cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A000695 Moser-de Bruijn sequence: sums of distinct powers of 4.

Original entry on oeis.org

0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 1024, 1025, 1028, 1029, 1040, 1041, 1044, 1045, 1088, 1089, 1092, 1093, 1104, 1105, 1108, 1109, 1280, 1281, 1284, 1285
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, it has offset 0 for both historical and mathematical reasons.
Numbers whose set of base-4 digits is a subset of {0,1}. - Ray Chandler, Aug 03 2004, corrected by M. F. Hasler, Oct 16 2018
Numbers k such that the sum of the base-2 digits of k = sum of the base-4 digits of k. - Clark Kimberling
Numbers having the same representation in both binary and negabinary (A039724). - Eric W. Weisstein
This sequence has many other interesting and useful properties. Every term k corresponds to a unique pair i,j with k = a(i) + 2*a(j) (i=A059905(n), j=A059906(n)) -- see A126684. Every list of numbers L = [L1,L2,L3,...] can be encoded uniquely by "recursive binary interleaving", where f(L) = a(L1) + 2*a(f([L2,L3,...])) with f([])=0. - Marc LeBrun, Feb 07 2001
This may be described concisely using the "rebase" notation b[n]q, which means "replace b with q in the expansion of n", thus "rebasing" n from base b into base q. The present sequence is 2[n]4. Many interesting operations (e.g., 10[n](1/10) = digit reverse, shifted) are nicely expressible this way. Note that q[n]b is (roughly) inverse to b[n]q. It's also natural to generalize the idea of "basis" so as to cover the likes of F[n]2, the so-called "fibbinary" numbers (A003714) and provide standard ready-made images of entities obeying other arithmetics, say like GF2[n]2 (e.g., primes = A014580, squares = the present sequence, etc.). - Marc LeBrun, Mar 24 2005
a(n) is also equal to the product n X n formed using carryless binary multiplication (A059729, A063010). - Henry Bottomley, Jul 03 2001
Numbers k such that A004117(k) is odd. - Pontus von Brömssen, Nov 25 2008
Fixed point of the morphism: 0 -> 01; 1 -> 45; 2 -> 89; ...; n -> (4n)(4n+1), starting from a(0)=0. - Philippe Deléham, Oct 22 2011
If n is even and present, so is n+1. - Robert G. Wilson v, Oct 24 2014
Also: interleave binary digits of n with 0's. (Equivalent to the "rebase" interpretation above.) - M. F. Hasler, Oct 16 2018
Named after the Austrian-Canadian mathematician Leo Moser (1921-1970) and the Dutch mathematician Nicolaas Govert de Bruijn (1918-2012). - Amiram Eldar, Jun 19 2021
Conjecture: The sums of distinct powers of k > 2 can be constructed as the following (k-1)-ary rooted tree. For each n the tree grows and a(n) is then the total number of nodes. For n = 1, the root of the tree is added. For n > 1, if n is odd one leaf of depth n-2 grows one child. If n is even all leaves of depth >= (n - 1 - A000225(A001511(n/2))) grow the maximum number of children. An illustration is provided in the links. - John Tyler Rascoe, Oct 09 2022

Examples

			G.f.: x + 4*x^2 + 5*x^3 + 16*x^4 + 17*x^5 + 20*x^6 + 21*x^7 + 64*x^8 + ...
If n=27, then b_0=1, b_1=1, b_2=0, b_3=1, b_4=1. Therefore a(27) = 4^4 + 4^3 + 4 + 1 = 325; k = b_0 + b_2*2 + b_4*2^2 = 5, l = b_1 + b_3*2 = 3, such that a(5)=17, a(3)=5 and 27 = 17 + 2*5. - _Vladimir Shevelev_, Nov 10 2008
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Main diagonal of A048720, second column of A048723.
A062880(n) = 2*a(n); A001196(n) = 3*a(n).
Row 4 of array A104257.

