level 1. - Emeric Deutsch, Dec 27 2003
a(n+1) is the number of Dyck n-paths in which the interior vertices of the ascents are colored white or black. - David Callan, Mar 14 2004
Number of possible schedules for n time slots in the first-come first-served (FCFS) printer policy.
Also row sums of A086810, A033282, A126216. - Philippe Deléham, May 09 2004
a(n+1) is the number of pairs (u,v) of same-length compositions of n, 0's allowed in u but not in v and u dominates v (meaning u_1 >= v_1, u_1 + u_2 >= v_1 + v_2 and so on). For example, with n=2, a(3) counts (2,2), (1+1,1+1), (2+0,1+1). - David Callan, Jul 20 2005
The big Schroeder number (A006318) is the number of Schroeder paths from (0,0) to (n,n) (subdiagonal paths with steps (1,0) (0,1) and (1,1)). These paths fall in two classes: those with steps on the main diagonal and those without. These two classes are equinumerous and the number of paths in either class is the little Schroeder number a(n) (half the big Schroeder number). - Marcelo Aguiar (maguiar(AT)math.tamu.edu), Oct 14 2005
With offset 0, a(n) = number of (colored) Motzkin (n-1)-paths with each upstep U getting one of 2 colors and each flatstep F getting one of 3 colors. Example. With their colors immediately following upsteps/flatsteps, a(2) = 3 counts F1, F2, F3 and a(3)=11 counts U1D, U2D, F1F1, F1F2, F1F3, F2F1, F2F2, F2F3, F3F1, F3F2, F3F3. - David Callan, Aug 16 2006
Shifts left when INVERT transform applied twice. - Alois P. Heinz, Apr 01 2009
Number of increasing tableaux of shape (n,n). An increasing tableau is a semistandard tableaux with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. Example: a(2) = 3 because of the three tableaux (12)(34), (13)(24), (12)(23). - Oliver Pechenik, Apr 22 2014
Number of ordered trees with no vertex of outdegree 1 and having n+1 leaves (called sometimes Schröder trees). - Emeric Deutsch, Dec 13 2014
Number of dissections of a convex (n+2)-gon by nonintersecting diagonals. Example: a(2)=3 because for a square ABCD we have (i) no diagonal, (ii) dissection with diagonal AC, and (iii) dissection with diagonal BD. - Emeric Deutsch, Dec 13 2014
The little Schroeder numbers are the moments of the Marchenko-Pastur law for the case c=2 (although the moment m0 is 1/2 instead of 1): 1/2, 1, 3, 11, 45, 197, 903, ... - Jose-Javier Martinez, Apr 07 2015
Number of generalized Motzkin paths with no level steps at height 0, from (0,0) to (2n,0), and consisting of steps U=(1,1), D=(1,-1) and H2=(2,0). For example, for n=3, we have the 11 paths: UDUDUD, UUDDUD, UDUUDD, UH2DUD, UDUH2D, UH2H2D, UUDUDD, UUUDDD, UUH2DD, UUDH2D, UH2UDD. - José Luis Ramírez Ramírez, Apr 20 2015
REVERT transform of A225883. - Vladimir Reshetnikov, Oct 25 2015
Total number of (nonempty) faces of all dimensions in the associahedron K_{n+1} of dimension n-1. For example, K_4 (a pentagon) includes 5 vertices and 5 edges together with K_4 itself (5 + 5 + 1 = 11), while K_5 includes 14 vertices, 21 edges and 9 faces together with K_5 itself (14 + 21 + 9 + 1 = 45). - Noam Zeilberger, Sep 17 2018
a(n) is the number of interval posets of permutations with n minimal elements that have exactly two realizers, up to a shift by 1 in a(4). See M. Bouvel, L. Cioni, B. Izart, Theorem 17 page 13. - Mathilde Bouvel, Oct 21 2021
a(n) is the number of sequences of nonnegative integers (u_1, u_2, ..., u_n) such that (i) u_1 = 1, (ii) u_i <= i for all i, (iii) the nonzero u_i are weakly increasing. For example, a(2) = 3 counts 10, 11, 12, and a(3) = 11 counts 100, 101, 102, 103, 110, 111, 112, 113, 120, 122, 123. See link below. - David Callan, Dec 19 2021
a(n) is the number of parking functions of size n avoiding the patterns 132 and 213. - Lara Pudwell, Apr 10 2023
a(n+1) is the number of Schroeder paths from (0,0) to (2n,0) in which level steps at height 0 come in 2 colors. - Alexander Burstein, Jul 23 2023

Examples

			G.f. = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 197*x^5 + 903*x^6 + 4279*x^7 + ...
a(2) = 3: abc, a(bc), (ab)c; a(3) = 11: abcd, (ab)cd, a(bc)d, ab(cd), (ab)(cd), a(bcd), a(b(cd)), a((bc)d), (abc)d, (a(bc))d, ((ab)c)d.
Sum over partitions formula: a(3) = 2*a(0)*a(2) + 1*a(1)^2 + 3*(a(0)^2)*a(1) + 1*a(0)^4 = 6 + 1 + 3 + 1 = 11.
a(4) = 45 since the top row of Q^3 = (11, 14, 12, 8, 0, 0, 0, ...); (11 + 14 + 12 + 8) = 45.
		

