A025487
Least integer of each prime signature A124832; also products of primorial numbers A002110.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1
The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001 (first 291 terms from Will Nicholes)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- Kevin Broughan, Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers".
- YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367.
- Asaf Cohen Antonir and Asaf Shapira, An Elementary Proof of a Theorem of Hardy and Ramanujan (2022). arXiv:2207.09410 [math.NT]
- Michael De Vlieger, Relations of A025487 to A002110, A002182, and A002201.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, pp. 9-10.
- G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261.
- Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430.
- L. B. Richmond, Asymptotic results for partitions (I) and the distribution of certain integers, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388.
Cf.
A025488,
A051282,
A036041,
A051466,
A061394,
A124832,
A161360,
A166469,
A181815,
A181817,
A283980,
A306802,
A322584,
A322585 (characteristic function),
A329897,
A329898,
A329899,
A329900,
A329904,
A330683.
Equals range of values taken by
A046523.
Subsequences of this sequence include:
A000079,
A000142,
A000400,
A001013,
A001813,
A002110,
A002182,
A005179,
A006939,
A025527,
A056836,
A061742,
A064350,
A066120,
A087980,
A097212,
A097213,
A111059,
A119840,
A119845,
A126098,
A129912,
A140999,
A166338,
A166470,
A166472,
A166473,
A166475,
A167448,
A168262,
A168263,
A168264,
A179215,
A181555,
A181804,
A181806,
A181809,
A181818,
A181822,
A181823,
A181824,
A181825,
A181826,
A181827,
A182763,
A182862,
A182863,
A212170,
A220264,
A220423,
A250269,
A250270,
A260633,
A266047,
A284456,
A300357,
A304938,
A329894,
A330687; also
A037019 and
A330681 (when sorted), possibly also
A289132.
Rearrangements of this sequence include
A036035,
A059901,
A063008,
A077569,
A085988,
A086141,
A087443,
A108951,
A181821,
A181822,
A322827,
A329886,
A329887.
-
import Data.Set (singleton, fromList, deleteFindMin, union)
a025487 n = a025487_list !! (n-1)
a025487_list = 1 : h [b] (singleton b) bs where
(_ : b : bs) = a002110_list
h cs s xs'@(x:xs)
| m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
| otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Apr 06 2013
-
isA025487 := proc(n)
local pset,omega ;
pset := sort(convert(numtheory[factorset](n),list)) ;
omega := nops(pset) ;
if op(-1,pset) <> ithprime(omega) then
return false;
end if;
for i from 1 to omega-1 do
if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
return false;
end if;
end do:
true ;
end proc:
A025487 := proc(n)
option remember ;
local a;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA025487(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
-
PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
(* Second program: generate all terms m <= A002110(n): *)
f[n_] := {{1}}~Join~
Block[{lim = Product[Prime@ i, {i, n}],
ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
Map[Block[{w = #, k = 1},
Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
Do[
If[# < lim,
Sow[#]; k = 1,
If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
{i, Infinity}] ][[-1]]
] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
-
isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
-
factfollow(n)={local(fm, np, n2);
fm=factor(n); np=matsize(fm)[1];
if(np==0,return([2]));
n2=n*nextprime(fm[np,1]+1);
if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
-
is(n) = {if(n==1, return(1)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
-
upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
-
\\ For fast generation of large number of terms, use this program:
A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
v025487 = A025487list(101);
A025487(n) = v025487[n];
for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
-
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
N = 2310
nmax = 2^floor(log(N,2))
sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
# Giuseppe Coppoletta, Jan 26 2015
A000695
Moser-de Bruijn sequence: sums of distinct powers of 4.
Original entry on oeis.org
0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 1024, 1025, 1028, 1029, 1040, 1041, 1044, 1045, 1088, 1089, 1092, 1093, 1104, 1105, 1108, 1109, 1280, 1281, 1284, 1285
Offset: 0
G.f.: x + 4*x^2 + 5*x^3 + 16*x^4 + 17*x^5 + 20*x^6 + 21*x^7 + 64*x^8 + ...
