A060321 Erroneous version of A051694.
2, 3, 5, 21, 55, 377, 34, 2584, 46368, 377, 832040, 4181, 6763, 987, 196418
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The 5th prime is 11 and 11 first divides Fib(10)=55, so a(5) = 10.
import Data.List (findIndex) import Data.Maybe (fromJust) a001602 n = (+ 1) $ fromJust $ findIndex ((== 0) . (`mod` a000040 n)) $ tail a000045_list -- Reinhard Zumkeller, Apr 08 2012
A001602 := proc(n) local i,p; p := ithprime(n); for i from 1 do if modp(combinat[fibonacci](i),p) = 0 then return i; end if; end do: end proc: # R. J. Mathar, Oct 31 2015
Table[k=1;While[!Divisible[Fibonacci[k],Prime[n]],k++];k,{n,70}] (* Harvey P. Dale, Feb 15 2012 *) (* a fast, but more complicated method *) MatrixPowerMod[mat_, n_, m_Integer] := Mod[Fold[Mod[If[#2 == 1, #1.#1.mat, #1.#1], m] &, mat, Rest[IntegerDigits[n, 2]]], m]; FibMatrix[n_Integer, m_Integer] := MatrixPowerMod[{{0, 1}, {1, 1}}, n, m]; FibEntryPointPrime[p_Integer] := Module[{n, d, k}, If[PrimeQ[p], n = p - JacobiSymbol[p, 5]; d = Divisors[n]; k = 1; While[FibMatrix[d[[k]], p][[1, 2]] > 0, k++]; d[[k]]]]; SetAttributes[FibEntryPointPrime, Listable]; FibEntryPointPrime[Prime[Range[10000]]] (* T. D. Noe, Jan 03 2013 *) With[{nn=70,t=Table[{n,Fibonacci[n]},{n,500}]},Transpose[ Flatten[ Table[ Select[t,Divisible[#[[2]],Prime[i]]&,1],{i,nn}],1]][[1]]] (* Harvey P. Dale, May 31 2014 *)
a(n)=if(n==3,5,my(p=prime(n));fordiv(p^2-1,d,if(fibonacci(d)%p==0, return(d)))) \\ Charles R Greathouse IV, Jul 17 2012
do(p)=my(k=p+[0,-1,1,1,-1][p%5+1],f=factor(k));for(i=1,#f[,1],for(j=1,f[i,2],if((Mod([1,1;1,0],p)^(k/f[i,1]))[1,2], break); k/=f[i,1])); k a(n)=do(prime(n)) apply(do, primes(100)) \\ Charles R Greathouse IV, Jan 03 2013
from sympy.ntheory.generate import prime def A001602(n): a, b, i, p = 0, 1, 1, prime(n) while b % p: a, b, i = b, (a+b) % p, i+1 return i # Chai Wah Wu, Nov 03 2015, revised Apr 04 2016.
a060384 = a055642 . a000045 -- Reinhard Zumkeller, Mar 09 2013
with(combinat): a:=n->nops(convert(fibonacci(n),base,10)): 1,seq(a(n),n=1..100); # Emeric Deutsch, May 19 2007
Table[IntegerLength@ Fibonacci@ n, {n, 0, 84}] /. 0 -> 1 (* or *) Table[Floor[n Log10@ GoldenRatio - Log10@ 5/2] + 1, {n, 0, 84}] /. 0 -> 1 (* Michael De Vlieger, Jul 04 2016 *)
print1("1, 1, "); gold=(1+sqrt(5))/2; for(n=2,100,print1(floor((n*log(gold)-log(5)/2)/log(10))+1", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
a(n) = #Str(fibonacci(n)); \\ Michel Marcus, Jul 04 2016
n=9: F(80) = 23416728348467685 = 3 * 5 * 7 * 11 * 41 * 47 * 1601 * 2161 * 3041. n=25: F(690) = 2^3 * 5 * 11 * 31 * 61 * 137 * 139 * 461 * 691 * 829 * 1151 * 1381 * 4831 * 5981 * 18077 * 28657 * 186301 * 324301 * 686551 * 1485571 * 4641631 * 117169733521 * 2441738887963981 * 3490125311294161 * 25013864044961447973152814604981 is the smallest Fibonacci number with exactly 25 distinct prime factors.
First /@ SortBy[#, Last] &@ Map[First@ # &, Values@ GroupBy[#, Last]] &@ Table[{n - Boole[n == 2], #, PrimeNu@ #} &@ Fibonacci@ n, {n, 2, 300}] (* Michael De Vlieger, Feb 18 2017, Version 10 *) Module[{ff=Table[{n,PrimeNu[Fibonacci[n]]},{n,1400}]},Table[ SelectFirst[ ff,#[[2]]==k&],{k,0,40}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 28 2018 *)
my(o=[],s); print1(1); for(n=1,20, s=0; until( o[s]==n, #o
F(82) = 2789 * 59369 * 370248451, so a(82) = 370248451.
[Maximum(PrimeDivisors(Fibonacci(n))): n in [3..50]]; // Vincenzo Librandi, Dec 25 2016
Table[First[Last[FactorInteger[Fibonacci[n]]]], {n, 3, 100}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
a(n)=my(f=factor(fibonacci(n))[,1]);f[#f] \\ Charles R Greathouse IV, Feb 01 2013
For n=82: F(82) = 2789*59369*370248451, so a(82)=2789.
[1,1] cat [Minimum(PrimeDivisors(Fibonacci(n))): n in [3..70]]; // Vincenzo Librandi, Dec 25 2016
f[n_] := (FactorInteger@ Fibonacci@ n)[[1,1]]; Array[f, 70] (* Robert G. Wilson v, Jul 07 2007 *)
a(n) = if ((f=fibonacci(n))==1, 1, factor(f)[1,1]); \\ Michel Marcus, Nov 15 2014
a = {}; k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], s = FactorInteger[Fibonacci[Prime[n]]]; c = Length[s]; Do[AppendTo[k, s[[m]][[1]]], {m, 1, c}]], {n, 2, 60}]; Union[k]
a233281 n = a233281_list !! (n-1) a233281_list = filter ((== 1) . a010051 . a001177) [1..] -- Reinhard Zumkeller, Apr 04 2014
is(n)=my(k); while(fibonacci(k++)%n, ); isprime(k) \\ Charles R Greathouse IV, Feb 04 2014
entry(p)=my(k=1);while(fibonacci(k++)%p,);k; is(n)={ if(n%2==0,return(n==2)); if(n<13, return(n==5)); my(f=factor(n),p,F); if(f[1,2]>1 && f[1,1]<1e14,return(0)); p=entry(f[1,1]); F=fibonacci(p); if(f[1,2]>1 && F%f[1,1]^f[1,2],return(0)); if(!isprime(p), return(0)); for(i=2,#f~, if(F%f[i,1]^f[i,2],return(0)) ); 1 }; \\ Charles R Greathouse IV, Feb 04 2014
For n=4, prime(4)=7, and a(4)=8.
Table[Prime@ n - JacobiSymbol[Prime@ n, 5], {n, 4, 60}] (* Michael De Vlieger, Oct 04 2015 *)
lista(nn)=forprime(p=3, nn, print1(p-kronecker(p, 5), ", ");); \\ Michel Marcus, Sep 29 2015
514229 is a prime Fibonacci number and the sum of the digits 5 + 1 + 4 + 2 + 2 + 9 = 23 is also a prime.
Select[Fibonacci[Range[1000]],PrimeQ[#]&&PrimeQ[Total[IntegerDigits[#]]]&] (* James C. McMahon, May 31 2024 *)
Comments