cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A346388 a(n) is the number of proper divisors of A053742(n) ending with 5.

Original entry on oeis.org

1, 3, 2, 3, 5, 3, 3, 5, 3, 3, 7, 3, 3, 7, 3, 3, 7, 5, 3, 7, 3, 3, 8, 3, 5, 7, 3, 5, 7, 3, 3, 11, 5, 3, 7, 3, 3, 7, 7, 3, 9, 3, 5, 7, 3, 7, 7, 5, 3, 11, 3, 3, 11, 3, 3, 7, 3, 5, 11, 7, 5, 7, 4, 3, 7, 3, 7, 11, 3, 3, 7, 7, 5, 11, 3, 3, 11, 5, 3, 7, 7, 3, 11, 3, 5
Offset: 0

Views

Author

Stefano Spezia, Jul 15 2021

Keywords

Examples

			a(10) = 7 since there are 7 proper divisors of A053742(10) = 525 ending with 5: 5, 15, 25, 35, 75, 105 and 175.
		

Crossrefs

Cf. A032741, A053742, A346389 (ending with 6), A346392.

Programs

  • Mathematica
    a[n_]:=Length[Drop[Select[Divisors[25+50n], (Mod[#,10]==5&)], -1]]; Array[a, 90, 0]

Formula

a(n) = A346392(A053742(n)).

A016873 a(n) = 5*n + 2.

Original entry on oeis.org

2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 247, 252, 257, 262, 267, 272, 277
Offset: 0

Views

Author

Keywords

Comments

Numbers ending in 2 or 7. - Lekraj Beedassy, Jul 08 2006
For n > 2, also the number of (not necessarily maximal) cliques in the n-gear graph. - Eric W. Weisstein, Nov 29 2017
Also, positive integers k such that 10*k+5 is equal to the product of two integers ending with 5. Proof: if 10*k+5 = (10*a+5) * (10*b+5), then k = 10*a*b + 5*(a+b) + 2 = 5 * (a + b + 2*a*b) + 2, of the form 5m + 2. So, 262 is a term because 2625 = 35 * 75. - Bernard Schott, May 15 2019
Numbers k such that 2^x + 3^x == 0 mod 31 and 2^x + 3^x == 0 mod 11 with x = 6*k+3. - Pedro Caceres, May 18 2022

Crossrefs

Cf. A053742 (product of two integers ending with 5).
Cf. A324298 (product of two integers ending with 6).

Programs

Formula

a(n) = 10*n - a(n-1) - 1 (with a(0)=2). - Vincenzo Librandi, Nov 20 2010
G.f.: (2+3*x)/(1-x)^2. - Colin Barker, Jan 08 2012
E.g.f.: exp(x)*(2 + 5*x). - Stefano Spezia, Mar 21 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2-2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A324297 Positive integers k that are the product of two integers ending with 6.

Original entry on oeis.org

36, 96, 156, 216, 256, 276, 336, 396, 416, 456, 516, 576, 636, 676, 696, 736, 756, 816, 876, 896, 936, 996, 1056, 1116, 1176, 1196, 1216, 1236, 1296, 1356, 1376, 1416, 1456, 1476, 1536, 1596, 1656, 1696, 1716, 1776, 1836, 1856, 1896, 1956, 1976, 2016, 2076, 2116
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms end with 6 (A017341).

Examples

			36 = 6*6, 96 = 6*16, 216 = 6*36, 256 = 16*16, 276 = 6*46, ...
		

Crossrefs

Cf. A000400, A017341 (supersequence), A324298, A053742 (ending with 5).

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a],AppendTo[a,10*n+6]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(n) = {if (isok6(n), my(d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1)));); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2117)) # Michael S. Branicky, Aug 18 2021

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 18 2021

A016850 a(n) = (5*n)^2.

Original entry on oeis.org

0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, 3025, 3600, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27225, 28900, 30625, 32400, 34225, 36100, 38025, 40000, 42025
Offset: 0

Views

Author

Keywords

Comments

If we define C(n) = (5*n)^2 (n > 0), the sequence is the first "square-sequence" such that for every n there exists p such that C(n) = C(p) + C(p+n). We observe in fact that p = 3*n because 25 = 3^2 + 4^2. The sequence without 0 is linked with the first nontrivial solution (trivial: n^2 = 0^2 + n^2) of the equation X^2 = 2*Y^2 + 2*n^2 where X = 2*k and Y = 2*p + n which is equivalent to k^2 = p^2 + (p+n)^2 for n given. The second such "square-sequence" is (29*n)^2 (n > 0) because 29^2 = 20^2 + 21^2 and with this relation we obtain (29*n)^2 = (20*n)^2 + (20*n+n)^2. - Richard Choulet, Dec 23 2007

Crossrefs

Cf. A000290, A033429, A053742 (first differences), A008587, A008607.
Similar sequences listed in A244630.