References

  • D. Arques and A. Giorgetti, Une bijection géometrique entre une famille d'hypercartes et une famille de polygones énumérées par la série de Schroeder, Discrete Math., 217 (2000), 17-32.
  • Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
  • N. Bernasconi et al., On properties of random dissections and triangulations, Combinatorica, 30 (6) (2010), 627-654.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 618.
  • Peter J. Cameron, Some treelike objects. Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155--183. MR0891613 (89a:05009). See p. 155, also p. 179, line -9. - N. J. A. Sloane, Apr 18 2014
  • C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 57.
  • D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From N. J. A. Sloane, May 11 2012
  • Emeric Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
  • Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
  • Michael Drmota, Anna de Mier, and Marc Noy, Extremal statistics on non-crossing configurations. Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (2). - N. J. A. Sloane, May 18 2014
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • P. Flajolet and M. Noy, Analytic combinatorics of non-crossing permutations, Discrete Math., 204 (1999), 203-229, Section 3.1.
  • D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
  • Wolfgang Gatterbauer and Dan Suciu, Dissociation and propagation for approximate lifted inference with standard relational database management systems, The VLDB Journal, February 2017, Volume 26, Issue 1, pp. 5-30; DOI 10.1007/s00778-016-0434-5
  • Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
  • D. Gouyou-Beauchamps and B. Vauquelin, Deux propriétés combinatoires des nombres de Schroeder, Theor. Inform. Appl., 22 (1988), 361-388.
  • N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
  • M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, various sections (e.g. p. 534 of 2nd ed.).
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, (p. 539 of 3rd ed.).
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.2.1.6, Problem 66, p. 479.
  • J. S. Lew, Polynomial enumeration of multidimensional lattices, Math. Systems Theory, 12 (1979), 253-270.
  • Ana Marco and J.-J. Martinez, A total positivity property of the Marchenko-Pastur Law, Electronic Journal of Linear Algebra, 30 (2015), #7.
  • T. S. Motzkin, Relations between hypersurface cross ratios and a combinatorial formula for partitions of a polygon, for permanent preponderance and for non-associative products, Bull. Amer. Math. Soc., 54 (1948), 352-360.
  • L. Ozsvart, Counting ordered graphs that avoid certain subgraphs, Discr. Math., 339 (2016), 1871-1877.
  • R. C. Read, On general dissections of a polygon, Aequat. Mathem. 18 (1978) 370-388, Table 6
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 168.
  • E. Schroeder, Vier combinatorische Probleme, Zeit. f. Math. Phys., 15 (1870), 361-376.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178; see page 239, Exercise 6.39b.
  • H. N. V. Temperley and D. G. Rogers, A note on Baxter's generalization of the Temperley-Lieb operators, pp. 324-328 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 198.
  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

See A000081, A000108, A001190, A001699, for other ways to count parentheses.
Row sums of A033282, A033877, A086810, A126216.
Right-hand column 1 of convolution triangle A011117.
Column 1 of A336573. Column 0 of A104219.
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, this sequence, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Cf. A006318 (Schroeder numbers).

Programs

  • Haskell
    a001003 = last . a144944_row  -- Reinhard Zumkeller, May 11 2013
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 50);
    Coefficients(R!( (1+x -Sqrt(1-6*x+x^2) )/(4*x) )); // G. C. Greubel, Oct 27 2024
  • Maple
    t1 := (1/(4*x))*(1+x-sqrt(1-6*x+x^2)); series(t1,x,40);
    invtr:= proc(p) local b; b:= proc(n) option remember; local i; `if`(n<1, 1, add(b(n-i) *p(i-1), i=1..n+1)) end end: a:='a': f:= (invtr@@2)(a): a:= proc(n) if n<0 then 1 else f(n-1) fi end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 01 2009
    # Computes n -> [a[0],a[1],..,a[n]]
    A001003_list := proc(n) local j,a,w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a,list) end: A001003_list(100); # Peter Luschny, May 17 2011
  • Mathematica
    Table[Length[Flatten[Nest[ #/.a_Integer:> Join[Range[0, a + 1], Range[a, 0, -1]] &, {0}, n]]], {n, 0, 10}]; Sch[ 0 ] = Sch[ 1 ] = 1; Sch[ n_Integer ] := Sch[ n ] = (3(2n - 1)Sch[ n - 1 ] - (n - 2)Sch[ n - 2 ])/(n + 1); Array[ Sch, 24, 0]
    (* Second program: *)
    a[n_] := Hypergeometric2F1[-n + 1, n + 2, 2, -1]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 09 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ (1 + x - Sqrt[1 - 6 x + x^2]) / (4 x), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    Table[(KroneckerDelta[n] - GegenbauerC[n+1, -1/2, 3])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
    a[n_] := -LegendreP[n, -1, 2, 3] I / Sqrt[2]; a[0] = 1;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 16 2019 *)
    a[1]:=1; a[2]:=1; a[n_]:=a[n] = a[n-1]+2 Sum[a[k] a[n-k], {k,2,n-1}]; Map[a, Range[24]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
    CoefficientList[InverseSeries[Series[x/(Series[(1 - x)/(1 - 2  x), {x, 0, 24}]), {x, 0, 24}]]/x, x] (* Mats Granvik, Jun 30 2025 *)
  • PARI
    {a(n) = if( n<1, n==0, sum( k=0, n, 2^k * binomial(n, k) * binomial(n, k-1) ) / (2*n))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoef( exp(3*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoef( serreverse( (x - 2*x^2) / (1 - x) + x * O(x^n)), n))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    N=30; x='x+O('x^N); Vec( (1+x-(1-6*x+x^2)^(1/2))/(4*x) ) \\ Hugo Pfoertner, Nov 19 2018
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)]
    def A001003_list(n):
        a = [0 for i in range(n)]
        a[0] = 1
        for w in range(1, n):
            s = 0
            for j in range(1, w):
                s += a[j]*a[w-j-1]
            a[w] = a[w-1]+2*s
        return a
    # Peter Luschny, May 17 2011
    
