cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000005 d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is Product p^e(p) then d(n) = Product (e(p) + 1). More generally, for k > 0, sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1) is the sum of the k-th powers of the divisors of n.
Number of ways to write n as n = x*y, 1 <= x <= n, 1 <= y <= n. For number of unordered solutions to x*y=n, see A038548.
Note that d(n) is not the number of Pythagorean triangles with radius of the inscribed circle equal to n (that is A078644). For number of primitive Pythagorean triangles having inradius n, see A068068(n).
Number of factors in the factorization of the polynomial x^n-1 over the integers. - T. D. Noe, Apr 16 2003
Also equal to the number of partitions p of n such that all the parts have the same cardinality, i.e., max(p)=min(p). - Giovanni Resta, Feb 06 2006
Equals A127093 as an infinite lower triangular matrix * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
For odd n, this is the number of partitions of n into consecutive integers. Proof: For n = 1, clearly true. For n = 2k + 1, k >= 1, map each (necessarily odd) divisor to such a partition as follows: For 1 and n, map k + (k+1) and n, respectively. For any remaining divisor d <= sqrt(n), map (n/d - (d-1)/2) + ... + (n/d - 1) + (n/d) + (n/d + 1) + ... + (n/d + (d-1)/2) {i.e., n/d plus (d-1)/2 pairs each summing to 2n/d}. For any remaining divisor d > sqrt(n), map ((d-1)/2 - (n/d - 1)) + ... + ((d-1)/2 - 1) + (d-1)/2 + (d+1)/2 + ((d+1)/2 + 1) + ... + ((d+1)/2 + (n/d - 1)) {i.e., n/d pairs each summing to d}. As all such partitions must be of one of the above forms, the 1-to-1 correspondence and proof is complete. - Rick L. Shepherd, Apr 20 2008
Number of subgroups of the cyclic group of order n. - Benoit Jubin, Apr 29 2008
Equals row sums of triangle A143319. - Gary W. Adamson, Aug 07 2008
Equals row sums of triangle A159934, equivalent to generating a(n) by convolving A000005 prefaced with a 1; (1, 1, 2, 2, 3, 2, ...) with the INVERTi transform of A000005, (A159933): (1, 1,-1, 0, -1, 2, ...). Example: a(6) = 4 = (1, 1, 2, 2, 3, 2) dot (2, -1, 0, -1, 1, 1) = (2, -1, 0, -2, 3, 2) = 4. - Gary W. Adamson, Apr 26 2009
Number of times n appears in an n X n multiplication table. - Dominick Cancilla, Aug 02 2010
Number of k >= 0 such that (k^2 + k*n + k)/(k + 1) is an integer. - Juri-Stepan Gerasimov, Oct 25 2015
The only numbers k such that tau(k) >= k/2 are 1,2,3,4,6,8,12. - Michael De Vlieger, Dec 14 2016
a(n) is also the number of partitions of 2*n into equal parts, minus the number of partitions of 2*n into consecutive parts. - Omar E. Pol, May 03 2017
From Tomohiro Yamada, Oct 27 2020: (Start)
Let k(n) = log d(n)*log log n/(log 2 * log n), then lim sup k(n) = 1 (Hardy and Wright, Chapter 18, Theorem 317) and k(n) <= k(6983776800) = 1.537939... (the constant A280235) for every n (Nicolas and Robin, 1983).
There exist infinitely many n such that d(n) = d(n+1) (Heath-Brown, 1984). The number of such integers n <= x is at least c*x/(log log x)^3 (Hildebrand, 1987) but at most O(x/sqrt(log log x)) (Erdős, Carl Pomerance and Sárközy, 1987). (End)
Number of 2D grids of n congruent rectangles with two different side lengths, in a rectangle, modulo rotation (cf. A038548 for squares instead of rectangles). Also number of ways to arrange n identical objects in a rectangle (NOT modulo rotation, cf. A038548 for modulo rotation); cf. A007425 and A140773 for the 3D case. - Manfred Boergens, Jun 08 2021
The constant quoted above from Nicolas and Robin, 6983776800 = 2^5 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19, appears arbitrary, but interestingly equals 2 * A095849(36). That second factor is highly composite and deeply composite. - Hal M. Switkay, Aug 08 2025

