cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A060321 Erroneous version of A051694.

Original entry on oeis.org

2, 3, 5, 21, 55, 377, 34, 2584, 46368, 377, 832040, 4181, 6763, 987, 196418
Offset: 1

Views

Author

Keywords

A001602 Fibonacci entry points: a(n) = smallest m > 0 such that the n-th prime divides Fibonacci(m).

Original entry on oeis.org

3, 4, 5, 8, 10, 7, 9, 18, 24, 14, 30, 19, 20, 44, 16, 27, 58, 15, 68, 70, 37, 78, 84, 11, 49, 50, 104, 36, 27, 19, 128, 130, 69, 46, 37, 50, 79, 164, 168, 87, 178, 90, 190, 97, 99, 22, 42, 224, 228, 114, 13, 238, 120, 250, 129, 88, 67, 270, 139, 28, 284, 147, 44, 310
Offset: 1

Views

Author

Keywords

Comments

"[a(n)] is called by Lucas the rank of apparition of p and we know it is a divisor of, or equal to prime(n)-1 or prime(n)+1" - Vajda, p. 84. (Note that a(3)=5. This is the only exception.) - Chris K. Caldwell, Nov 03 2008
Every number except 1, 2, 6 and 12 eventually occurs in this sequence. See also A086597(n), the number of primitive prime factors of Fibonacci(n). - T. D. Noe, Jun 13 2008
For each prime p we have an infinite sequence of integers, F(i*a(n))/p, i=1,2,... See also A236479. For primes p >= 3 and exponents j >= 2, with k = a(n) and p = p(n), it appears that F(k*i*p^(j-1))/p^j is an integer, for i >= 0. For p = 2, F(k*i*p^(j-1))/p^(j+1) = integer. - Richard R. Forberg, Jan 26-29 2014 [Comments revised by N. J. A. Sloane, Sep 24 2015]
Let p=prime(n). a(n) is also a divisor of (p-1)/2 (if p mod 5 == 1 or 4) or (p+1)/2 (if p mod 5 == 2 or 3) if and only if p mod 4 = 1. - Seiichi Azuma, Jul 29 2014

Examples

			The 5th prime is 11 and 11 first divides Fib(10)=55, so a(5) = 10.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A051694, A001177, A086597, A194363 (entries Lucas).

Programs

  • Haskell
    import Data.List (findIndex)
    import Data.Maybe (fromJust)
    a001602 n = (+ 1) $ fromJust $
                findIndex ((== 0) . (`mod` a000040 n)) $ tail a000045_list
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Maple
    A001602 := proc(n)
        local i,p;
        p := ithprime(n);
        for i from 1 do
            if modp(combinat[fibonacci](i),p) = 0 then
                return i;
            end if;
        end do:
    end proc: # R. J. Mathar, Oct 31 2015
  • Mathematica
    Table[k=1;While[!Divisible[Fibonacci[k],Prime[n]],k++];k,{n,70}] (* Harvey P. Dale, Feb 15 2012 *)
    (* a fast, but more complicated method *) MatrixPowerMod[mat_, n_, m_Integer] := Mod[Fold[Mod[If[#2 == 1, #1.#1.mat, #1.#1], m] &, mat, Rest[IntegerDigits[n, 2]]], m]; FibMatrix[n_Integer, m_Integer] := MatrixPowerMod[{{0, 1}, {1, 1}}, n, m]; FibEntryPointPrime[p_Integer] := Module[{n, d, k}, If[PrimeQ[p], n = p - JacobiSymbol[p, 5]; d = Divisors[n]; k = 1; While[FibMatrix[d[[k]], p][[1, 2]] > 0, k++]; d[[k]]]]; SetAttributes[FibEntryPointPrime, Listable]; FibEntryPointPrime[Prime[Range[10000]]] (* T. D. Noe, Jan 03 2013 *)
    With[{nn=70,t=Table[{n,Fibonacci[n]},{n,500}]},Transpose[ Flatten[ Table[ Select[t,Divisible[#[[2]],Prime[i]]&,1],{i,nn}],1]][[1]]] (* Harvey P. Dale, May 31 2014 *)
  • PARI
    a(n)=if(n==3,5,my(p=prime(n));fordiv(p^2-1,d,if(fibonacci(d)%p==0, return(d)))) \\ Charles R Greathouse IV, Jul 17 2012
    