  • Python
    from gmpy2 import divexact
    A001003 = [1, 1]
    for n in range(3,10**3):
        A001003.append(divexact(A001003[-1]*(6*n-9)-(n-3)*A001003[-2],n))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A001003_list(n) :
        D = [0]*(n+1); D[1] = 1/2
        b = True; h = 2; R = [1]
        for i in range(2*n-2) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1;
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]);
            b = not b
        return R
    A001003_list(24) # Peter Luschny, Jun 02 2012
    

Formula

D-finite with recurrence: (n+1) * a(n) = (6*n-3) * a(n-1) - (n-2) * a(n-2) if n>1. a(0) = a(1) = 1.
a(n) = 3*a(n-1) + 2*A065096(n-2) (n>2). If g(x) = 1 + 3*x + 11*x^2 + 45*x^3 + ... + a(n)*x^n + ..., then g(x) = 1 + 3(x*g(x)) + 2(x*g(x))^2, g(x)^2 = 1 + 6*x + 31*x^2 + 156*x^3 + ... + A065096(n)*x^n + ... - Paul D. Hanna, Jun 10 2002
a(n+1) = -a(n) + 2*Sum_{k=1..n} a(k)*a(n+1-k). - Philippe Deléham, Jan 27 2004
a(n-2) = (1/(n-1))*Sum_{k=0..n-3} binomial(n-1,k+1)*binomial(n-3,k)*2^(n-3-k) for n >= 3 [G. Polya, Elemente de Math., 12 (1957), p. 115.] - N. J. A. Sloane, Jun 13 2015
G.f.: (1 + x - sqrt(1 - 6*x + x^2) )/(4*x) = 2/(1 + x + sqrt(1 - 6*x + x^2)).
a(n) ~ W*(3+sqrt(8))^n*n^(-3/2) where W = (1/4)*sqrt((sqrt(18)-4)/Pi) [See Knuth I, p. 534, or Perez. Note that the formula on line 3, page 475 of Flajolet and Sedgewick seems to be wrong - it has to be multiplied by 2^(1/4).] - N. J. A. Sloane, Apr 10 2011
The correct asymptotic for this sequence is a(n) ~ W*(3+sqrt(8))^n*n^(-3/2), where W = (1+sqrt(2))/(2*2^(3/4)*sqrt(Pi)) = 0.404947065905750651736243... Result in book by D. Knuth (p. 539 of 3rd edition, exercise 12) is for sequence b(n), but a(n) = b(n+1)/2. Therefore is asymptotic a(n) ~ b(n) * (3+sqrt(8))/2. - Vaclav Kotesovec, Sep 09 2012
The Hankel transform of this sequence gives A006125 = 1, 1, 2, 8, 64, 1024, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n+1) = Sum_{k=0..floor((n-1)/2)} 2^k * 3^(n-1-2k) * binomial(n-1, 2k) * Catalan(k). This formula counts colored Dyck paths by the same parameter by which Touchard's identity counts ordinary Dyck paths: number of DDUs (U=up step, D=down step). See also Gouyou-Beauchamps reference. - David Callan, Mar 14 2004
From Paul Barry, May 24 2005: (Start)
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k)*C(2n-k, n)*(-1)^k*2^(n-k) [with offset 0].
a(n) = (1/(n+1))*Sum_{k=0..n} C(n+1, k+1)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} (1/(k+1))*C(n, k)*C(n+k, k)*(-1)^(n-k)*2^k [with offset 0].
a(n) = Sum_{k=0..n} A088617(n, k)*(-1)^(n-k)*2^k [with offset 0]. (End)
E.g.f. of a(n+1) is exp(3*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
Reversion of (x-2*x^2)/(1-x) is g.f. offset 1.
For n>=1, a(n) = Sum_{k=0..n} 2^k*N(n, k) where N(n, k) = (1/n)*C(n, k)*C(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 10 2003 [This formula counts colored Dyck paths by number of peaks, which is easy to see because the Narayana numbers count Dyck paths by number of peaks and the number of peaks determines the number of interior ascent vertices.]
a(n) = Sum_{k=0..n} A088617(n, k)*2^k*(-1)^(n-k). - Philippe Deléham, Jan 21 2004
For n > 0, a(n) = (1/(n+1)) * Sum_{k = 0 .. n-1} binomial(2*n-k, n) * binomial(n-1, k). This formula counts colored Dyck paths (as above) by number of white vertices. - David Callan, Mar 14 2004
a(n-1) = (d^(n-1)/dx^(n-1))((1-x)/(1-2*x))^n/n!|_{x=0}. (For a proof see the comment on the unsigned row sums of triangle A111785.)
From Wolfdieter Lang, Sep 12 2005: (Start)
a(n) = (1/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k, k-1).
a(n) = hypergeom([1-n, n+2], [2], -1), n>=1. (End)
a(n) = hypergeom([1-n, -n], [2], 2) for n>=0. - Peter Luschny, Sep 22 2014
a(m+n+1) = Sum_{k>=0} A110440(m, k)*A110440(n, k)*2^k = A110440(m+n, 0). - Philippe Deléham, Sep 14 2005
Sum over partitions formula (reference Schroeder paper p. 362, eq. (1) II). Number the partitions of n according to Abramowitz-Stegun pp. 831-832 (see reference under A105805) with k=1..p(n)= A000041(n). For n>=1: a(n-1) = Sum_{k=2..p(n)} A048996(n,k)*a(1)^e(k, 1)*a(1)^e(k, 2)*...*a(n-2)^e(k, n-1) if the k-th partition of n in the mentioned order is written as (1^e(k, 1), 2^e(k, 2), ..., (n-1)e(k, n-1)). Note that the first (k=1) partition (n^1) has to be omitted. - Wolfdieter Lang, Aug 23 2005
Starting (1, 3, 11, 45, ...), = row sums of triangle A126216 = A001263 * [1, 2, 4, 8, 16, ...]. - Gary W. Adamson, Nov 30 2007
From Paul Barry, May 15 2009: (Start)
G.f.: 1/(1+x-2x/(1+x-2x/(1+x-2x/(1+x-2x/(1-.... (continued fraction).
G.f.: 1/(1-x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction).
G.f.: 1/(1-x-2x^2/(1-3x-2x^2/(1-3x-2x^2/(1-... (continued fraction). (End)
G.f.: 1 / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / ... )))). - Michael Somos, May 19 2013
a(n) = (LegendreP(n+1,3)-3*LegendreP(n,3))/(4*n) for n>0. - Mark van Hoeij, Jul 12 2010 [This formula is mentioned in S.-J. Kettle's 1982 letter - see link. N. J. A. Sloane, Jun 13 2015]
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, where M is the production matrix:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
2, 2, 2, 2, 2, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Gary W. Adamson, Aug 23 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q is the infinite square production matrix:
1, 2, 0, 0, 0, ...
1, 1, 2, 0, 0, ...
1, 1, 1, 2, 0, ...
1, 1, 1, 1, 2, ...
... (End)
Let h(t) = (1-t)^2/(2*(1-t)^2-1) = 1/(1-(2*t+3*t^2+4*t^3+...)), an o.g.f. for A003480, then for A001003 a(n) = (1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=1. (Cf. A086810.) - Tom Copeland, Sep 06 2011
A006318(n) = 2*a(n) if n>0. - Michael Somos, Mar 31 2007
BINOMIAL transform is A118376 with offset 0. REVERT transform is A153881. INVERT transform is A006318. INVERT transform of A114710. HANKEL transform is A139685. PSUM transform is A104858. - Michael Somos, May 19 2013
G.f.: 1 + x/(Q(0) - x) where Q(k) = 1 + k*(1-x) - x - x*(k+1)*(k+2)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = A144944(n,n) = A186826(n,0). - Reinhard Zumkeller, May 11 2013
a(n)=(-1)^n*LegendreP(n,-1,-3)/sqrt(2), n > 0, LegendreP(n,a,b) is the Legendre function. - Karol A. Penson, Jul 06 2013
Integral representation as n-th moment of a positive weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2, is the discrete (atomic) part, and W_c(x) = sqrt(8-(x-3)^2)/(4*Pi*x) is the continuous part of W(x) defined on (3 sqrt(8),3+sqrt(8)): a(n) = int( x^n*W_a(x), x=-eps..eps ) + int( x^n*W_c(x), x = 3-sqrt(8)..3+sqrt(8) ), for any eps>0, n>=0. W_c(x) is unimodal, of bounded variation and W_c(3-sqrt(8)) = W_c(3+sqrt(8)) = 0. Note that the position of the Dirac peak (x=0) lies outside support of W_c(x). - Karol A. Penson and Wojciech Mlotkowski, Aug 05 2013
G.f.: 1 + x/G(x) with G(x) = 1 - 3*x - 2*x^2/G(x) (continued fraction). - Nikolaos Pantelidis, Dec 17 2022