If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = 4^4 + 4^3 + 4 + 1 = 325; k = b_0 + b_2*2 + b_4*2^2 = 5, l = b_1 + b_3*2 = 3, such that a(5)=17, a(3)=5 and 27 = 17 + 2*5. - _Vladimir Shevelev_, Nov 10 2008
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1023
- Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197.
- Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197.
- David Applegate, Marc LeBrun and N. J. A. Sloane, Carryless Arithmetic (I): The Mod 10 Version.
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), pp. 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- David Applegate, Marc LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq., Vol. 14 (2011), Article 11.9.8.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 59-60, pp. 750-751.
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
- N. G. de Bruijn, Some direct decompositions of the set of integers, Math. Comp., Vol. 18, No. 88 (1964), pp. 537-546.
- Karl Dilcher and Larry Ericksen, Hyperbinary expansions and Stern polynomials, Elec. J. Combin, Vol. 22, No. 2 (2015), #P2.24.
- Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
- S. J. Eigen, Y. Ito, and V. S. Prasad, Universally bad integers and the 2-adics, J. Number Theory, Vol. 107, No. 2 (2004), pp. 322-334.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 44.
- Bin Lan and James A. Sellers, Properties of a Restricted Binary Partition Function a la Andrews and Lewis, Electronic Journal of Combinatorial Number Theory, Volume 15 #A23.
- Lukasz Merta, Composition inverses of the variations of the Baum-Sweet sequence, arXiv:1803.00292 [math.NT], 2018. See m(n) p. 11.
- Leo Moser, An application of generating series, Math. Mag., Vol. 35, No. 1 (1962), pp. 37-38.
- Leo Moser, An application of generating series, Math. Mag., Vol. 35, No. 1 (1962), pp. 37-38. [Annotated scanned copy]
- John Tyler Rascoe, Illustration of terms.
- Vladimir Shevelev, Two analogs of Thue-Morse sequence, arXiv:1603.04434 [math.NT], 2016-2017.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions, 2004.
- Ralf Stephan, Table of generating functions.
- Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
- Stephen Nicholas Swatman, Ana-Lucia Varbanescu, Andy D. Pimentel, Andreas Salzburger, and Attila Krasznahorkay, Finding Morton-Like Layouts for Multi-Dimensional Arrays Using Evolutionary Algorithms, arXiv:2309.07002 [cs.NE], 2023.
- Eric Weisstein's World of Mathematics, Moser-de Bruijn Sequence.
- Eric Weisstein's World of Mathematics, Negabinary.
- Wikipedia, Morton code. (also known as Z-order curve. Cf. Marc LeBrun's comments about binary interleaving.)
- Index entries for 2-automatic sequences.
For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2)
A000012 and
A000027, (1,3)
A039966 and
A005836, (1,4)
A151666 and
A000695, (1,5)
A151667 and
A033042, (2,2)
A001316, (2,3)
A151668, (2,4)
A151669, (2,5)
A151670, (3,2)
A048883, (3,3)
A117940, (3,4)
A151665, (3,5)
A151671, (4,2)
A102376, (4,3)
A151672, (4,4)
A151673, (4,5)
A151674.
Cf.
A000225,
A000302,
A001511,
A007583,
A059884,
A059901,
A059904,
A059905,
A059906,
A007088,
A033042-
A033052,
A126684,
A145812.
