cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A061037 Numerator of 1/4 - 1/n^2.

Original entry on oeis.org

0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675
Offset: 2

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).
a(-2) = 0, a(-1) = a(1) = -3. - Paul Curtz, Feb 19 2011
Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

Crossrefs

Cf. A061038 (denominators), A061035-A061050, A126252, A028347.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011
  • Magma
    [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011
    
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]
    f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)
    a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)
    Numerator[1/4-1/Range[2,60]^2] (* Harvey P. Dale, Aug 18 2011 *)
  • PARI
    a(n) = { numerator(1/4 - 1/n^2) } \\ Harry J. Smith, Jul 17 2009
    

Formula

G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.
a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005
a(n+2) = A060819(n) * A060819(n+4).
a(n) = (n^2-4)*(3*i^n+3*(-i)^n-27*(-1)^n+37)/64, where i is the imaginary unit. - Bruno Berselli, Feb 10 2011
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 28 2011
a(n+2) = n*(n+4)/(period 4: 16, 1, 4, 1 = A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011]
a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014
Sum_{n>=3} 1/a(n) = 11/6. - Amiram Eldar, Aug 12 2022

A061039 Numerator of 1/9 - 1/n^2.

Original entry on oeis.org

0, 7, 16, 1, 40, 55, 8, 91, 112, 5, 160, 187, 8, 247, 280, 35, 352, 391, 16, 475, 520, 7, 616, 667, 80, 775, 832, 11, 952, 1015, 40, 1147, 1216, 143, 1360, 1435, 56, 1591, 1672, 65, 1840, 1927, 224, 2107, 2200, 85, 2392, 2491, 32, 2695, 2800, 323, 3016, 3127
Offset: 3

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

The denominators are given in A061040.
From Paschen spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

Crossrefs

Programs

Formula

a(n) <= n^2 - 9; if n is not divisible by 3 then a(n) = n^2 - 9. - Stefan Steinerberger, Apr 16 2006
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n > 83. - Colin Barker, Oct 09 2016
a(n) = (n^2 - 9)/9^2 if n == 3 or 24 (mod 27), a(n) = (n^2 - 9)/(3*9) if n == 6 or 24 or 15 or 21 (mod 27), a(n) = (n^2 - 9)/9 if n == 0 (mod 9) and n^2 - 9 otherwise. From the period length 27 sequence gcd(n^2 - 9, 9*n^2). - Wolfdieter Lang, Mar 15 2018

A061041 Numerator of 1/16 - 1/n^2.

Original entry on oeis.org

0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, 209, 15, 273, 77, 345, 3, 425, 117, 513, 35, 609, 165, 713, 3, 825, 221, 945, 63, 1073, 285, 1209, 5, 1353, 357, 1505, 99, 1665, 437, 1833, 15, 2009, 525, 2193, 143, 2385, 621, 2585, 21, 2793, 725
Offset: 4

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

From Brackett spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

Crossrefs

Programs

Formula

a(4*n+6) = A078371(n). - Paul Curtz, Oct 05 2008
a(n) = 3*a(n-8) - 6*a(n-16) + 10*a(n-24) - 12*a(n-32) + 12*a(n-40) - 10*a(n-48) + 6*a(n-56) - 3*a(n-64) + a(n-72). - Charles R Greathouse IV, Aug 17 2011
a(n) = (n^2-16) / gcd(16*n^2, n^2-16). - Franklin T. Adams-Watters, Sep 25 2011, corrected by Colin Barker, Jan 13 2014.

A061035 Triangle T(m,n) = numerator of 1/m^2 - 1/n^2, n >= 1, m=n,n-1,n-2,...,1.