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 3*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 345, Exercise XXI(16). MR0121327 (22 #12066)
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 55.
  • G. H. Hardy and E. M. Wright, revised by D. R. Heath-Brown and J. H. Silverman, An Introduction to the Theory of Numbers, 6th ed., Oxford Univ. Press, 2008.
  • K. Knopp, Theory and Application of Infinite Series, Blackie, London, 1951, p. 451.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Chap. II. (For inequalities, etc.)
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. Has many references to this sequence. - N. J. A. Sloane, Jun 02 2014
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. Spearman and K. S. Williams, Handbook of Estimates in the Theory of Numbers, Carleton Math. Lecture Note Series No. 14, 1975; see p. 2.1.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 285.
  • E. C. Titchmarsh, The Theory of Functions, Oxford, 1938, p. 160.
  • Terence Tao, Poincaré's Legacies, Part I, Amer. Math. Soc., 2009, see pp. 31ff for upper bounds on d(n).

Crossrefs

See A002183, A002182 for records. See A000203 for the sum-of-divisors function sigma(n).
For partial sums see A006218.
Factorizations into given number of factors: writing n = x*y (A038548, unordered, A000005, ordered), n = x*y*z (A034836, unordered, A007425, ordered), n = w*x*y*z (A007426, ordered).
Cf. A098198 (Dgf at s=2), A183030 (Dgf at s=3), A183031 (Dgf at s=3).

Programs

  • GAP
    List([1..150],n->Tau(n)); # Muniru A Asiru, Mar 05 2019
    
  • Haskell
    divisors 1 = [1]
    divisors n = (1:filter ((==0) . rem n)
                   [2..n `div` 2]) ++ [n]
    a = length . divisors
    -- James Spahlinger, Oct 07 2012
    
  • Haskell
    a000005 = product . map (+ 1) . a124010_row  -- Reinhard Zumkeller, Jul 12 2013
    
  • Julia
    function tau(n)
        i = 2; num = 1
        while i * i <= n
            if rem(n, i) == 0
                e = 0
                while rem(n, i) == 0
                    e += 1
                    n = div(n, i)
                end
                num *= e + 1
            end
            i += 1
        end
        return n > 1 ? num + num : num
    end
    println([tau(n) for n in 1:104])  # Peter Luschny, Sep 03 2023
  • Magma
    [ NumberOfDivisors(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000005 := tau; [ seq(tau(n), n=1..100) ];
  • Mathematica
    Table[DivisorSigma[0, n], {n, 100}] (* Enrique Pérez Herrero, Aug 27 2009 *)
    CoefficientList[Series[(Log[1 - q] + QPolyGamma[1, q])/(q Log[q]), {q, 0, 100}], q] (* Vladimir Reshetnikov, Apr 23 2013 *)
    a[ n_] := SeriesCoefficient[ (QPolyGamma[ 1, q] + Log[1 - q]) / Log[q], {q, 0, Abs@n}]; (* Michael Somos, Apr 25 2013 *)
    a[ n_] := SeriesCoefficient[ q/(1 - q)^2 QHypergeometricPFQ[ {q, q}, {q^2, q^2}, q, q^2], {q, 0, Abs@n}]; (* Michael Somos, Mar 05 2014 *)
    a[n_] := SeriesCoefficient[q/(1 - q) QHypergeometricPFQ[{q, q}, {q^2}, q, q], {q, 0, Abs@n}] (* Mats Granvik, Apr 15 2015 *)
    With[{M=500},CoefficientList[Series[(2x)/(1-x)-Sum[x^k (1-2x^k)/(1-x^k),{k,M}],{x,0,M}],x]] (* Mamuka Jibladze, Aug 31 2018 *)
  • MuPAD
    numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, numdiv(n))}; /* Michael Somos, Apr 27 2003 */
    
  • PARI
    {a(n) = n=abs(n); if( n<1, 0, direuler( p=2, n, 1 / (1 - X)^2)[n])}; /* Michael Somos, Apr 27 2003 */
    
  • PARI
    {a(n)=polcoeff(sum(m=1, n+1, sumdiv(m, d, (-log(1-x^(m/d) +x*O(x^n) ))^d/d!)), n)} \\ Paul D. Hanna, Aug 21 2014
    