-
uint32_t a_next(uint32_t a_n) { return (a_n + 0xaaaaaaab) & 0x55555555; } /* Falk Hüffner, Jan 24 2022 */
-
a000695 n = if n == 0 then 0 else 4 * a000695 n' + b
where (n',b) = divMod n 2
-- Reinhard Zumkeller, Feb 21 2014, Dec 03 2011
-
function a(n)
m, r, b = n, 0, 1
while m > 0
m, q = divrem(m, 2)
r += b * q
b *= 4
end
r end; [a(n) for n in 0:51] |> println # Peter Luschny, Jan 03 2021
-
m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (&+[4^k*x^(2^k)/(1+x^(2^k)): k in [0..20]])/(1-x) )); // G. C. Greubel, Dec 06 2018
-
a:= proc(n) local m, r, b; m, r, b:= n, 0, 1;
while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*4 od; r
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 16 2013
-
Table[FromDigits[Riffle[IntegerDigits[n, 2], 0], 2], {n, 0, 51}] (* Jacob A. Siehler, Jun 30 2010 *)
Table[FromDigits[IntegerDigits[n, 2], 4], {n, 0, 51}] (* IWABUCHI Yu(u)ki, Apr 06 2013 *)
Union@ Flatten@ NestList[ Join[ 4#, 4# + 1] &, {0}, 6] (* Robert G. Wilson v, Aug 30 2014 *)
Select[ Range[0, 1320], Total@ IntegerDigits[#, 2] == Total@ IntegerDigits[#, 4] &] (* Robert G. Wilson v, Oct 24 2014 *)
Union[FromDigits[#,4]&/@Flatten[Table[Tuples[{0,1},n],{n,6}],1]] (* Harvey P. Dale, Oct 03 2015 *)
a[ n_] := Which[n < 1, 0, EvenQ[n], a[n/2] 4, True, a[n - 1] + 1]; (* Michael Somos, Nov 30 2016 *)
-
a(n)=n=binary(n);sum(i=1,#n,n[i]*4^(#n-i)) \\ Charles R Greathouse IV, Mar 04 2013
-
{a(n) = if( n<1, 0, n%2, a(n-1) + 1, a(n/2) * 4)}; /* Michael Somos, Nov 30 2016 */
-
A000695(n)=fromdigits(binary(n),4) \\ M. F. Hasler, Oct 16 2018
-
def a(n):
n = bin(n)[2:]
x = len(n)
return sum(int(n[i]) * 4**(x - 1 - i) for i in range(x))
[a(n) for n in range(101)] # Indranil Ghosh, Jun 25 2017
-
def a():
x = 0
while True:
yield x
y = ~(x << 1)
x = (x - y) & y # Falk Hüffner, Dec 21 2021
-
from itertools import count, islice
def A000695_gen(): # generator of terms
yield (a:=0)
for n in count(1):
yield (a := a+((1<<((~n & n-1).bit_length()<<1)+1)+1)//3)
A000695_list = list(islice(A000695_gen(),30)) # Chai Wah Wu, Feb 22 2023
-
def A000695(n): return int(bin(n)[2:],4) # Chai Wah Wu, Aug 21 2023
-
s=(sum(4^k*x^(2^k)/(1+x^(2^k)) for k in range(10))/(1-x)).series(x, 60); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 06 2018
A181821
a(n) = smallest integer with factorization as Product p(i)^e(i) such that Product p(e(i)) = n.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 30, 36, 24, 32, 60, 64, 48, 72, 210, 128, 180, 256, 120, 144, 96, 512, 420, 216, 192, 900, 240, 1024, 360, 2048, 2310, 288, 384, 432, 1260, 4096, 768, 576, 840, 8192, 720, 16384, 480, 1800, 1536, 32768, 4620, 1296, 1080, 1152, 960, 65536
Offset: 1
The canonical factorization of 24 is 2^3*3^1. Therefore, p(e(i)) = prime(3)*prime(1)(i.e., A000040(3)*A000040(1)), which equals 5*2 = 10. Since 24 is the smallest integer for which p(e(i)) = 10, a(10) = 24.
Cf.
A000040,
A001221,
A001222,
A002110,
A056239,
A071625,
A112798,
A118914,
A122111,
A124859,
A182850,
A305936,
A361808.