Original entry on oeis.org

0, 0, 3, 0, 5, 8, 0, 7, 3, 15, 0, 9, 16, 21, 24, 0, 11, 5, 1, 2, 35, 0, 13, 24, 33, 40, 45, 48, 0, 15, 7, 39, 3, 55, 15, 63, 0, 17, 32, 5, 56, 65, 8, 77, 80, 0, 19, 9, 51, 4, 3, 21, 91, 6, 99, 0, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 0, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

Examples

			Triangle 1/m^2-1/n^2, m >= 1, 1<=n<=m, (i.e. with rows reversed) begins
0
3/4, 0
8/9, 5/36, 0
15/16, 3/16, 7/144, 0
24/25, 21/100, 16/225, 9/400, 0
35/36, 2/9, 1/12, 5/144, 11/900, 0
		

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 77.

Crossrefs

Cf. A061036. Rows give A061037-A061050.
Cf. A126252.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061035 n k = a061035_tabl !! (n-1) !! (k-1)
    a061035_row = map numerator . balmer where
       balmer n = map (subtract (1 % n ^ 2) . (1 %) . (^ 2)) [n, n-1 .. 1]
    a061035_tabl = map a061035_row [1..]
    -- Reinhard Zumkeller, Apr 12 2012
  • Mathematica
    t[m_, n_] := Numerator[1/m^2 - 1/n^2]; Table[t[m, n], {n, 1, 12}, {m, n, 1, -1}] // Flatten(* Jean-François Alcover, Oct 17 2012 *)

Extensions

More terms from Naohiro Nomoto, Jul 15 2001

A061047 Numerator of 1/49 - 1/n^2.

Original entry on oeis.org

0, 15, 32, 51, 72, 95, 120, 3, 176, 207, 240, 275, 312, 351, 8, 435, 480, 527, 576, 627, 680, 15, 792, 851, 912, 975, 1040, 1107, 24, 1247, 1320, 1395, 1472, 1551, 1632, 5, 1800, 1887, 1976, 2067, 2160, 2255, 48, 2451, 2552, 2655, 2760, 2867
Offset: 7

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

a(n) = (n+7)^2-49 = n*(n+14) = A098848(n), except a(7p). The corresponding series of atomic transitions is named Hansen-Strong. It comes after Lyman (1906-1914), Balmer (1885), Paschen (1908), Brackett (1922), Pfund (1924) and Humphreys series (1952 not 1953, justified later). - Paul Curtz, Oct 07 2008

Crossrefs

Programs

  • Magma
    [Numerator(1/49-1/n^2): n in [7..60]]; // Vincenzo Librandi, Sep 07 2016
  • Mathematica
    Table[Numerator[1/49-1/n^2],{n,7,70}] (* Harvey P. Dale, Apr 26 2016 *)
  • PARI
    a(n) = numerator(1/49 - 1/n^2); \\ Michel Marcus, Aug 15 2013
    

Extensions

Edited by M. F. Hasler, Nov 17 2014

A061043 Numerator of 1/25 - 1/n^2.

Original entry on oeis.org

0, 11, 24, 39, 56, 3, 96, 119, 144, 171, 8, 231, 264, 299, 336, 3, 416, 459, 504, 551, 24, 651, 704, 759, 816, 7, 936, 999, 1064, 1131, 48, 1271, 1344, 1419, 1496, 63, 1656, 1739, 1824, 1911, 16, 2091, 2184, 2279, 2376, 99, 2576, 2679, 2784
Offset: 5

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

From Pfund spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).
a(n) = (n+5)^2-25 = n*(n+10) except a(5p) for p positive. Second (with m=5) of this kind after A061039, Paschen (m=3) and before A061047, Hansen-Strong (m=7). For the fourth, what is the value of m in 1/m^2-1/n^2? m=9? - Paul Curtz, Nov 01 2008

References

  • J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061043 = numerator . (1 % 25 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
    
  • Mathematica
    Numerator[1/25-1/Range[5,60]^2] (* Harvey P. Dale, Jan 28 2013 *)
  • PARI
    a(n)=numerator(1/25 - 1/n^2) \\ Charles R Greathouse IV, Feb 06 2017
    
  • Python
    from fractions import Fraction
    def a(n): return (Fraction(1, 25) - Fraction(1, n*n)).numerator
    print([a(n) for n in range(5, 54)]) # Michael S. Branicky, Nov 19 2021

A129194 a(n) = (n/2)^2*(3 - (-1)^n).