  • PARI
    do(p)=my(k=p+[0,-1,1,1,-1][p%5+1],f=factor(k));for(i=1,#f[,1],for(j=1,f[i,2],if((Mod([1,1;1,0],p)^(k/f[i,1]))[1,2], break); k/=f[i,1])); k
    a(n)=do(prime(n))
    apply(do, primes(100)) \\ Charles R Greathouse IV, Jan 03 2013
    
  • Python
    from sympy.ntheory.generate import prime
    def A001602(n):
        a, b, i, p = 0, 1, 1, prime(n)
        while b % p:
            a, b, i = b, (a+b) % p, i+1
        return i # Chai Wah Wu, Nov 03 2015, revised Apr 04 2016.

Formula

a(n) = A001177(prime(n)).
a(n) <= prime(n) + 1. - Charles R Greathouse IV, Jan 02 2013

Extensions

More terms from Jud McCranie

A060384 Number of decimal digits in n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18
Offset: 0

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Crossrefs

Programs

  • Haskell
    a060384 = a055642 . a000045  -- Reinhard Zumkeller, Mar 09 2013
  • Maple
    with(combinat): a:=n->nops(convert(fibonacci(n),base,10)): 1,seq(a(n),n=1..100); # Emeric Deutsch, May 19 2007
  • Mathematica
    Table[IntegerLength@ Fibonacci@ n, {n, 0, 84}] /. 0 -> 1 (* or *)
    Table[Floor[n Log10@ GoldenRatio - Log10@ 5/2] + 1, {n, 0, 84}] /. 0 -> 1 (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    print1("1, 1, "); gold=(1+sqrt(5))/2; for(n=2,100,print1(floor((n*log(gold)-log(5)/2)/log(10))+1", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
    
  • PARI
    a(n) = #Str(fibonacci(n)); \\ Michel Marcus, Jul 04 2016
    

Formula

a(n) = floor(n*log(tau)/log(10)) +0 or +1 where tau is the golden ratio. - Benoit Cloitre, Oct 29 2002. [Corrected by Hans J. H. Tuenter, Jul 07 2025].
a(n) = floor(n*log_10(gold) - log_10(5)/2) + 1 for n >= 2, where gold is (1+sqrt(5))/2. - Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007
a(n) = A055642(A000045(n)). - Reinhard Zumkeller, Mar 09 2013

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2007

A060320 Index of smallest Fibonacci number with exactly n distinct prime factors.

Original entry on oeis.org

1, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, 450, 432, 552, 360, 420, 690, 504, 880, 630, 600, 756, 720, 900, 792, 840, 1296, 1050, 1350, 1140, 1080, 1200, 1824, 1260, 1512, 1320, 1560, 1680
Offset: 0