Programs

  • C
    uint32_t a_next(uint32_t a_n) { return (a_n + 0xaaaaaaab) & 0x55555555; } /* Falk Hüffner, Jan 24 2022 */
  • Haskell
    a000695 n = if n == 0 then 0 else 4 * a000695 n' + b
                where (n',b) = divMod n 2
    -- Reinhard Zumkeller, Feb 21 2014, Dec 03 2011
    
  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 4
        end
    r end; [a(n) for n in 0:51] |> println # Peter Luschny, Jan 03 2021
    
  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( (&+[4^k*x^(2^k)/(1+x^(2^k)): k in [0..20]])/(1-x) )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    a:= proc(n) local m, r, b; m, r, b:= n, 0, 1;
          while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*4 od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 16 2013
  • Mathematica
    Table[FromDigits[Riffle[IntegerDigits[n, 2], 0], 2], {n, 0, 51}] (* Jacob A. Siehler, Jun 30 2010 *)
    Table[FromDigits[IntegerDigits[n, 2], 4], {n, 0, 51}] (* IWABUCHI Yu(u)ki, Apr 06 2013 *)
    Union@ Flatten@ NestList[ Join[ 4#, 4# + 1] &, {0}, 6] (* Robert G. Wilson v, Aug 30 2014 *)
    Select[ Range[0, 1320], Total@ IntegerDigits[#, 2] == Total@ IntegerDigits[#, 4] &] (* Robert G. Wilson v, Oct 24 2014 *)
    Union[FromDigits[#,4]&/@Flatten[Table[Tuples[{0,1},n],{n,6}],1]] (* Harvey P. Dale, Oct 03 2015 *)
    a[ n_] := Which[n < 1, 0, EvenQ[n], a[n/2] 4, True, a[n - 1] + 1]; (* Michael Somos, Nov 30 2016 *)
  • PARI
    a(n)=n=binary(n);sum(i=1,#n,n[i]*4^(#n-i)) \\ Charles R Greathouse IV, Mar 04 2013
    
  • PARI
    {a(n) = if( n<1, 0, n%2, a(n-1) + 1, a(n/2) * 4)}; /* Michael Somos, Nov 30 2016 */
    
  • PARI
    A000695(n)=fromdigits(binary(n),4) \\ M. F. Hasler, Oct 16 2018
    
  • Python
    def a(n):
        n = bin(n)[2:]
        x = len(n)
        return sum(int(n[i]) * 4**(x - 1 - i) for i in range(x))
    [a(n) for n in range(101)] # Indranil Ghosh, Jun 25 2017
    
  • Python
    def a():
        x = 0
        while True:
            yield x
            y = ~(x << 1)
            x = (x - y) & y # Falk Hüffner, Dec 21 2021
    
  • Python
    from itertools import count, islice
    def A000695_gen(): # generator of terms
        yield (a:=0)
        for n in count(1):
            yield (a := a+((1<<((~n & n-1).bit_length()<<1)+1)+1)//3)
    A000695_list = list(islice(A000695_gen(),30)) # Chai Wah Wu, Feb 22 2023
    
  • Python
    def A000695(n): return int(bin(n)[2:],4) # Chai Wah Wu, Aug 21 2023
    
  • Sage
    s=(sum(4^k*x^(2^k)/(1+x^(2^k)) for k in range(10))/(1-x)).series(x, 60); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 06 2018
    