Original entry on oeis.org

0, 1, 2, 9, 8, 25, 18, 49, 32, 81, 50, 121, 72, 169, 98, 225, 128, 289, 162, 361, 200, 441, 242, 529, 288, 625, 338, 729, 392, 841, 450, 961, 512, 1089, 578, 1225, 648, 1369, 722, 1521, 800, 1681, 882, 1849, 968, 2025, 1058, 2209, 1152, 2401, 1250, 2601, 1352
Offset: 0

Views

Author

Paul Barry, Apr 02 2007

Keywords

Comments

The numerator of the integral is 2,1,2,1,2,1,...; the moments of the integral are 2/(n+1)^2. See 2nd formula.
The sequence alternates between twice a square and an odd square, A001105(n) and A016754(n).
Partial sums of the positive elements give the absolute values of A122576. - Omar E. Pol, Aug 22 2011
Partial sums of the positive elements give A212760. - Omar E. Pol, Dec 28 2013
Conjecture: denominator of 4/n - 2/n^2. - Wesley Ivan Hurt, Jul 11 2016
Multiplicative because both A000290 and A040001 are. - Andrew Howroyd, Jul 25 2018

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 1, Sect. 7, Problem 73.

Crossrefs

Programs

Formula

G.f.: x*(1 + 2*x + 6*x^2 + 2*x^3 + x^4)/(1-x^2)^3.
a(n+1) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*n*t)(-((Pi-t)/i)^2)), i=sqrt(-1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n > 5. - Paul Curtz, Mar 07 2011
a(n) is the numerator of the coefficient of x^4 in the Maclaurin expansion of exp(-n*x^2). - Francesco Daddi, Aug 04 2011
O.g.f. as a Lambert series: x*Sum_{n >= 1} J_2(n)*x^n/(1 + x^n), where J_2(n) denotes the Jordan totient function A007434(n). See Pólya and Szegő. - Peter Bala, Dec 28 2013
From Ilya Gutkovskiy, Jul 11 2016: (Start)
E.g.f.: x*((2*x + 1)*sinh(x) + (x + 2)*cosh(x))/2.
Sum_{n>=1} 1/a(n) = 5*Pi^2/24. [corrected by Amiram Eldar, Sep 11 2022] (End)
a(n) = A000290(n) / A040001(n). - Andrew Howroyd, Jul 25 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Sep 11 2022
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} (-1)^(1 + gcd(i,j,n)) = Sum_{d | n} (-1)^(d+1) * J_2(n/d), that is, the Dirichlet convolution of the pair of multiplicative functions f(n) = (-1)^(n+1) and the Jordan totient function J_2(n) = A007434(n). Hence this sequence is multiplicative. Cf. A193356 and A309337.
Dirichlet g.f.: (1 - 2/2^s)*zeta(s-2). (End)
a(n) = Sum_{1 <= i, j <= n} (-1)^(n + gcd(i, n)*gcd(j, n)) = Sum_{d|n, e|n} (-1)^(n+e*d) * phi(n/d)*phi(n/e). - Peter Bala, Jan 22 2024

Extensions

More terms from Michel Marcus, Dec 28 2013

A061049 Numerator of 1/64 - 1/n^2.

Original entry on oeis.org

0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, 297, 21, 377, 105, 465, 1, 561, 153, 665, 45, 777, 209, 897, 15, 1025, 273, 1161, 77, 1305, 345, 1457, 3, 1617, 425, 1785, 117, 1961, 513, 2145, 35, 2337, 609, 2537, 165, 2745, 713, 2961, 3, 3185, 825
Offset: 8

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

The 495 initial terms are the same as A000265(n * (n+16)), n > 0. - Simon Strandgaard, Oct 30 2021

Crossrefs

Cf. also A191871.