  • Python
    from sympy import divisor_count
    for n in range(1, 20): print(divisor_count(n), end=', ') # Stefano Spezia, Nov 05 2018
    
  • Sage
    [sigma(n, 0) for n in range(1, 105)]  # Zerinvary Lajos, Jun 04 2009
    

Formula

If n is written as 2^z*3^y*5^x*7^w*11^v*... then a(n)=(z+1)*(y+1)*(x+1)*(w+1)*(v+1)*...
a(n) = 2 iff n is prime.
G.f.: Sum_{n >= 1} a(n) x^n = Sum_{k>0} x^k/(1-x^k). This is usually called THE Lambert series (see Knopp, Titchmarsh).
a(n) = A083888(n) + A083889(n) + A083890(n) + A083891(n) + A083892(n) + A083893(n) + A083894(n) + A083895(n) + A083896(n).
a(n) = A083910(n) + A083911(n) + A083912(n) + A083913(n) + A083914(n) + A083915(n) + A083916(n) + A083917(n) + A083918(n) + A083919(n).
Multiplicative with a(p^e) = e+1. - David W. Wilson, Aug 01 2001
a(n) <= 2 sqrt(n) [see Mitrinovich, p. 39, also A046522].
a(n) is odd iff n is a square. - Reinhard Zumkeller, Dec 29 2001
a(n) = Sum_{k=1..n} f(k, n) where f(k, n) = 1 if k divides n, 0 otherwise (Mobius transform of A000012). Equivalently, f(k, n) = (1/k)*Sum_{l=1..k} z(k, l)^n with z(k, l) the k-th roots of unity. - Ralf Stephan, Dec 25 2002
G.f.: Sum_{k>0} ((-1)^(k+1) * x^(k * (k + 1)/2) / ((1 - x^k) * Product_{i=1..k} (1 - x^i))). - Michael Somos, Apr 27 2003
a(n) = n - Sum_{k=1..n} (ceiling(n/k) - floor(n/k)). - Benoit Cloitre, May 11 2003
a(n) = A032741(n) + 1 = A062011(n)/2 = A054519(n) - A054519(n-1) = A006218(n) - A006218(n-1) = 1 + Sum_{k=1..n-1} A051950(k+1). - Ralf Stephan, Mar 26 2004
G.f.: Sum_{k>0} x^(k^2)*(1+x^k)/(1-x^k). Dirichlet g.f.: zeta(s)^2. - Michael Somos, Apr 05 2003
Sequence = M*V where M = A129372 as an infinite lower triangular matrix and V = ruler sequence A001511 as a vector: [1, 2, 1, 3, 1, 2, 1, 4, ...]. - Gary W. Adamson, Apr 15 2007
Sequence = M*V, where M = A115361 is an infinite lower triangular matrix and V = A001227, the number of odd divisors of n, is a vector: [1, 1, 2, 1, 2, 2, 2, ...]. - Gary W. Adamson, Apr 15 2007
Row sums of triangle A051731. - Gary W. Adamson, Nov 02 2007
Sum_{n>0} a(n)/(n^n) = Sum_{n>0, m>0} 1/(n*m). - Gerald McGarvey, Dec 15 2007
Logarithmic g.f.: Sum_{n>=1} a(n)/n * x^n = -log( Product_{n>=1} (1-x^n)^(1/n) ). - Joerg Arndt, May 03 2008
a(n) = Sum_{k=1..n} (floor(n/k) - floor((n-1)/k)). - Enrique Pérez Herrero, Aug 27 2009
a(s) = 2^omega(s), if s > 1 is a squarefree number (A005117) and omega(s) is: A001221. - Enrique Pérez Herrero, Sep 08 2009
a(n) = A048691(n) - A055205(n). - Reinhard Zumkeller, Dec 08 2009
For n > 1, a(n) = 2 + Sum_{k=2..n-1} floor((cos(Pi*n/k))^2). And floor((cos(Pi*n/k))^2) = floor(1/4 * e^(-(2*i*Pi*n)/k) + 1/4 * e^((2*i*Pi*n)/k) + 1/2). - Eric Desbiaux, Mar 09 2010, corrected Apr 16 2011