Formula

G.f.: 1/(1-x) * Sum_{k>=0} 4^k*x^2^k/(1+x^2^k). - Ralf Stephan, Apr 27 2003
Numbers k such that the coefficient of x^k is > 0 in Product_{n>=0} 1+x^(4^n). - Benoit Cloitre, Jul 29 2003
For n >= 1, a(n) = a(n-1) + (4^t+2)/6, where t is such that 2^t||2n,or t=A007814(2n). a(n) = (A145812(n+1) - 1)/2. - Vladimir Shevelev, Nov 07 2008
To get a(n), write n as Sum b_j*2^j, then a(n) = Sum b_j*2^(2j). The Diophantine equation a(k)+2a(l)=n has the unique solution: k=Sum b_(2j)*2^j, l=Sum b_(2j+1)*2^j. - Vladimir Shevelev, Nov 10 2008
If a(k)*a(l)=a(m), then k*l=m (the inverse, generally speaking, is not true). - Vladimir Shevelev, Nov 21 2008
Let F(x) be the generating function, then F(x)*F(x^2) = 1/(1-x). - Joerg Arndt, May 12 2010
a(n+1) = (a(n) + 1/3) & -1/3, where & is bitwise AND, -1/3 is represented as the infinite dyadic ...010101 (just as -1 is ...111111 in two's complement) and +1/3 is ...101011. - Marc LeBrun, Sep 30 2010
a(n) = Sum_{k>=0} {A030308(n,k)*b(k)} with b(k) = 4^k = A000302(k). - Philippe Deléham, Oct 18 2011
A182560(6*a(n)) = 0. - Reinhard Zumkeller, May 05 2012
G.f.: x/(1-x^2) + 4*x^2/((1-x)*(W(0) - 4*x - 4*x^2)), where W(k) = 1 + 4*x^(2^k) + 5*x^(2^(k+1)) - 4*x^(2^(k+1))*(1 + x^(2^(k+1)))^2/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 04 2014
liminf a(n)/n^2 = 1/3 and limsup a(n)/n^2 = 1. - Gheorghe Coserea, Sep 15 2015
Let f(x) = (Sum_{k=-oo..oo} floor(x*2^k)/4^k)/2. Then f(x) is a real-valued extension of a(n), which a(n) approximates in the sense that f(x) = lim_{k->oo} a(floor(x*2^k))/a(2^k). - Velin Yanev, Nov 28 2016
G.f. A(x) satisfies x/(1 - x^2) = A(x) - 4 * (1+x) * A(x^2). - Michael Somos, Nov 30 2016
a(2^k) = 4^k = A000302(k). a(n + 2^k) = a(n) + a(2^k) for 2^k > n >= 1. - David A. Corneth, Oct 16 2018
Sum_{n>=1} 1/a(n) = 1.886176434476107244547259512076353532930680508099044818673061351780360211128... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

A163357 Hilbert curve in N X N grid, starting rightwards from the top-left corner, listed by descending antidiagonals.

Original entry on oeis.org

0, 1, 3, 14, 2, 4, 15, 13, 7, 5, 16, 12, 8, 6, 58, 19, 17, 11, 9, 57, 59, 20, 18, 30, 10, 54, 56, 60, 21, 23, 29, 31, 53, 55, 61, 63, 234, 22, 24, 28, 32, 52, 50, 62, 64, 235, 233, 25, 27, 35, 33, 51, 49, 67, 65, 236, 232, 230, 26, 36, 34, 46, 48, 68, 66, 78, 239, 237, 231
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			The top left 8 X 8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
   0  1 14 15 16 19 20 21
   3  2 13 12 17 18 23 22
   4  7  8 11 30 29 24 25
   5  6  9 10 31 28 27 26
  58 57 54 53 32 35 36 37
  59 56 55 52 33 34 39 38
  60 61 50 51 46 45 40 41
  63 62 49 48 47 44 43 42
		

Crossrefs

Transpose: A163359. Inverse: A163358. One-based version: A163361. Row sums: A163365. Row 0: A163482. Column 0: A163483. Central diagonal: A062880. See also A163334 & A163336 for the Peano curve.

Programs

  • Mathematica
    b[{n_, k_}, {m_}] := (A[k, n] = m-1);
    MapIndexed[b, List @@ HilbertCurve[4][[1]]];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)

Formula

a(n) = A163355(A054238(n)).

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009

A054238 Array read by downward antidiagonals: T(i,j) = bits of binary expansion of i interleaved with that of j.