Programs

  • Mathematica
    Table[ Numerator[1/64 - 1/n^2], {n, 8, 58}] (* Jean-François Alcover, May 31 2013 *)
  • PARI
    for(n=8,50, print1(numerator(1/64 - 1/n^2), ", ")) \\ G. C. Greubel, Jul 07 2017

A061045 Numerator of 1/36 - 1/n^2.

Original entry on oeis.org

-35, -2, -1, -5, -11, 0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, 253, 2, 325, 91, 5, 28, 493, 5, 589, 40, 77, 187, 805, 2, 925, 247, 13, 70, 1189, 35, 1333, 88, 55, 391, 1645, 4, 1813, 475, 221, 130, 2173, 7, 2365, 154, 95, 667, 2773, 20, 2989, 775, 119, 208, 3445, 11, 3685, 238, 437, 1015, 4189, 10
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

Sixth case of Rydberg's formula. From Humphrey's spectrum of hydrogen. See A045944, A000567, A061043, A061046, A061047. - Paul Curtz, Dec 08 2008

Examples

			The fractions are -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, 7/576, 5/324, 4/225, 85/4356, 1/48, 133/6084, 10/441, 7/300, 55/2304, 253/10404, 2/81, 325/12996, ...
		

Crossrefs

A061046 gives denominators.

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a061045 = numerator . (1 % 36 -) . recip . (^ 2) . fromIntegral
    -- Reinhard Zumkeller, Jan 06 2014
    
  • Magma
    [Numerator(1/6^2 -1/n^2): n in [1..80]]; // G. C. Greubel, Feb 24 2023
    
  • Mathematica
    Numerator[(1/36-1/Range[100]^2)] (* Harvey P. Dale, Mar 17 2013 *)
  • SageMath
    def A061045(n): return ((n^2-36)/(6*n)^2).numerator()
    [A061045(n) for n in range(1,81)] # G. C. Greubel, Feb 24 2023

A261327 a(n) = (n^2 + 4) / 4^((n + 1) mod 2).

Original entry on oeis.org

1, 5, 2, 13, 5, 29, 10, 53, 17, 85, 26, 125, 37, 173, 50, 229, 65, 293, 82, 365, 101, 445, 122, 533, 145, 629, 170, 733, 197, 845, 226, 965, 257, 1093, 290, 1229, 325, 1373, 362, 1525, 401, 1685, 442, 1853, 485, 2029, 530, 2213, 577, 2405, 626, 2605, 677
Offset: 0

Views

Author

Paul Curtz, Aug 15 2015

Keywords

Comments

Using (n+sqrt(4+n^2))/2, after the integer 1 for n=0, the reduced metallic means are b(1) = (1+sqrt(5))/2, b(2) = 1+sqrt(2), b(3) = (3+sqrt(13))/2, b(4) = 2+sqrt(5), b(5) = (5+sqrt(29))/2, b(6) = 3+sqrt(10), b(7) = (7+sqrt(53))/2, b(8) = 4+sqrt(17), b(9) = (9+sqrt(85))/2, b(10) = 5+sqrt(26), b(11) = (11+sqrt(125))/2 = (11+5*sqrt(5))/2, ... . The last value yields the radicals in a(n) or A013946.
b(2) = 2.41, b(3) = 3.30, b(4) = 4.24, b(5) = 5.19 are "good" approximations of fractal dimensions corresponding to dimensions 3, 4, 5, 6: 2.48, 3.38, 4.33 and 5.45 based on models. See "Arbres DLA dans les espaces de dimension supérieure: la théorie des peaux entropiques" in Queiros-Condé et al. link. DLA: beginning of the title of the Witten et al. link.
Consider the symmetric array of the half extended Rydberg-Ritz spectrum of the hydrogen atom:
0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, 1/0, ...
-1/0, 0, 3/4, 8/9, 15/16, 24/25, 35/36, 48/49, ...
-1/0, -3/4, 0, 5/36, 3/16, 21/100, 2/9, 45/196, ...
-1/0, -8/9, -5/36, 0, 7/144, 16/225, 1/12, 40/441, ...
-1/0, -15/16, -3/16, -7/144, 0, 9/400, 5/144, 33/784, ...
-1/0, -24/25, -21/100, -16/225, -9/400, 0, 11/900, 24/1225, ...
-1/0, -35/36, -2/9, -1/12, -5/144, -11/900, 0, 13/1764, ...
-1/0, -48/49, -45/196, -40/441, -33/784, -24/1225, -13/1764, 0, ... .
The numerators are almost A165795(n).
Successive rows: A000007(n)/A057427(n), A005563(n-1)/A000290(n), A061037(n)/A061038(n), A061039(n)/A061040(n), A061041(n)/A061042(n), A061043(n)/A061044(n), A061045(n)/A061046(n), A061047(n)/A061048(n), A061049(n)/A061050(n).
A144433(n) or A195161(n+1) are the numerators of the second upper diagonal (denominators: A171522(n)).
c(n+1) = a(n) + a(n+1) = 6, 7, 15, 18, 34, 39, 63, 70, 102, 111, ... .
c(n+3) - c(n+1) = 9, 11, 19, 21, 29, 31, ... = A090771(n+2).
The final digit of a(n) is neither 4 nor 8. - Paul Curtz, Jan 30 2019