Views

Author

Labos Elemer, Mar 28 2001

Keywords

Comments

From Jon E. Schoenfield, Dec 28 2016: (Start)
Note that the presence of incompletely factored Fibonacci numbers with indices as low as 1301 does not prevent the drawing of conclusions such as "a(44) = 1320" with certainly. Using F(1301) as an example, the compact table of Fibonacci results at the Kelly site indicates that F(1301) = p*q*r*c where p=6400921, q=14225131397, r=100794731109596201, and c is a 238-digit unfactored composite number. The complete factorization of every Fibonacci number up to F(1000) is explicitly given elsewhere on the site, and those results allow quick verification that a(n) <= 900 for all n in [0..34], so 1301 cannot be a term unless F(1301) has at least 35 distinct prime factors, which would require c to have at least 32 distinct prime factors, at least one of which would have to be less than ceiling(c^(1/32)) = 26570323, but trial division of c by every prime less than 26570323 shows that c has no prime factors that small. Thus, while A022307(1301) is unknown, it is certain that 1301 is not a term in this sequence. Similarly, making use of known factors, it can be proved that F(n) cannot have 44 or more distinct prime factors for any n < 1320, so since F(1320) has exactly 44 distinct prime factors, it is established that a(44) = 1320. (End)
a(47) >= 2835, a(48..68) = (2040, 1800, 2736, 2730, 1890, 1980, 2520, 2280, 2100, 2160, 2640, 3300, 3060, 3150, 2520, 3120, 3696, 3240, 3990, 3360, 3420), a(69) >= 4400, a(75) = 4320, a(77) = 4200, a(79) = 3780. - Max Alekseyev, Feb 03 2025

Examples

			n=9: F(80) = 23416728348467685 = 3 * 5 * 7 * 11 * 41 * 47 * 1601 * 2161 * 3041.
n=25: F(690) = 2^3 * 5 * 11 * 31 * 61 * 137 * 139 * 461 * 691 * 829 * 1151 * 1381 * 4831 * 5981 * 18077 * 28657 * 186301 * 324301 * 686551 * 1485571 * 4641631 * 117169733521 * 2441738887963981 * 3490125311294161 * 25013864044961447973152814604981 is the smallest Fibonacci number with exactly 25 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    First /@ SortBy[#, Last] &@ Map[First@ # &, Values@ GroupBy[#, Last]] &@ Table[{n - Boole[n == 2], #, PrimeNu@ #} &@ Fibonacci@ n, {n, 2, 300}] (* Michael De Vlieger, Feb 18 2017, Version 10 *)
    Module[{ff=Table[{n,PrimeNu[Fibonacci[n]]},{n,1400}]},Table[ SelectFirst[ ff,#[[2]]==k&],{k,0,40}]][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 28 2018 *)
  • PARI
    my(o=[],s); print1(1); for(n=1,20, s=0; until( o[s]==n, #o
    				

Formula

a(n) = min (k : A022307(k) = n).

Extensions

Corrected by Shyam Sunder Gupta, Jul 20 2002
Edited by M. F. Hasler, Nov 01 2012
a(35)-a(40), a(42), a(44) computed based on Kelly's data in A022307 by Jon E. Schoenfield, Dec 28 2016
a(41), a(43), a(45)-a(46) from Max Alekseyev, Feb 03 2025

A060385 Largest prime factor of n-th Fibonacci number.

Original entry on oeis.org

2, 3, 5, 2, 13, 7, 17, 11, 89, 3, 233, 29, 61, 47, 1597, 19, 113, 41, 421, 199, 28657, 23, 3001, 521, 109, 281, 514229, 61, 2417, 2207, 19801, 3571, 141961, 107, 2221, 9349, 135721, 2161, 59369, 421, 433494437, 307, 109441, 28657, 2971215073, 1103
Offset: 3

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Comments

For n > 12, Fibonacci(n) is divisible by a primitive prime factor (one not dividing Fibonacci(1), ..., Fibonacci(n-1)). But all primes up to n-2 divide smaller Fibonacci numbers, see A001602, so a(n) >= n-1 for n > 12. This strengthens a more general theorem of Bravo and Luca. - Charles R Greathouse IV, Feb 01 2013

Examples

			F(82) = 2789 * 59369 * 370248451, so a(82) = 370248451.
		

Crossrefs

Programs

Formula

a(n) >= n - 1 for n > 12, see comments. It is not hard to show that a(n) > 1000 for n > 88. Similarly a(n) > 20641 for n > 120. - Charles R Greathouse IV, Feb 01 2013

A060383 a(1) = a(2) = 1; for n >2, a(n) = smallest prime factor of n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5
Offset: 1

Views

Author

Labos Elemer, Apr 03 2001

Keywords

Examples

			For n=82: F(82) = 2789*59369*370248451, so a(82)=2789.
		