Original entry on oeis.org

0, 1, 2, 4, 3, 8, 5, 6, 9, 10, 16, 7, 12, 11, 32, 17, 18, 13, 14, 33, 34, 20, 19, 24, 15, 36, 35, 40, 21, 22, 25, 26, 37, 38, 41, 42, 64, 23, 28, 27, 48, 39, 44, 43, 128, 65, 66, 29, 30, 49, 50, 45, 46, 129, 130, 68, 67, 72, 31, 52, 51, 56, 47, 132, 131, 136, 69, 70, 73, 74
Offset: 0

Views

Author

Marc LeBrun, Feb 07 2000

Keywords

Comments

Inverse of sequence A054239 considered as a permutation of the nonnegative integers.
Permutation of nonnegative integers. Can be used as natural alternate number casting for pairs/tables (vs. usual diagonalization).
This array is a Z-order curve in an N x N grid. - Max Barrentine, Sep 24 2015
Each row n of this array is the lexicographically earliest sequence such that no term occurs in a previous row, no three terms form an arithmetic progression, and the k-th term in the n-th row is equal to the k-th term in row 0 plus some constant (specifically, T(n,k) = T(0,k) + A062880(n)). - Max Barrentine, Jul 20 2016

Examples

			From _Philippe Deléham_, Oct 18 2011: (Start)
The array starts in row n=0 with columns k >= 0 as follows:
   0  1  4  5 16 17 20 21 ...
   2  3  6  7 18 19 22 23 ...
   8  9 12 13 24 25 28 29 ...
  10 11 14 15 26 27 30 31 ...
  32 33 36 37 48 49 52 53 ...
  34 35 38 39 50 51 54 55 ...
  40 41 44 45 56 57 60 61 ...
  42 43 46 47 58 59 62 63 ...
(End)
T(6,5)=57 because 1.1.0. (6) merged with .1.0.1 (5) is 111001 (57). [Corrected by _Georg Fischer_, Jan 21 2022]
		

Crossrefs

Cf. A000695 (row n=0), A062880 (column k=0), A001196 (main diagonal).
Cf. A059905, A059906, A346453 (by upwards antidiagonals).
See also A163357 and A163334 for other fractal curves in N x N grids.

Programs

  • Maple
    N:= 4: # to get the first 2^(2N+1)+2^N terms
    G:= 1/(1-y)/(1-x)*(add(2^(2*i+1)*x^(2^i)/(1+x^(2^i)),i=0..N) + add(2^(2*i)*y^(2^i)/(1+y^(2^i)),i=0..N)):
    S:= mtaylor(G,[x=0,y=0],2^(N+1)):
    seq(seq(coeff(coeff(S,x,i),y,m-i),i=0..m),m=0..2^(N+1)-1); # Robert Israel, Jul 21 2016
  • Mathematica
    Table[Total@ Map[FromDigits[#, 2] &, Insert[#, 0, {-1, -1}] &@ Map[Riffle[IntegerDigits[#, 2], 0, 2] &, {n - k, k}]], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 21 2016 *)

Formula

T(n,k) = A000695(k) + 2*A000695(n). - Philippe Deléham, Oct 18 2011
From Robert Israel, Jul 21 2016: (Start)
G.f. of array: g(x,y) = (1/(1-x)*(1-y)) * Sum_{i>=0}
(2^(2*i+1)*x^(2^i)/(1+x^(2^i)) + 2^(2*i)*y^(2^i)/(1+y^(2^i))).
T(2*n+i,2*k+j) = 4*T(n,k) + 2*i+j for i,j in {0,1}. (End)

A326674 GCD of the set of positions of 1's in the reversed binary expansion of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 2, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Comments

a(n) is even if and only if n is in A062880. - Robert Israel, Oct 13 2020

Examples

			The reversed binary expansion of 40 is (0,0,0,1,0,1), with positions of 1's being {4,6}, so a(40) = GCD(4,6) = 2.
		

Crossrefs

Positions of 1's are A291166, and non-1's are A291165.
GCDs of prime indices are A289508.
GCDs of strict partitions encoded by FDH numbers are A319826.
Numbers whose binary positions are pairwise coprime are A326675.