a(n) = 1 + Sum_{k=1..n} (floor(2^n/(2^k-1)) mod 2) for every n. - Fabio Civolani (civox(AT)tiscali.it), Mar 12 2010
From Vladimir Shevelev, May 22 2010: (Start)
(Sum_{d|n} a(d))^2 = Sum_{d|n} a(d)^3 (J. Liouville).
Sum_{d|n} A008836(d)*a(d)^2 = A008836(n)*Sum_{d|n} a(d). (End)
a(n) = sigma_0(n) = 1 + Sum_{m>=2} Sum_{r>=1} (1/m^(r+1))*Sum_{j=1..m-1} Sum_{k=0..m^(r+1)-1} e^(2*k*Pi*i*(n+(m-j)*m^r)/m^(r+1)). - A. Neves, Oct 04 2010
a(n) = 2*A038548(n) - A010052(n). - Reinhard Zumkeller, Mar 08 2013
Sum_{n>=1} a(n)*q^n = (log(1-q) + psi_q(1)) / log(q), where psi_q(z) is the q-digamma function. - Vladimir Reshetnikov, Apr 23 2013
a(n) = Product_{k = 1..A001221(n)} (A124010(n,k) + 1). - Reinhard Zumkeller, Jul 12 2013
a(n) = Sum_{k=1..n} A238133(k)*A000041(n-k). - Mircea Merca, Feb 18 2013
G.f.: Sum_{k>=1} Sum_{j>=1} x^(j*k). - Mats Granvik, Jun 15 2013
The formula above is obtained by expanding the Lambert series Sum_{k>=1} x^k/(1-x^k). - Joerg Arndt, Mar 12 2014
G.f.: Sum_{n>=1} Sum_{d|n} ( -log(1 - x^(n/d)) )^d / d!. - Paul D. Hanna, Aug 21 2014
2*Pi*a(n) = Sum_{m=1..n} Integral_{x=0..2*Pi} r^(m-n)( cos((m-n)*x)-r^m cos(n*x) )/( 1+r^(2*m)-2r^m cos(m*x) )dx, 0 < r < 1 a free parameter. This formula is obtained as the sum of the residues of the Lambert series Sum_{k>=1} x^k/(1-x^k). - Seiichi Kirikami, Oct 22 2015
a(n) = A091220(A091202(n)) = A106737(A156552(n)). - Antti Karttunen, circa 2004 & Mar 06 2017
a(n) = A034296(n) - A237665(n+1) [Wang, Fokkink, Fokkink]. - George Beck, May 06 2017
G.f.: 2*x/(1-x) - Sum_{k>0} x^k*(1-2*x^k)/(1-x^k). - Mamuka Jibladze, Aug 29 2018
a(n) = Sum_{k=1..n} 1/phi(n / gcd(n, k)). - Daniel Suteu, Nov 05 2018
a(k*n) = a(n)*(f(k,n)+2)/(f(k,n)+1), where f(k,n) is the exponent of the highest power of k dividing n and k is prime. - Gary Detlefs, Feb 08 2019
a(n) = 2*log(p(n))/log(n), n > 1, where p(n)= the product of the factors of n = A007955(n). - Gary Detlefs, Feb 15 2019
a(n) = (1/n) * Sum_{k=1..n} sigma(gcd(n,k)), where sigma(n) = sum of divisors of n. - Orges Leka, May 09 2019
a(n) = A001227(n)*(A007814(n) + 1) = A001227(n)*A001511(n). - Ivan N. Ianakiev, Nov 14 2019
From Richard L. Ollerton, May 11 2021: (Start)
a(n) = A038040(n) / n = (1/n)*Sum_{d|n} phi(d)*sigma(n/d), where phi = A000010 and sigma = A000203.
a(n) = (1/n)*Sum_{k=1..n} phi(gcd(n,k))*sigma(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
From Ridouane Oudra, Nov 12 2021: (Start)
a(n) = Sum_{j=1..n} Sum_{k=1..j} (1/j)*cos(2*k*n*Pi/j);
a(n) = Sum_{j=1..n} Sum_{k=1..j} (1/j)*e^(2*k*n*Pi*i/j), where i^2=-1. (End)