-
a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(sort(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
seq(a(n), n=1..70); # Alois P. Heinz, Sep 05 2018
-
With[{s = Array[If[# == 1, 1, Times @@ Map[Prime@ Last@ # &, FactorInteger@ #]] &, 2^16]}, Array[First@ FirstPosition[s, #] &, LengthWhile[Differences@ Union@ s, # == 1 &]]] (* Michael De Vlieger, Dec 17 2018 *)
Table[Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,30}] (* Gus Wiseman, Jan 02 2019 *)
-
A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; \\ Antti Karttunen, Dec 10 2018
-
from math import prod
from sympy import prime, primepi, factorint
def A181821(n): return prod(prime(i)**e for i, e in enumerate(sorted(map(primepi,factorint(n,multiple=True)),reverse=True),1)) # Chai Wah Wu, Sep 15 2023
A036035
Least integer of each prime signature, in graded (reflected or not) colexicographic order of exponents.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 1296, 960, 1440, 2160
Offset: 0
1;
2;
4, 6;
8, 12, 30;
16, 24, 36, 60, 210;
32, 48, 72, 120, 180, 420, 2310;
64, 96, 144, 216, 240, 360, 900, 840, 1260, 4620, 30030;
128, 192, 288, 432, 480, 720, 1080, 1800, 1680, 2520, 6300, 9240, 13860, 60060, 510510;
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
- Peter Luschny, Rows n = 0..25, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- John Baez, What happens when a particle gets created?
- OEIS Wiki, Prime signature.
-
with(combinat):
A036035_row := proc(n) local e, w; w := proc(e) local i, p;
p := [seq(ithprime(nops(e)-i+1), i=1..nops(e))];
mul(p[i]^e[i], i=1..nops(e)) end:
seq(w(conjpart(e)), e = partition(n)) end:
seq(A036035_row(i), i=0..10); # Peter Luschny, Aug 01 2013
-
nmax = 52; primeSignature[n_] := Sort[ FactorInteger[n], #1[[2]] > #2[[2]] & ][[All, 2]]; ip[n_] := Reverse[ Sort[#]] & /@ Split[ Sort[ IntegerPartitions[n], Length[#1] < Length[#2] & ], Length[#1] == Length[#2] & ]; tip = Flatten[ Table[ip[n], {n, 0, 8}], 2]; a[n_] := (sig = tip[[n+1]]; k = 1; While[sig =!= primeSignature[k++]]; k-1); a[0] = 1; a[1] = 2; Table[an = a[n]; Print[an]; an, {n, 0, nmax}](* Jean-François Alcover, Nov 16 2011 *)
-
Row(n)={[prod(i=1, #p, prime(i)^p[#p+1-i]) | p<-partitions(n)]} \\ Andrew Howroyd, Oct 19 2020
A063008
Canonical partition sequence (see A080577) encoded by prime factorization. The partition [p1,p2,p3,...] with p1 >= p2 >= p3 >= ... is encoded as 2^p1 * 3^p2 * 5^p3 * ... .
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 480, 432, 720, 1680, 1080, 1800, 2520, 9240, 6300, 13860, 60060, 510510, 256, 384, 576, 960, 864, 1440, 3360
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 02 2001
Partition [2,1,1,1] for n=5 gives 2^2*3*5*7 = 420.
The sequence begins:
1;
2;
4, 6;
8, 12, 30;
16, 24, 36, 60, 210;
32, 48, 72, 120, 180, 420, 2310;
64, 96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030;
...
See
A080576 Maple (graded reflected lexicographic) ordering.
See
A080577 Mathematica (graded reverse lexicographic) ordering.
See
A036036 "Abramowitz and Stegun" (graded reflected colexicographic) ordering.
See
A036037 for graded colexicographic ordering.
-
with(combinat): A063008_row := proc(n) local e,w,r;
r := proc(L) local B,i; B := NULL;
for i from nops(L) by -1 to 1 do
B := B,L[i] od; [%] end:
w := proc(e) local i, m, p, P; m := infinity;
P := permute([seq(ithprime(i),i=1..nops(e))]);
for p in P do m := min(m,mul(p[i]^e[i],i=1..nops(e))) od end:
[seq(w(e), e = r(partition(n)))] end:
seq(print(A063008_row(i)),i=0..6); # Peter Luschny, Jan 23 2011
# second Maple program:
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
[i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
T:= n-> map(x-> mul(ithprime(i)^x[i], i=1..nops(x)), b(n$2))[]:
seq(T(n), n=0..9); # Alois P. Heinz, Sep 03 2019
-
row[n_] := Product[ Prime[k]^#[[k]], {k, 1, Length[#]}]& /@ IntegerPartitions[n]; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 10 2012 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]},Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
T[n_] := Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
T /@ Range[0, 9] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)
A181822
a(n) = member of A025487 whose prime signature is conjugate to the prime signature of A025487(n).