Programs

  • Maple
    f:= proc(n) local B;
      B:= convert(n,base,2);
      igcd(op(select(t -> B[t]=1, [$1..ilog2(n)+1])))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 13 2020
  • Mathematica
    Table[GCD@@Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,100}]

Formula

Trivially, a(n) <= log_2(n). - Charles R Greathouse IV, Nov 15 2022

A060142 Ordered set S defined by these rules: 0 is in S and if x is in S then 2x+1 and 4x are in S.

Original entry on oeis.org

0, 1, 3, 4, 7, 9, 12, 15, 16, 19, 25, 28, 31, 33, 36, 39, 48, 51, 57, 60, 63, 64, 67, 73, 76, 79, 97, 100, 103, 112, 115, 121, 124, 127, 129, 132, 135, 144, 147, 153, 156, 159, 192, 195, 201, 204, 207, 225, 228, 231, 240, 243, 249, 252, 255, 256, 259, 265, 268, 271
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2001

Keywords

Comments

After expelling 0 and 1, the numbers 4x occupy same positions in S that 1 occupies in the infinite Fibonacci word (A003849).
a(A026351(n)) = A219608(n); a(A004957(n)) = 4 * a(n). - Reinhard Zumkeller, Nov 26 2012
Apart from the initial term, this lists the indices of the 1's in A086747. - N. J. A. Sloane, Dec 05 2019
From Gus Wiseman, Jun 10 2020: (Start)
Numbers k such that the k-th composition in standard order has all odd parts, or numbers k such that A124758(k) is odd. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. For example, the sequence of all compositions into odd parts begins:
0: () 57: (1,1,3,1) 135: (5,1,1,1)
1: (1) 60: (1,1,1,3) 144: (3,5)
3: (1,1) 63: (1,1,1,1,1,1) 147: (3,3,1,1)
4: (3) 64: (7) 153: (3,1,3,1)
7: (1,1,1) 67: (5,1,1) 156: (3,1,1,3)
9: (3,1) 73: (3,3,1) 159: (3,1,1,1,1,1)
12: (1,3) 76: (3,1,3) 192: (1,7)
15: (1,1,1,1) 79: (3,1,1,1,1) 195: (1,5,1,1)
16: (5) 97: (1,5,1) 201: (1,3,3,1)
19: (3,1,1) 100: (1,3,3) 204: (1,3,1,3)
25: (1,3,1) 103: (1,3,1,1,1) 207: (1,3,1,1,1,1)
28: (1,1,3) 112: (1,1,5) 225: (1,1,5,1)
31: (1,1,1,1,1) 115: (1,1,3,1,1) 228: (1,1,3,3)
33: (5,1) 121: (1,1,1,3,1) 231: (1,1,3,1,1,1)
36: (3,3) 124: (1,1,1,1,3) 240: (1,1,1,5)
39: (3,1,1,1) 127: (1,1,1,1,1,1,1) 243: (1,1,1,3,1,1)
48: (1,5) 129: (7,1) 249: (1,1,1,1,3,1)
51: (1,3,1,1) 132: (5,3) 252: (1,1,1,1,1,3)
(End)
Numbers whose binary representation has the property that every run of consecutive 0's has even length. - Harry Richman, Jan 31 2024

Examples

			From _Harry Richman_, Jan 31 2024: (Start)
In the following, dots are used for zeros in the binary representation:
   n  binary(a(n))  a(n)
   0:    .......     0
   1:    ......1     1
   2:    .....11     3
   3:    ....1..     4
   4:    ....111     7
   5:    ...1..1     9
   6:    ...11..    12
   7:    ...1111    15
   8:    ..1....    16
   9:    ..1..11    19
  10:    ..11..1    25
  11:    ..111..    28
  12:    ..11111    31
  13:    .1....1    33
  14:    .1..1..    36
  15:    .1..111    39
  16:    .11....    48
  17:    .11..11    51
  18:    .111..1    57
  19:    .1111..    60
  20:    .111111    63
  21:    1......    64
  22:    1....11    67
(End)
		