A033877 Triangular array read by rows associated with Schroeder numbers: T(1,k) = 1; T(n,k) = 0 if k < n; T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k).

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 16, 22, 1, 8, 30, 68, 90, 1, 10, 48, 146, 304, 394, 1, 12, 70, 264, 714, 1412, 1806, 1, 14, 96, 430, 1408, 3534, 6752, 8558, 1, 16, 126, 652, 2490, 7432, 17718, 33028, 41586, 1, 18, 160, 938, 4080, 14002, 39152, 89898, 164512, 206098
Offset: 1

Views

Author

Keywords

Comments

A106579 is in some ways a better version of this sequence, but since this was entered first it will be the main entry for this triangle.
The diagonals of this triangle are self-convolutions of the main diagonal A006318: 1, 2, 6, 22, 90, 394, 1806, ... . - Philippe Deléham, May 15 2005
From Johannes W. Meijer, Sep 22 2010, Jul 15 2013: (Start)
Note that for the terms T(n,k) of this triangle n indicates the column and k the row.
The triangle sums, see A180662, link Schroeder's triangle with several sequences, see the crossrefs. The mirror of this triangle is A080247.
Quite surprisingly the Kn1p sums, p >= 1, are all related to A026003 and crystal ball sequences for n-dimensional cubic lattices (triangle offset is 0): Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - A005408(n+3), Kn14(n) = A026003(n+6) - A001844(n+4), Kn15(n) = A026003(n+8) - A001845(n+5), Kn16(n) = A026003(n+10) - A001846(n+6), Kn17(n) = A026003(n+12) - A001847(n+7), Kn18(n) = A026003(n+14) - A001848(n+8), Kn19(n) = A026003(n+16) - A001849(n+9), Kn110(n) = A026003(n+18) - A008417(n+10), Kn111(n) = A026003(n+20) - A008419(n+11), Kn112(n) = A026003(n+22) - A008421(n+12). (End)
T(n,k) is the number of normal semistandard Young tableaux with two columns, one of height k and one of height n. The recursion can be seen by performing jeu de taquin deletion on all instances of the smallest value. (If there are two instances of the smallest value, jeu de taquin deletion will always shorten the right column first and the left column second.) - Jacob Post, Jun 19 2018

Examples

			Triangle starts:
  1;
  1,    2;
  1,    4,    6;
  1,    6,   16,   22;
  1,    8,   30,   68,   90;
  1,   10,   48,  146,  304,  394;
  1,   12,   70,  264,  714, 1412, 1806;
  ... - _Joerg Arndt_, Sep 29 2013
		

Crossrefs

Essentially same triangle as A080247 and A080245 but with rows read in reversed order. Also essentially the same triangle as A106579.
Cf. A001003 (row sums), A026003 (antidiagonal sums).
Triangle sums (see the comments): A001003 (Row1, Row2), A026003 (Kn1p, p >= 1), A006603 (Kn21), A227504 (Kn22), A227505 (Kn23), A006603(2*n) (Kn3), A001850 (Kn4), A227506 (Fi1), A010683 (Fi2).