Programs

Formula

a(n) = 25*n^2 = 25*A000290(n) = 5*A033429(n). - Omar E. Pol, Jul 03 2014
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/150.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/300.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/5)/(Pi/5).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/5)/(Pi/5) = 5*sqrt((5-sqrt(5))/2)/(2*Pi). (End)
a(n) = Sum_{i=0..n-1} A053742(i). - John Elias, Jun 30 2021
G.f.: 25*x*(1 + x)/(1 - x)^3. - Stefano Spezia, Jul 08 2023
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 25*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n*A008607(n) = A000290(A008587(n)) = A008587(n)^2. (End)

A346950 Positive integers k that are the product of two integers ending with 3.

Original entry on oeis.org

9, 39, 69, 99, 129, 159, 169, 189, 219, 249, 279, 299, 309, 339, 369, 399, 429, 459, 489, 519, 529, 549, 559, 579, 609, 639, 669, 689, 699, 729, 759, 789, 819, 849, 879, 909, 939, 949, 969, 989, 999, 1029, 1059, 1079, 1089, 1119, 1149, 1179, 1209, 1219, 1239, 1269
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

All the terms end with 9 (A017377).

Examples

			9 = 3*3, 39 = 3*13, 69 = 3*23, 99 = 3*33, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346951, A346952, A346953.

Programs

  • Mathematica
    a={}; For[n=0, n<=250, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1270)) # Michael S. Branicky, Aug 08 2021

Formula

Limit_{n->oo} a(n)/a(n-1) = 1.

A347253 Positive integers that are the product of two integers ending with 4.

Original entry on oeis.org

16, 56, 96, 136, 176, 196, 216, 256, 296, 336, 376, 416, 456, 476, 496, 536, 576, 616, 656, 696, 736, 756, 776, 816, 856, 896, 936, 976, 1016, 1036, 1056, 1096, 1136, 1156, 1176, 1216, 1256, 1296, 1316, 1336, 1376, 1416, 1456, 1496, 1536, 1576, 1596, 1616, 1656
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Examples

			16 = 4*4, 56 = 4*14, 96 = 4*24, 136 = 4*34, 176 = 4*44, 196 = 14*14, 216 = 4*54, ...
		

Crossrefs

Cf. A017341 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347254, A347255.

Programs

  • Mathematica
    a={}; For[n=0, n<=200, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && 10*n+6>Max[a], AppendTo[a, 10*n+6]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1660)) # Michael S. Branicky, Aug 24 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A132359 Numbers divisible by the square of their last decimal digit.

Original entry on oeis.org

1, 11, 12, 21, 25, 31, 32, 36, 41, 51, 52, 61, 63, 64, 71, 72, 75, 81, 91, 92, 101, 111, 112, 121, 125, 128, 131, 132, 141, 144, 147, 151, 152, 153, 161, 171, 172, 175, 181, 191, 192, 201, 211, 212, 216, 221, 224, 225, 231, 232, 241, 243, 251, 252, 261, 271, 272
Offset: 1

Views

Author

Jonathan Vos Post, Nov 08 2007

Keywords

Comments

Subsequences are A017281 and A053742 representing last digits 1 and 5. Generators for the subsequences representing last digits 2, 3, 4, 6, 7, 8 and 9 are, in that order, the terms 12+20i, 63+90i, 64+80i, 36+180i, 147+490i, 128+320i, 729+810i, where i=0,1,2,... - R. J. Mathar, Nov 13 2007
This is a 10-automatic sequence. - Charles R Greathouse IV, Dec 28 2011

Examples

			147 belongs to the sequence because 147/7^2 = 3.
		

Crossrefs

Programs

  • Maple
    isA132359 := proc(n) local ldig ; ldig := n mod 10 ; if ldig <> 0 and n mod (ldig^2) = 0 then true ; else false ; fi ; end: for n from 1 to 400 do if isA132359(n) then printf("%d,",n) ; fi ; od: # R. J. Mathar, Nov 13 2007
    a:=proc(n) local nn: nn:=convert(n,base,10): if 0 < nn[1] and `mod`(n,nn[1]^2) =0 then n else end if end proc: seq(a(n),n=1..250); # Emeric Deutsch, Nov 15 2007
  • Mathematica
    Select[Range[250], IntegerDigits[ # ][[ -1]] > 0 && Mod[ #, IntegerDigits[ # ][[ -1]]^2] == 0 &] (* Stefan Steinerberger, Nov 12 2007 *)
    dsldQ[n_]:=Module[{lidnsq=Last[IntegerDigits[n]]^2},lidnsq!=0 && Divisible[n,lidnsq]]; Select[Range[300],dsldQ] (* Harvey P. Dale, May 03 2011 *)
  • PARI
    is(n)=n%(n%10)^2==0 \\ Charles R Greathouse IV, Dec 28 2011
    