Crossrefs

Programs

  • Magma
    [Numerator(1+n^2/4): n in [0..60]]; // Vincenzo Librandi, Aug 15 2015
    
  • Maple
    A261327:=n->numer((4 + n^2)/4); seq(A261327(n), n=0..60); # Wesley Ivan Hurt, Aug 15 2015
  • Mathematica
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 5, 2, 13, 5, 29}, 60] (* Vincenzo Librandi, Aug 15 2015 *)
    a[n_] := (n^2 + 4) / 4^Mod[n + 1, 2]; Table[a[n], {n, 0, 52}] (* Peter Luschny, Mar 18 2022 *)
  • PARI
    vector(60, n, n--; numerator(1+n^2/4)) \\ Michel Marcus, Aug 15 2015
    
  • PARI
    Vec((1+5*x-x^2-2*x^3+2*x^4+5*x^5)/(1-x^2)^3 + O(x^60)) \\ Colin Barker, Aug 15 2015
    
  • PARI
    a(n)=if(n%2,n^2+4,(n/2)^2+1) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    [(n*n+4)//4**((n+1)%2) for n in range(60)] # Gennady Eremin, Mar 18 2022
  • Sage
    [numerator(1+n^2/4) for n in (0..60)] # G. C. Greubel, Feb 09 2019
    

Formula

a(n) = numerator(1 + n^2/4). (Previous name.) See A010685 (denominators).
a(2*k) = 1 + k^2.
a(2*k+1) = 5 + 4*k*(k+1).
a(2*k+1) = 4*a(2*k) + 4*k + 1.
a(4*k+2) = A069894(k). - Paul Curtz, Jan 30 2019
a(-n) = a(n).
a(n+2) = a(n) + A144433(n) (or A195161(n+1)).
a(n) = A168077(n) + period 2: repeat 1, 4.
a(n) = A171621(n) + period 2: repeat 2, 8.
From Colin Barker, Aug 15 2015: (Start)
a(n) = (5 - 3*(-1)^n)*(4 + n^2)/8.
a(n) = n^2/4 + 1 for n even;
a(n) = n^2 + 4 for n odd.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.
G.f.: (1 + 5*x - x^2 - 2*x^3 + 2*x^4 + 5*x^5)/ (1 - x^2)^3. (End)
E.g.f.: (5/8)*(x^2 + x + 4)*exp(x) - (3/8)*(x^2 - x + 4)*exp(-x). - Robert Israel, Aug 18 2015
Sum_{n>=0} 1/a(n) = (4*coth(Pi)+tanh(Pi))*Pi/8 + 1/2. - Amiram Eldar, Mar 22 2022

Extensions

New name by Peter Luschny, Mar 18 2022
Showing 1-10 of 16 results. Next