Programs

  • Haskell
    a033877 n k = a033877_tabl !! n !! k
    a033877_row n = a033877_tabl !! n
    a033877_tabl = iterate
       (\row -> scanl1 (+) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 17 2013
    
  • Magma
    function t(n,k)
      if k le 0 or k gt n then return 0;
      elif k eq 1 then return 1;
      else return t(n,k-1) + t(n-1,k-1) + t(n-1,k);
      end if;
    end function;
    [t(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 23 2023
  • Maple
    T := proc(n, k) option remember; if n=1 then return(1) fi; if kJohannes W. Meijer, Sep 22 2010, revised Jul 17 2013
  • Mathematica
    T[1, ]:= 1; T[n, k_]/;(k
    				
  • Sage
    def A033877_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^k*prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A033877_row(n)) # Peter Luschny, Mar 16 2016
    
  • SageMath
    @CachedFunction
    def t(n, k): # t = A033847
        if (k<0 or k>n): return 0
        elif (k==1): return 1
        else: return t(n, k-1) + t(n-1, k-1) + t(n-1, k)
    flatten([[t(n,k) for k in range(1,n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 23 2023
    

Formula

As an upper right triangle: a(n, k) = a(n, k-1) + a(n-1, k-1) + a(n-1, k) if k >= n >= 0 and a(n, k) = 0 otherwise.
G.f.: Sum T(n, k)*x^n*y^k = (1-x*y-(x^2*y^2-6*x*y+1)^(1/2)) / (x*(2*y+x*y-1+(x^2*y^2-6*x*y+1)^(1/2))). - Vladeta Jovovic, Feb 16 2003
Another version of A000007 DELTA [0, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] = 1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 22, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
Sum_{n=1..floor((k+1)/2)} T(n+p-1, k-n+p) = A026003(2*p+k-3) - A008288(2*p+k-3, p-2), p >= 2, k >= 1. - Johannes W. Meijer, Sep 28 2013
From G. C. Greubel, Mar 23 2023: (Start)
(t(n, k) as a lower triangle)
t(n, k) = t(n, k-1) + t(n-1, k-1) + t(n-1, k) with t(n, 1) = 1.
t(n, n) = A006318(n-1).
t(2*n-1, n) = A330801(n-1).
t(2*n-2, n) = A103885(n-1), n > 1.
Sum_{k=1..n-1} t(n, k) = A238112(n), n > 1.
Sum_{k=1..n} t(n, k) = A001003(n).
Sum_{k=1..n-1} (-1)^(k-1)*t(n, k) = (-1)^n*A001003(n-1), n > 1.
Sum_{k=1..n} (-1)^(k-1)*t(n, k) = A080243(n-1).
Sum_{k=1..floor((n+1)/2)} t(n-k+1, k) = A026003(n-1). (End)

Extensions

More terms from David W. Wilson

A052894 a(n) is the number of Schröder trees on n vertices with a prescribed root.

Original entry on oeis.org

1, 1, 5, 46, 631, 11586, 267369, 7442758, 242833091, 9090987610, 384209125453, 18096001098462, 939991769248239, 53388611049236386, 3291647968944928337, 218948960832551848438, 15629052780600654123739, 1191728692751208814306986, 96675526164560545405689141
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
Number of pointed trees on pointed sets k[1...k...n] with a prescribed point k. - Gus Wiseman, Sep 27 2015

Examples

			The a(4) = 46 pointed trees of the form rootpoint[pointedbranch ... pointedbranch] on 1[1 2 3 4] are 1[1 2[2 3[3 4]]], 1[1 2[2 4[3 4]]], 1[1 2[2[2 4] 3]], 1[1 2[2[2 3] 4]], 1[1 2[2 3 4]], 1[1 3[2 3[3 4]]], 1[1 3[2[2 4] 3]], 1[1 3[3 4[2 4]]], 1[1 3[3[2 3] 4]], 1[1 3[2 3 4]], 1[1 4[2 4[3 4]]], 1[1 4[3 4[2 4]]], 1[1 4[2[2 3] 4]], 1[1 4[3[2 3] 4]], 1[1 4[2 3 4]], 1[1[1 3[3 4]] 2], 1[1[1 4[3 4]] 2], 1[1[1[1 4] 3] 2], 1[1[1[1 3] 4] 2], 1[1[1 3 4] 2], 1[1[1 2[2 4]] 3], 1[1[1 4[2 4]] 3], 1[1[1[1 4] 2] 3], 1[1[1[1 2] 4] 3], 1[1[1 2 4] 3], 1[1[1 2[2 3]] 4], 1[1[1 3[2 3]] 4], 1[1[1[1 3] 2] 4], 1[1[1[1 2] 3] 4], 1[1[1 2 3] 4], 1[1[1 2] 3[3 4]], 1[1[1 2] 4[3 4]], 1[1[1 3] 2[2 4]], 1[1[1 3] 4[2 4]], 1[1[1 4] 2[2 3]], 1[1[1 4] 3[2 3]], 1[1 2 3[3 4]], 1[1 2 4[3 4]], 1[1 2[2 4] 3], 1[1 3 4[2 4]], 1[1 2[2 3] 4], 1[1 3[2 3] 4], 1[1[1 4] 2 3], 1[1[1 3] 2 4], 1[1[1 2] 3 4], 1[1 2 3 4]. - _Gus Wiseman_, Sep 27 2015
		

