A355695 a(n) is the smallest number that has exactly n nonpalindromic divisors (A029742).
1, 10, 20, 30, 48, 72, 60, 140, 144, 120, 210, 180, 300, 240, 560, 504, 360, 420, 780, 1764, 900, 960, 720, 1200, 840, 1560, 2640, 1260, 1440, 2400, 3900, 3024, 1680, 3120, 2880, 4800, 7056, 3600, 2520, 3780, 3360, 5460, 6480, 16848, 6300, 8820, 7200, 9240, 6720, 12480, 5040
Offset: 0
Examples
48 has 10 divisors: {1, 2, 3, 4, 6, 8, 12, 16, 24, 48}, only 12, 16, 24 and 48 are nonpalindromic; no positive integer smaller than 48 has four nonpalindromic divisors, hence a(4) = 48.
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..710
Crossrefs
Programs
-
Mathematica
f[n_] := DivisorSum[n, 1 &, ! PalindromeQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[50, 10^5] (* Amiram Eldar, Jul 14 2022 *)
-
PARI
isnp(n) = my(d=digits(n)); d!=Vecrev(d); \\ A029742 a(n) = my(k=1); while (sumdiv(k, d, isnp(d)) != n, k++); k; \\ Michel Marcus, Jul 14 2022
-
Python
from sympy import divisors from itertools import count, islice def c(n): s = str(n); return s != s[::-1] def f(n): return sum(1 for d in divisors(n, generator=True) if c(d)) def agen(): n, adict = 0, dict() for k in count(1): fk = f(k) if fk not in adict: adict[fk] = k while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 51))) # Michael S. Branicky, Jul 27 2022
Extensions
More terms from Michel Marcus, Jul 14 2022
Comments