  • Python
    def ok(n): return n%10 > 0 and n%(n%10)**2 == 0
    print([k for k in range(273) if ok(k)]) # Michael S. Branicky, Jul 03 2022
  • R
    which(sapply(1:500,function(x) isint(x/(x%%10)^2))) # Christian N. K. Anderson, May 04 2013
    

Formula

Numbers k such that fp[k / (k mod 10)] = 0.
a(n) ~ 6350400*n/1241929 = 5.113...*n. - Charles R Greathouse IV, Dec 28 2011

Extensions

Corrected and extended by Stefan Steinerberger, Emeric Deutsch and R. J. Mathar, Nov 12 2007

A324298 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 6 (A324297).

Original entry on oeis.org

3, 9, 15, 21, 25, 27, 33, 39, 41, 45, 51, 57, 63, 67, 69, 73, 75, 81, 87, 89, 93, 99, 105, 111, 117, 119, 121, 123, 129, 135, 137, 141, 145, 147, 153, 159, 165, 169, 171, 177, 183, 185, 189, 195, 197, 201, 207, 211, 213, 217, 219, 223, 225, 231, 233, 237, 243, 249
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms of this sequence are odd.
Why? If an integer 10*k+6 = (10*a+6) * (10*b+6), then k = 10*a*b + 6*(a+b) + 3, so k is odd. - Bernard Schott, May 13 2019

Examples

			145 is a term because 26*56 = 1456 = 145*10 + 6. - _Bernard Schott_, May 13 2019
		

Crossrefs

Cf. A017341, A053742 (ending with 5), A324297, A337856, A346389.

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[10*a+6],AppendTo[a,n]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(k) = {my(n=10*k+6, d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1))); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(6, 10*lim//6+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(249)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A324297(n) - 6)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A324297(n) - 6)/10 and lim_{n->infinity} A324297(n)/A324297(n-1) = 1. - Stefano Spezia, Aug 21 2021

A337855 Number of n-digit positive integers that are the product of two integers ending with 5.

Original entry on oeis.org

0, 2, 18, 180, 1800, 18000, 180000, 1800000, 18000000, 180000000, 1800000000, 18000000000, 180000000000, 1800000000000, 18000000000000, 180000000000000, 1800000000000000, 18000000000000000, 180000000000000000, 1800000000000000000, 18000000000000000000, 180000000000000000000
Offset: 1

Views

Author

Stefano Spezia, Sep 27 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A053742.

Crossrefs

Cf. A011557 (powers of 10), A052268 (number of n-digit integers), A053742 (product of two integers ending with 5), A093136, A337856.

Programs

  • Mathematica
    LinearRecurrence[{10},{0,0,2,18},22]

Formula

O.g.f.: 2*(1 - x)*x^2/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 - 90*x + 50*x^2)/500.
a(n) = 10*a(n-1) for n > 3 , with a(1) = 0, a(2) = 2 and a(3) = 18.
a(n) = 18*10^(n-3) for n > 2.
a(n) = 18*A011557(n - 3) for n > 2.
a(n) = 2*A052268(n - 2) for n > 2.
Sum_{i=2..n} a(n) = A093136(n - 1) for n > 1.
a(n) = 2*floor((k + 27*10^(n-2))/30), with 2 < k < 28. [This formula was found in the form k = 7 by Christian Krause's LODA miner] - Stefano Spezia, Dec 06 2021

A348054 Positive integers that are the product of two integers ending with 7.

Original entry on oeis.org

49, 119, 189, 259, 289, 329, 399, 459, 469, 539, 609, 629, 679, 729, 749, 799, 819, 889, 959, 969, 999, 1029, 1099, 1139, 1169, 1239, 1269, 1309, 1369, 1379, 1449, 1479, 1519, 1539, 1589, 1649, 1659, 1729, 1739, 1799, 1809, 1819, 1869, 1939, 1989, 2009, 2079, 2109
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2021

Keywords

Examples

			49 = 7*7, 119 = 7*17, 189 = 7*27, 259 = 7*37, 289 = 17*17, 329 = 7*47, 399 = 7*57, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348055.

Programs

  • Mathematica
    a={}; For[n=0, n<=210, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2110)) # Michael S. Branicky, Sep 26 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.
Showing 1-10 of 15 results. Next