Crossrefs

Programs

  • Magma
    [1,1] cat [Minimum(PrimeDivisors(Fibonacci(n))): n in [3..70]]; // Vincenzo Librandi, Dec 25 2016
  • Mathematica
    f[n_] := (FactorInteger@ Fibonacci@ n)[[1,1]]; Array[f, 70] (* Robert G. Wilson v, Jul 07 2007 *)
  • PARI
    a(n) = if ((f=fibonacci(n))==1, 1, factor(f)[1,1]); \\ Michel Marcus, Nov 15 2014
    

Formula

a(n) = A020639(A000045(n)). - Michel Marcus, Nov 15 2014

Extensions

Better definition from Omar E. Pol, Apr 25 2008

A135952 Prime factors of composite Fibonacci numbers with prime indices (cf. A050937).

Original entry on oeis.org

37, 73, 113, 149, 157, 193, 269, 277, 313, 353, 389, 397, 457, 557, 613, 673, 677, 733, 757, 877, 953, 977, 997, 1069, 1093, 1153, 1213, 1237, 1453, 1657, 1753, 1873, 1877, 1933, 1949, 1993, 2017, 2137, 2221, 2237, 2309, 2333, 2417, 2473, 2557, 2593, 2749, 2777, 2789, 2797, 2857, 2909, 2917, 3217, 3253, 3313, 3517, 3557, 3733, 4013, 4057, 4177, 4273, 4349, 4357, 4513, 4637, 4733, 4909, 4933
Offset: 1

Views

Author

Artur Jasinski, Dec 08 2007

Keywords

Comments

All numbers in this sequence are congruent to 1 mod 4. - Max Alekseyev.
If Fibonacci(n) is divisible by a prime p of the form 4k+3 then n is even. To prove this statement it is enough to show that (1+sqrt(5))/(1-sqrt(5)) is never a square modulo such p (which is a straightforward exercise).
The n-th prime p is an element of this sequence iff A001602(n) is prime and A051694(n)=A000045(A001602(n))>p. - Max Alekseyev

Crossrefs

Programs

  • Mathematica
    a = {}; k = {}; Do[If[ !PrimeQ[Fibonacci[Prime[n]]], s = FactorInteger[Fibonacci[Prime[n]]]; c = Length[s]; Do[AppendTo[k, s[[m]][[1]]], {m, 1, c}]], {n, 2, 60}]; Union[k]

Extensions

Edited, corrected and extended by Max Alekseyev, Dec 12 2007

A233281 Numbers n such that the least Fibonacci number F_k which is a multiple of n has a prime index, i.e., k is in A000040.

Original entry on oeis.org

2, 5, 13, 37, 73, 89, 113, 149, 157, 193, 233, 269, 277, 313, 353, 389, 397, 457, 557, 613, 673, 677, 733, 757, 877, 953, 977, 997, 1069, 1093, 1153, 1213, 1237, 1453, 1597, 1657, 1753, 1873, 1877, 1933, 1949, 1993, 2017, 2137, 2221, 2237, 2309, 2333, 2417, 2473
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2013

Keywords

Comments

Numbers n such that A001177(n) is prime.
Each natural number n belongs to this sequence if the smallest Fibonacci number which it divides is a term of A030426. - Jon E. Schoenfield, Feb 28 2014
A092395 gives all the primes in this sequence (cf. Wikipedia-link), and the first composite occurs as the 69th term, where a(69)=4181 while A092395(69)=4273. After 4181 (= 37*113 = F_19), the next term missing from A092395 is a(148)=10877 (= 73*149. A001177(10877) = 37, F_37 = 24157817 = 2221*10877). Both of these numbers (4181 and 10877) occur in various lists of Fibonacci-related pseudoprimes. Sequence A238082 gives all composites occurring in this sequence.
If n is in this sequence then all divisors d > 1 of n are in this sequence. - Charles R Greathouse IV, Feb 04 2014
Composite members begin 4181, 10877, 75077, 162133, 330929, .... - Charles R Greathouse IV, Mar 07 2014

Crossrefs

Disjoint union of A092395 and A238082. The first 68 terms are identical with A092395, after which follows the first case of the latter sequence, with a(69) = A238082(1) = 4181.