Crossrefs

Programs

  • Maple
    spec := [S,{C=Set(B,1 <= card),B=Prod(Z,S),S=Sequence(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    m = 20; (* number of terms *)
    Rest@CoefficientList[InverseSeries[Series[2*x - x*E^x, {x, 0, m}], x], x]*Range[0, m-1]! (* Jean-François Alcover, Oct 11 2022 *)
  • PARI
    {a(n) = local(A=1); A = (1/x)*serreverse(2*x - x*exp(x +x^2*O(x^n) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 19 2015
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A = 1 + (1/x)*sum(m=1, n+1, Dx(m-1, (exp(x +x*O(x^n)) - 1)^m * x^m/m!)); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 19 2015
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1+x+x*O(x^n)); A = exp(sum(m=1, n+1, Dx(m-1, (exp(x +x*O(x^n)) - 1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 19 2015

Formula

E.g.f.: RootOf(-2*_Z + _Z*exp(x*_Z) + 1).
a(n) = A053492(n)/n.
From Paul D. Hanna, Jun 19 2015: (Start)
E.g.f. A(x) satisfies:
(1) A(x) = (1/x) * Series_Reversion( 2*x - x*exp(x) ).
(2) A(x) = 1 + (1/x) * Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^n * x^n / n!.
(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^n * x^(n-1) / n! ).
(End)
(4) A(x) = Sum_{n>=0} exp(n*x*A(x)) / 2^(n+1). - Paul D. Hanna, Apr 07 2018
a(n) = (1/(n+1)!) * Sum_{k=0..n} (n+k)! * Stirling2(n,k). - Seiichi Manyama, Nov 06 2023

Extensions

New name from Vaclav Kotesovec, Feb 16 2015

A011117 Triangle of numbers S(x,y) = number of lattice paths from (0,0) to (x,y) that use step set { (0,1), (1,0), (2,0), (3,0), ....} and never pass below y = x.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 11, 1, 4, 12, 28, 45, 1, 5, 18, 52, 121, 197, 1, 6, 25, 84, 237, 550, 903, 1, 7, 33, 125, 403, 1119, 2591, 4279, 1, 8, 42, 176, 630, 1976, 5424, 12536, 20793, 1, 9, 52, 238, 930, 3206, 9860, 26832, 61921, 103049, 1, 10, 63
Offset: 0

Views

Author

Robert Sulanke (sulanke(AT)diamond.idbsu.edu)

Keywords

Comments

When seen as polynomials with descending coefficients: evaluations are A006318 (x=1), A001003 (x=2).
Triangular array in A104219 transposed. - Philippe Deléham, Mar 16 2005
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0) = 1, T(n,k) = T(n-1,k) + Sum_{j=0..k-1} 2^j*T(n-1,k-1-j). - Philippe Deléham, Oct 10 2005

Examples

			Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2,  3]
[3] [1, 3,  7,  11]
[4] [1, 4, 12,  28,  45]
[5] [1, 5, 18,  52, 121,  197]
[6] [1, 6, 25,  84, 237,  550,  903]
[7] [1, 7, 33, 125, 403, 1119, 2591,  4279]
[8] [1, 8, 42, 176, 630, 1976, 5424, 12536, 20793]
[9] [1, 9, 52, 238, 930, 3206, 9860, 26832, 61921, 103049]
		

Crossrefs

Cf. A084938.
Right-hand columns show convolutions of little Schroeder numbers with themselves: A001003, A010683, A010736, A010849.

Programs

  • Mathematica
    f[ x_, y_ ] := f[ x, y ] = Module[ {return}, If[ x == 0, return = 1, If[ y == x-1, return = 0, return = f[ x, y-1 ] + Sum[ f[ k, y ], {k, 0, x-1} ] ] ]; return ]; Do[ Print[ Table[ f[ k, j ], {k, 0, j} ] ], {j, 10, 0, -1} ]
  • Sage
    def A011117_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..9): print(A011117_row(n)) # Peter Luschny, Mar 16 2016

Formula

S(m, n) = ((n-m+1)/(n+1))*Sum_{i=0..m-1} 2^(m-i-1)*binomial(n+1, i+1)*binomial(m-1, i).
Another version of triangle [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, ...] = 1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 11, 0, 1, 4, 12, 28, 45, 0, 1, ..., where DELTA is Deléham's operator defined in A084938.
G.f.: 2/(1 + uv - 2v + sqrt(1 - 6uv + u^2v^2)). - Emeric Deutsch, Dec 25 2003
Sum_{k = 0..n} T(n, k) = A006318(n), large Schroeder numbers. - Philippe Deléham, Jul 10 2004. (This is because T(n, k) = number of royal paths (A006318) of length n with exactly n-k Northeast steps lying on the line y=x. - David Callan, Aug 02 2004)
S(n,m) = ((n-m+1)/m)*Sum_{k=1..m} binomial(m,k)*binomial(n+k,k-1), n >= m > 1; S(n,0)=1; S(n,m)=0, n < m. See the corresponding formula for A104219. - Wolfdieter Lang, Mar 16 2009

A186826 Riordan array (s(x),x*S(x)) where s(x) is the g.f. of the little Schroeder numbers A001003, and S(x) is the g.f. of the large Schroeder numbers A006318.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 11, 11, 5, 1, 45, 45, 23, 7, 1, 197, 197, 107, 39, 9, 1, 903, 903, 509, 205, 59, 11, 1, 4279, 4279, 2473, 1061, 347, 83, 13, 1, 20793, 20793, 12235, 5483, 1949, 541, 111, 15, 1, 103049, 103049, 61463, 28435, 10717, 3285, 795, 143, 17, 1, 518859, 518859, 312761, 148249, 58351, 19199, 5197, 1117, 179, 19, 1
Offset: 0

Views

Author

Paul Barry, Feb 27 2011

Keywords

Comments

Reverse of A144944. Inverse of A186827.