Extensions

Incorrect formula deleted by Ridouane Oudra, Oct 28 2021

A175304 A positive integer n is included if d(n+d(n)) = d(n), where d(n) is the number of divisors of n.

Original entry on oeis.org

3, 5, 6, 10, 11, 12, 17, 22, 29, 34, 35, 41, 44, 51, 58, 59, 60, 65, 70, 71, 72, 82, 84, 87, 91, 92, 96, 101, 102, 107, 111, 115, 118, 119, 125, 128, 129, 130, 137, 141, 142, 147, 149, 155, 174, 179, 182, 183, 191, 197, 201, 202, 205, 209, 213, 214, 215, 217, 222
Offset: 1

Views

Author

Leroy Quet, Mar 24 2010

Keywords

Comments

The sequence contains the smaller member of every pair of twin primes (A001359) and all squarefree semiprimes m such that m+4 is also a squarefree semiprime (A255746). Can one prove that this is an infinite sequence? - Vladimir Shevelev, Jul 11 2015
The sequence does not contain perfect squares. Indeed, let a(m)=k^2. Then d(k^2+d(k^2)) = d(k^2). Note that d(k^2) is odd. On the other hand, it is known (A046522) that d(k^2)<2*k. Hence, (k+1)^2 - k^2 > d(k^2). Thus k^2Vladimir Shevelev, Feb 10 2017
If p is prime and t+1 is odd prime, then p^t is not in the sequence. Indeed, if d(p^t+t+1)=t+1, then p^t+t+1=q^t, where q is prime > p (if p^t+t+1= say q^l*r^m, then (l+1)*(m+1)=t+1 which is impossible by the condition). But q>=p+2 and p^t+t+1>=p^t+2*t*p^(t-1) or t+1>=2*t*p^(t-1) which trivially has only solution t=1; however, by the condition t>=2. - Vladimir Shevelev, Feb 18 2017
If an odd integer k is in this sequence, so is 2k. - Charlie Neder, Jan 14 2019

Examples

			10 is in the sequence because d(10)=4 and d(10+d(10))=d(14)=4. - _Emeric Deutsch_, Apr 08 2010
		

Crossrefs

Positions of zeros in A286530.

Programs

  • Maple
    with(numtheory): a := proc (n) if tau(n+tau(n)) = tau(n) then n else end if end proc: seq(a(n), n = 1 .. 230); # Emeric Deutsch, Apr 08 2010
  • Mathematica
    Select[Range@ 224, Function[n, DivisorSigma[0, n + #] == # &@ DivisorSigma[0, n]]](* Michael De Vlieger, Sep 27 2015 *)
    Position[#, 0][[All, 1]] &@ Table[DivisorSigma[0, n + DivisorSigma[0, n]] - DivisorSigma[0, n], {n, 222}] (* Michael De Vlieger, May 21 2017 *)
  • PARI
    is(n)=numdiv(n+n=numdiv(n))==n \\ M. F. Hasler, Sep 27 2015

Extensions

More terms from Emeric Deutsch, Apr 08 2010

A336760 a(0) = 0; for n > 0, a(n) = a(n-1) - tau(n) if nonnegative and not already in the sequence, otherwise a(n) = a(n-1) + tau(n), where tau(n) is the number of divisors of n.

Original entry on oeis.org

0, 1, 3, 5, 2, 4, 8, 6, 10, 7, 11, 9, 15, 13, 17, 21, 16, 14, 20, 18, 12, 16, 20, 22, 30, 27, 23, 19, 25, 27, 35, 33, 39, 43, 47, 51, 42, 40, 36, 32, 24, 26, 34, 36, 42, 48, 44, 46, 56, 53, 59, 55, 49, 51, 59, 63, 71, 67, 71, 69, 57, 59, 63, 69, 62, 58, 50, 52, 58, 54, 62, 60, 72, 70, 66, 72
Offset: 0

Views

Author

Scott R. Shannon, Aug 03 2020

Keywords

Comments

This sequences uses the same rules as Recamán's sequence A005132 except that, instead of adding or subtracting n each term, the number of divisors of n is used. See A000005.
For the first 10 million terms the smallest value not appearing is 28. The data indicate that a(n)/n approaches 1 as n goes to infinity. As tau(n) <= 2*sqrt(n) (see A046522), it implies that 28 and other small unvisited values will never be visited.
In the same range the maximum value is a(9998226) = 10987569, and 2202001 terms repeat a previously visited value, the first time this occurs is a(21) = a(16) = 16. The longest run of consecutive increasing terms is 30, starting at a(1115610) = 1217112, while the longest run of consecutive decreasing terms is 534, starting at a(9960335) = 10946233.