Programs

  • Haskell
    a233281 n = a233281_list !! (n-1)
    a233281_list = filter ((== 1) . a010051 . a001177) [1..]
    -- Reinhard Zumkeller, Apr 04 2014
  • PARI
    is(n)=my(k); while(fibonacci(k++)%n, ); isprime(k) \\ Charles R Greathouse IV, Feb 04 2014
    
  • PARI
    entry(p)=my(k=1);while(fibonacci(k++)%p,);k;
    is(n)={
        if(n%2==0,return(n==2));
        if(n<13, return(n==5));
        my(f=factor(n),p,F);
        if(f[1,2]>1 && f[1,1]<1e14,return(0));
        p=entry(f[1,1]);
        F=fibonacci(p);
        if(f[1,2]>1 && F%f[1,1]^f[1,2],return(0));
        if(!isprime(p), return(0));
        for(i=2,#f~,
            if(F%f[i,1]^f[i,2],return(0))
        );
        1
    }; \\ Charles R Greathouse IV, Feb 04 2014
    

Formula

A010051(A001177(a(n))) = 1. - Reinhard Zumkeller, Apr 04 2014

A262708 a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.

Original entry on oeis.org

8, 10, 14, 18, 18, 24, 28, 30, 38, 40, 44, 48, 54, 58, 60, 68, 70, 74, 78, 84, 88, 98, 100, 104, 108, 108, 114, 128, 130, 138, 138, 148, 150, 158, 164, 168, 174, 178, 180, 190, 194, 198, 198, 210, 224, 228, 228, 234, 238, 240, 250, 258, 264, 268, 270, 278, 280
Offset: 4

Views

Author

Shane Findley, Sep 27 2015

Keywords

Comments

The sequence lists Fibonacci indices q that are conjectured to produce Fibonacci numbers divisible by p^2, where p is a Fibonacci-Wieferich prime.

Examples

			For n=4, prime(4)=7, and a(4)=8.
		

References

  • Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag, 2000.
  • Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover. (See p. 73.)

Crossrefs

Programs

  • Mathematica
    Table[Prime@ n - JacobiSymbol[Prime@ n, 5], {n, 4, 60}] (* Michael De Vlieger, Oct 04 2015 *)
  • PARI
    lista(nn)=forprime(p=3, nn, print1(p-kronecker(p, 5), ", ");); \\ Michel Marcus, Sep 29 2015

Extensions

Edited by N. J. A. Sloane, Sep 29 2015
Edited by Jon E. Schoenfield, Oct 09 2015

A111331 Prime Fibonacci numbers whose digits in base 10 sum up to a prime.

Original entry on oeis.org

2, 3, 5, 89, 514229, 433494437, 2971215073, 3061719992484545030554313848083717208111285432353738497131674799321571238149015933442805665949
Offset: 1

Views

Author

Stefan Steinerberger, Nov 05 2005

Keywords

Comments

Fibonacci(104911) is the next (probable) prime whose digits sum to a prime. Thus the next term would be 21925 digits long. - Hans Havermann, Nov 06 2005

Examples

			514229 is a prime Fibonacci number and the sum of the digits 5 + 1 + 4 + 2 + 2 + 9 = 23 is also a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Fibonacci[Range[1000]],PrimeQ[#]&&PrimeQ[Total[IntegerDigits[#]]]&] (* James C. McMahon, May 31 2024 *)
Showing 1-10 of 11 results. Next