Examples

			Triangle begins
       1;
       1,      1;
       3,      3,      1;
      11,     11,      5,      1;
      45,     45,     23,      7,     1;
     197,    197,    107,     39,     9,     1;
     903,    903,    509,    205,    59,    11,    1;
    4279,   4279,   2473,   1061,   347,    83,   13,    1;
   20793,  20793,  12235,   5483,  1949,   541,  111,   15,   1;
  103049, 103049,  61463,  28435, 10717,  3285,  795,  143,  17,  1;
  518859, 518859, 312761, 148249, 58351, 19199, 5197, 1117, 179, 19, 1;
Production matrix of this triangle begins
  1, 1;
  2, 2, 1;
  2, 2, 2, 1;
  2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 1;
  2, 2, 2, 2, 2, 2, 2, 2, 2, 1;
For instance, 107=1*45+2*23+2*7+2*1.
		

Crossrefs

Cf. A001003, A006318, A010683 (row sums), A144944 (row reverse), A186827 (inverse), A186828 (diagonal sums), A239204.

Programs

  • Haskell
    a186826 n k = a186826_tabl !! n !! k
    a186826_row n = a186826_tabl !! n
    a186826_tabl = map reverse a144944_tabl
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q -1] + t[p-1, q] + t[p-1, q-1];
    Table[t[p, q], {p,0,10}, {q,p,0,-1}]//Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (kA186826(n,k): return t(n+2,n-k)
    flatten([[A186826(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 11 2023

Formula

Riordan array ((1+x+sqrt(1-6*x+x^2))/(4*x), (1-x-sqrt(1-6*x+x^2))/2).
Sum_{k=0..n} T(n,k) = A010683(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A186828(n).
R(n,k) = k*Sum_{i=0..n-k} (A001003(i)/(n-i))*Sum_{m=0..n-k-i} binomial(n-i,m)*binomial(2*(n-i)-m-k-1, n-i-1), k>0, R(n,0) = A001003(n). - Vladimir Kruchinin, Mar 09 2011
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2). - G. C. Greubel, Mar 11 2023

A144944 Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 5, 11, 11, 1, 7, 23, 45, 45, 1, 9, 39, 107, 197, 197, 1, 11, 59, 205, 509, 903, 903, 1, 13, 83, 347, 1061, 2473, 4279, 4279, 1, 15, 111, 541, 1949, 5483, 12235, 20793, 20793, 1, 17, 143, 795, 3285, 10717, 28435, 61463, 103049, 103049
Offset: 0

Views

Author

Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008

Keywords

Examples

			First few rows of the triangle:
  1
  1,  1
  1,  3,  3
  1,  5, 11,  11
  1,  7, 23,  45,  45
  1,  9, 39, 107, 197, 197
  1, 11, 59, 205, 509, 903, 903
		

Crossrefs

Super-Catalan numbers or little Schroeder numbers (cf. A001003) appear on the diagonal.
Generalizes the Catalan triangle (A009766) and hence the ballot Numbers.
Cf. A033877 for a similar triangle derived from the large Schroeder numbers (A006318).
Cf. A010683 (row sums), A186826 (rows reversed).

Programs

  • Haskell
    a144944 n k = a144944_tabl !! n !! k
    a144944_row n = a144944_tabl !! n
    a144944_tabl = iterate f [1] where
       f us = vs ++ [last vs] where
         vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us
    -- Reinhard Zumkeller, May 11 2013
    
  • Mathematica
    t[, 0]=1; t[p, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p,0,6}, {q,0, p}]] (* Jean-François Alcover, Dec 19 2011 *)
  • SageMath
    @CachedFunction
    def t(n,k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (kG. C. Greubel, Mar 11 2023

Formula

From G. C. Greubel, Mar 11 2023: (Start)
Sum_{k=0..n} T(n, k) = A010683(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A247623(n). (End)

A177010 G.f.: ((1-q)^2+(1+q)*sqrt(1-6*q+q^2))/2.

Original entry on oeis.org

1, -2, -3, -8, -28, -112, -484, -2200, -10364, -50144, -247684, -1243816, -6331164, -32591184, -169376484, -887465784, -4682990076, -24864759744, -132745182724, -712136879944, -3837043171100, -20755343638064, -112668274522852, -613581530620888, -3351355226348668, -18354390999804832, -100771410237846404, -554536090460808680
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2010

Keywords

Crossrefs

Cf. A010683 (a closely-related g.f.)

Programs

  • Mathematica
    CoefficientList[Series[((1 - x)^2 + (1 + x) Sqrt[1 - 6 x + x^2])/2, {x, 0, 27}], x] (* Michael De Vlieger, Oct 12 2016 *)

A010849 Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ....} and never pass below y = x. Sequence gives S(n-3,n).