Original entry on oeis.org
1, 2, 6, 4, 30, 12, 210, 60, 8, 2310, 36, 420, 24, 30030, 180, 4620, 120, 510510, 1260, 72, 60060, 16, 900, 840, 9699690, 13860, 360, 1021020, 48, 6300, 9240, 223092870, 180180, 2520, 19399380, 240, 69300, 216, 120120, 6469693230, 1800, 3063060, 144, 44100, 27720, 446185740, 1680, 900900, 1080, 2042040, 200560490130, 12600, 58198140, 32, 720
Offset: 1
A025487(5) = 8 = 2^3 has a prime signature of (3). The partition that is conjugate to (3) is (1,1,1), and the member of A025487 with that prime signature is 30 = 2*3*5 (or 2^1*3^1*5^1). Therefore, a(5) = 30.
-
f[n_] := Block[{ww, dec}, dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]]; ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 + Length@ NestWhileList[NextPrime@ # &, 1, Times @@ {##} <= n &, All] ]; {{{0}}}~Join~Map[Block[{w = #, k = 1}, Sort@ Apply[Join, {{ConstantArray[1, Length@ w]}, If[Length@ # == 0, #, #[[1]]] }] &@ Reap[Do[If[# <= n, Sow[w]; k = 1, If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; Sort[Map[{Times @@ MapIndexed[Prime[First@ #2]^#1 &, #], Times @@ MapIndexed[Prime[First@ #2]^#1 &, Table[LengthWhile[#1, # >= j &], {j, #2}]] & @@ {#, Max[#]}} &, Join @@ f[2310]]][[All, -1]] (* Michael De Vlieger, Oct 16 2018 *)
-
partitionConj(v)=vector(v[1],i,sum(j=1,#v,v[j]>=i))
primeSignature(n)=vecsort(factor(n)[,2]~,,4)
f(n)=if(n==1, return(1)); my(e=partitionConj(primeSignature(n))~); factorback(concat(Mat(primes(#e)~),e))
A025487=[2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768];
concat(1, apply(f, A025487)) \\ Charles R Greathouse IV, Jun 02 2016
A322827
A permutation of A025487: Sequence of least representatives of distinct prime signatures obtained from the run lengths present in the binary expansion of n.
Original entry on oeis.org
1, 2, 6, 4, 36, 30, 12, 8, 216, 180, 210, 900, 72, 60, 24, 16, 1296, 1080, 1260, 5400, 44100, 2310, 6300, 27000, 432, 360, 420, 1800, 144, 120, 48, 32, 7776, 6480, 7560, 32400, 264600, 13860, 37800, 162000, 9261000, 485100, 30030, 5336100, 1323000, 69300, 189000, 810000, 2592, 2160, 2520, 10800, 88200, 4620, 12600
Offset: 0
The sequence can be represented as a binary tree:
1
|
...................2...................
6 4
36......../ \........30 12......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
216 180 210 900 72 60 24 16
etc.
Both children are multiples of their common parent, see A323503, A323504 and A323507.
The value of a(n) is computed from the binary expansion of n as follows: Starting from the least significant end of the binary expansion of n (A007088), we record the successive run lengths, subtract one from all lengths except the first one, and use the reversed partial sums of these adjusted values as the exponents of successive primes.
For 11, which is "1011" in base 2, we have run lengths [2, 1, 1] when scanned from the right, and when one is subtracted from all except the first, we have [2, 0, 0], partial sums of which is [2, 2, 2], which stays same when reversed, thus a(11) = 2^2 * 3^2 * 5^2 = 900.
For 13, which is "1101" in base 2, we have run lengths [1, 1, 2] when scanned from the right, and when one is subtracted from all except the first, we have [1, 0, 1], partial sums of which is [1, 1, 2], reversed [2, 1, 1], thus a(13) = 2^2 * 3^1 * 5^1 = 60.