Examples

			a(2) = 3. As 2 has two divisors, a(2) = a(1) + 2 = 1 + 2 = 3.
a(4) = 2. As 4 has three divisors, and as 2 has not been previously visited and is nonnegative, a(4) = a(3) - 3 = 5 - 3 = 2.
		

Crossrefs

A282354 Positive j such that d(j) = d(j + 2*d(j)), where d(j) is the number of divisors of j.

Original entry on oeis.org

3, 6, 7, 13, 14, 19, 20, 24, 26, 27, 32, 37, 38, 40, 43, 54, 57, 60, 63, 67, 69, 72, 74, 77, 79, 84, 85, 86, 87, 88, 97, 103, 108, 109, 111, 114, 115, 125, 126, 127, 132, 133, 134, 136, 138, 154, 158, 163, 170, 174, 177, 193, 194, 200, 201, 204, 205, 206, 209
Offset: 1

Views

Author

Vladimir Shevelev, Feb 13 2017

Keywords

Comments

The sequence contains the smaller member of every pair of cousin primes (A023200).
The sequence contains no perfect squares. Indeed, let a(m) = k^2 for some m. Then, by the definition, d(k^2 + 2*d(k^2)) = d(k^2). Note that d(k^2) is odd. On the other hand, it is known (cf. A046522) that d(k^2) < 2*k. Hence (k+2)^2 - k^2 = 4*k + 4 > 2*d(k^2). Thus k^2 < k^2 + 2*d(k^2) < (k+2)^2. Since, evidently, k^2 + 2*d(k^2) cannot be (k+1)^2, then k^2 + 2*d(k^2) cannot be a square. Therefore, d(k^2 + 2*d(k^2)) is even, which is a contradiction.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 210, Function[d, DivisorSigma[0, # + 2 d] == d]@ DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 13 2017 *)
  • PARI
    is(n)=my(d=numdiv(n)); d==numdiv(n+2*d) \\ Charles R Greathouse IV, Feb 14 2017

Extensions

More terms from Peter J. C. Moses, Feb 13 2017

A282391 Numbers j such that d(j) = d(j + 3*d(j)), where d(j) is the number of divisors of j.

Original entry on oeis.org

5, 7, 10, 11, 13, 14, 15, 17, 21, 22, 23, 26, 27, 30, 31, 32, 34, 37, 39, 41, 42, 45, 46, 47, 50, 53, 54, 57, 60, 61, 62, 65, 67, 72, 73, 74, 78, 82, 83, 90, 94, 96, 97, 98, 99, 101, 103, 104, 106, 107, 111, 114, 120, 122, 128, 129, 130, 131, 133, 134, 143
Offset: 1

Views

Author

Vladimir Shevelev, Feb 14 2017

Keywords

Comments

The sequence contains the smaller member of every pair of sexy primes (A023201).
The sequence contains no perfect squares. Indeed, let a(m) = k^2 for some m. Then, by the definition, d(k^2 + 3*d(k^2)) = d(k^2). Note that d(k^2) is odd. On the other hand, it is known (cf. A046522) that d(k^2) < 2*k. Hence (k+3)^2 - k^2 = 6*k + 1 > 3*d(k^2). Thus k^2 < k^2 + 3*d(k^2) < (k+3)^2. Note that, evidently, k^2 + 3*d(k^2) cannot be (k+2)^2. Let us also show that k^2 + 3*d(k^2) cannot be (k+1)^2, or, equivalently, 3*d(k^2) cannot be equal to 2*k + 1. Indeed, let 3*d(k^2) = 2*k + 1. For some prime p, let p^a || k (that is, p^a | k, but p^(a+1) !| k), a > 0, so 2*k + 1 == 1 (mod p). But now we have 3*p^(a+1) | 3*d(k^2) and thus 3*p^(a+1)|2*k + 1, so 2*k + 1 == 0 (mod p). Contradiction. Therefore, we conclude that k^2 + 3*d(k^2) cannot be a square. Hence, d(k^2 + 3*d(k^2)) is even, which is a contradiction.

Crossrefs

Programs

Extensions

More terms from Peter J. C. Moses, Feb 14 2017
Showing 1-5 of 5 results.