Original entry on oeis.org

1, 4, 18, 84, 403, 1976, 9860, 49912, 255701, 1323292, 6907830, 36331500, 192339687, 1024140336, 5481165832, 29469454640, 159094662121, 862087135988, 4687164401114, 25562520325828, 139803777476859, 766578879858024
Offset: 0

Views

Author

Robert Sulanke (sulanke(AT)diamond.idbsu.edu)

Keywords

Comments

Number of dissections of a convex polygon with n+5 sides that have a pentagon over a fixed side (the base) of the polygon. Example: a(1)=4 because the only dissections of the convex hexagon ABCDEF (AB being the base), that have a pentagon over AB are the dissections made by the diagonals FD, EC, AE and BD, respectively. - Emeric Deutsch, Dec 27 2003
a(n-1) = number of royal paths (A006318) from (0,0) to (n,n) with exactly 3 diagonal steps on the line y=x. - David Callan, Jul 15 2004

Crossrefs

Cf. A001003.
Right-hand column 4 of triangle A011117.
Fourth column of convolution triangle A011117.

Programs

  • Mathematica
    f[ x_, y_ ] := f[ x, y ] = Module[ {return}, If[ x == 0, return = 1, If[ y == x-1, return = 0, return = f[ x, y-1 ] + Sum[ f[ k, y ], {k, 0, x-1} ] ] ]; return ]; Do[ Print[ Table[ f[ k, j ], {k, 0, j} ] ], {j, 10, 0, -1} ] (* End *)
    CoefficientList[Series[(1 + x - Sqrt[1 - 6 x + x^2])^4 / (256 x^4), {x, 0, 30}], x] (* Vincenzo Librandi, May 03 2013 *)
  • PARI
    x='x+O('x^66); Vec((1+x-sqrt(1-6*x+x^2))^4/(256*x^4)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1+z-sqrt(1-6*z+z^2))^4/(256*z^4). 4-fold convolution of A001003 with itself. Convolution of A010683 with itself. - Emeric Deutsch, Dec 27 2003
a(n) = (4/n)*sum(binomial(n, k)*binomial(n+k+3, k-1), k=1..n) = 4*hypergeom([1-n, n+5], [2], -1), n>=1, a(0)=1.
Recurrence: n*(n+4)*a(n) = (7*n^2+16*n-3)*a(n-1) - (7*n^2-2*n-12)*a(n-2) + (n-3)*(n+1)*a(n-3). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ sqrt(1632+1154*sqrt(2))*(3+2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
Recurrence (an alternative): (n+4)*a(n) = (8-n)*a(n-8) + 4*(2*n-13)*a(n-7) + 12*(5-n)*a(n-6) + 4*(7-2*n)*a(n-5) + 26*(n-2)*a(n-4) + 4*(1-2*n)*a(n-3) - 12*(n+1)*a(n-2) + 4*(2*n+5)*a(n-1), n>=8. - Fung Lam, Feb 18 2014

Extensions

More terms from Emeric Deutsch, Dec 27 2003

A091370 Triangle read by rows: T(n,k) is the number of dissections of a convex n-gon by nonintersecting diagonals, having a k-gon over a fixed edge (base).

Original entry on oeis.org

1, 2, 1, 7, 3, 1, 28, 12, 4, 1, 121, 52, 18, 5, 1, 550, 237, 84, 25, 6, 1, 2591, 1119, 403, 125, 33, 7, 1, 12536, 5424, 1976, 630, 176, 42, 8, 1, 61921, 26832, 9860, 3206, 930, 238, 52, 9, 1, 310954, 134913, 49912, 16470, 4908, 1316, 312, 63, 10, 1
Offset: 3

Views

Author

Emeric Deutsch, Mar 01 2004

Keywords

Comments

Row sums give the little Schroeder numbers (A001003). Column 3 (first column, corresponding to k=3) gives A010683.
Number of short bushes (i.e. ordered trees with no vertices of outdegree 1) with n-1 leaves and having root of degree k-1. Example: T(5,3)=7 because, in addition to the five binary trees with 6 edges we have (i) two edges rb, rc hanging from the root r with three edges hanging from vertex b and (ii) two edges rb, rc hanging from the root r with three edges hanging from vertex c.

Examples

			T(5,4)=3 because the dissections of the pentagon ABCDEA that have a quadrilateral over the base AB are obtained by the diagonals (i) CE, (ii) AD and (iii) BD, respectively.
Triangle starts:
1;
2,1;
7,3,1;
28,12,4,1;
121,52,18,5,1;
...
		

Crossrefs

Programs

  • Maple
    a := proc(n,k) if k=0 or k=1 or k=2 then 0 elif k=n then 1 elif k hypergeom([1-N, N+2], [2], -1);
    f := n -> 1+add(simplify(c(i))*x^i,i=1..n):
    s := j -> coeff(series(f(j)^2/(1-x*t*f(j)),x,j+1),x,j):
    seq(coeff(s(n),t,j),j=0..n) end:
    seq(T_row(n), n=0..9); # Peter Luschny, Oct 30 2015
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] := (k - 1)/(n - k)*Sum[2^j*Binomial[n - 2, n - k - 1 - j]*Binomial[n - k, j], {j, 0, n - k - 1}];
    Table[T[n, k], {n, 3, 13}, {k, 3, n}] // Flatten (* Jean-François Alcover, Nov 24 2017 *)

Formula

T(n, k) = [(k-1)/(n-k)]*sum(2^j*binomial(n-2, n-k-1-j)*binomial(n-k, j), j=0..n-k-1).
G.f.: t^3*z^3*S^2/(1-t*z*S), where S = (1+z-sqrt(1-6*z+z^2))/(4*z) is the g.f. of the little Schroeder numbers (A001003).
Showing 1-10 of 14 results. Next