Sequence A227183 is based on the same algorithm.
Cf.
A000079 (right edge),
A000400 (left edge, apart from 2),
A005811,
A046523,
A101296,
A227183,
A322585,
A322825,
A323503,
A323504,
A323507.
-
{1}~Join~Array[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ Accumulate@ MapIndexed[Length[#1] - Boole[First@ #2 > 1] &, Split@ Reverse@ IntegerDigits[#, 2]]] &, 54] (* Michael De Vlieger, Feb 05 2020 *)
-
A322827(n) = if(!n,1,my(bits = Vecrev(binary(n)), rl=1, o = List([])); for(i=2,#bits,if(bits[i]==bits[i-1], rl++, listput(o,rl))); listput(o,rl); my(es=Vecrev(Vec(o)), m=1); for(i=1,#es,m *= prime(i)^es[i]); (m));
A087443
Least integer of each prime signature ordered first by sum of exponents and then by least integer value.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1680, 1800, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 960, 1296, 1440
Offset: 0
1;
2;
4,6;
8,12,30;
16,24,36,60,210;
32,48,72,120,180,420,2310;
64,96,144,216,240,360,840,900,1260,4620,30030;
128,192,288,432,480,720,1080,1680,1800,2520,6300,9240,13860,60060,510510;
-
b:= proc(n, i, l)
`if`(n=0, [mul(ithprime(t)^l[t], t=1..nops(l))],
`if`(i=1, b(0, 0, [l[], 1$n]), [b(n, i-1, l)[],
`if`(i>n, [], b(n-i, i, [l[], i]))[]]))
end:
T:= n-> sort(b(n$2, []))[]:
seq(T(n), n=0..10); # Alois P. Heinz, Jun 13 2012
-
b[n_, i_, l_] := b[n, i, l] = If[n == 0, Join[{Product[Prime[t]^l[[t]], {t, 1, Length[l]}]}], If[i == 1, b[0, 0, Join[l, Table[1, {n}]]], Join[b[n, i - 1, l], If[i > n, {}, b[n - i, i, Append[l, i]]]]]];
T[n_] := Sort[b[n, n, {}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *)
A212638
a(n) = n-th powerful number that is the first integer of its prime signature, divided by its largest squarefree divisor: A003557(A181800(n)).
Original entry on oeis.org
1, 2, 4, 8, 16, 6, 32, 12, 64, 24, 36, 128, 48, 72, 256, 96, 144, 30, 512, 192, 216, 288, 60, 1024, 384, 432, 576, 120, 2048, 768, 864, 180, 1152, 240, 1296, 4096, 1536, 1728, 360, 2304, 480, 2592, 8192, 3072, 3456, 720, 900, 4608, 960, 5184, 1080, 16384
Offset: 1
6 (whose prime factorization is 2*3) is the largest squarefree divisor of 144 (whose prime factorization is 2^4*3^2). Since 144 = A181800(10), and 144/6 = 24, a(10) = 24.
A059902
Partitions encoded by interleaving bits in parts. The partition [P1+P2+P3+...] with P1>=P2>=P3>=... is encoded in binary by recursively interleaving the bits of P1 with the (recursively interleaved bits of P2 with the (recursively...)).
Original entry on oeis.org
0, 1, 4, 3, 5, 6, 11, 16, 7, 36, 14, 139, 17, 18, 37, 15, 44, 142, 32907, 20, 19, 48, 39, 26, 45, 2084, 143, 172, 32910, 2147516555, 21, 22, 49, 50, 27, 56, 47, 2085, 154, 173, 2212, 32911, 32940, 2147516558, 9223372039002292363, 64, 23, 52, 51, 528, 30, 57
Offset: 0
Partition for n=17 is [2+2+1], so a(17) is given by
.....0 0 0 0 0 1 0- -> 2
..... . 0 . 1 . 0 - -> 2
..... 0 ..... 1 ... -> 1
------------------
.....0000000101100 = 44.
Showing 1-10 of 10 results.
Comments