A357131 Numbers m such that A010888(m) = A031347(m) = A031286(m) = A031346(m); only the least of the anagrams are considered.
0, 137, 11126, 111134, 111278, 1111223, 11111447, 111112247, 1111122227, 111111111137, 11111111111126, 111111111111134, 1111111111111223, 111111111111111111111111111111111111111111111111111111111111111111111111111111111111278
Offset: 1
Examples
137 is in the sequence as A010888(137) = 137 mod 9 = 2, A031347(137) = 2 via 1*3*7 = 21 -> 2*1 = 2 < 10, A031286(137) = 2 via 1+3+7 = 11 -> 1+1 = 2 so two steps, A031346(137) = 2 via 1*3*7 = 21 -> 2*1 = 2 so two steps. As all these outcomes are 2, 137 is a term. - _David A. Corneth_, Sep 15 2022
Links
- Eric Weisstein's World of Mathematics, Additive Persistence
- Eric Weisstein's World of Mathematics, Digital Root
- Eric Weisstein's World of Mathematics, Multiplicative Digital Root
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
Extensions
a(8)-a(13) from Pontus von Brömssen, Sep 14 2022
a(14) confirmed by Michael S. Branicky, Sep 17 2022
Comments