Crossrefs

Cf. A003714 (no consecutive 1's in binary expansion).
Odd partitions are counted by A000009.
Numbers with an odd number of 1's in binary expansion are A000069.
Numbers whose binary expansion has odd length are A053738.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without odd parts are A062880.
- Sum is A070939.
- Product is A124758.
- Strict compositions are A233564.
- Heinz number is A333219.
- Number of distinct parts is A334028.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a060142 n = a060142_list !! n
    a060142_list = 0 : f (singleton 1) where
       f s = x : f (insert (4 * x) $ insert (2 * x + 1) s') where
           (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Nov 26 2012
    
  • Mathematica
    Take[Nest[Union[Flatten[# /. {{i_Integer -> i}, {i_Integer -> 2 i + 1}, {i_Integer -> 4 i}}]] &, {1}, 5], 32]  (* Or *)
    Select[Range[124], FreeQ[Length /@ Select[Split[IntegerDigits[#, 2]], First[#] == 0 &], ?OddQ] &] (* _Birkas Gyorgy, May 29 2012 *)
  • PARI
    is(n)=if(n<3, n<2, if(n%2,is(n\2),n%4==0 && is(n/4))) \\ Charles R Greathouse IV, Oct 21 2013

Extensions

Corrected by T. D. Noe, Nov 01 2006
Definition simplified by Charles R Greathouse IV, Oct 21 2013

A163359 Hilbert curve in N x N grid, starting downwards from the top-left corner, listed by descending antidiagonals.

Original entry on oeis.org

0, 3, 1, 4, 2, 14, 5, 7, 13, 15, 58, 6, 8, 12, 16, 59, 57, 9, 11, 17, 19, 60, 56, 54, 10, 30, 18, 20, 63, 61, 55, 53, 31, 29, 23, 21, 64, 62, 50, 52, 32, 28, 24, 22, 234, 65, 67, 49, 51, 33, 35, 27, 25, 233, 235, 78, 66, 68, 48, 46, 34, 36, 26, 230, 232, 236, 79, 77, 71
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Examples

			The top left 8x8 corner of the array shows how this surjective self-avoiding walk begins (connect the terms in numerical order, 0-1-2-3-...):
   +0 +3 +4 +5 58 59 60 63
   +1 +2 +7 +6 57 56 61 62
   14 13 +8 +9 54 55 50 49
   15 12 11 10 53 52 51 48
   16 17 30 31 32 33 46 47
   19 18 29 28 35 34 45 44
   20 23 24 27 36 39 40 43
   21 22 25 26 37 38 41 42
		

Crossrefs

Transpose: A163357, a(n) = A163357(A061579(n)). Inverse: A163360. One-based version: A163363. Row sums: A163365. Row 0: A163483. Column 0: A163482. Central diagonal: A062880.
See also A163334 and A163336 for the Peano curve.

Programs

  • Mathematica
    b[{n_, k_}, {m_}] := (A[n, k] = m-1);
    MapIndexed[b, List @@ HilbertCurve[4][[1]]];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)

A126684 Union of A000695 and 2*A000695.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, 42, 64, 65, 68, 69, 80, 81, 84, 85, 128, 130, 136, 138, 160, 162, 168, 170, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 512, 514, 520, 522, 544, 546, 552, 554, 640, 642, 648, 650
Offset: 1

Views

Author

Jonathan Deane, Feb 15 2007, May 04 2007

Keywords

Comments

Essentially the same as A032937: 0 followed by terms of A032937. - R. J. Mathar, Jun 15 2008
Previous name was: If A = {a_1, a_2, a_3...} is the Moser-de Bruijn sequence A000695 (consisting of sums of distinct powers of 4) and A' = {2a_1, 2a_2, 2a_3...} then this sequence, let's call it B, is the union of A and A'. Its significance, alluded to in the entry for the Moser-de Bruijn sequence, is that its sumset, B+B, = {b_i + b_j : i, j natural numbers} consists of the nonnegative integers; and it is the fastest-growing sequence with this property. It can also be described as a "basis of order two for the nonnegative integers".
The sequence is the fastest growing with this property in the sense that a(n) ~ n^2, and any sequence with this property is O(n^2). - Franklin T. Adams-Watters, Jul 27 2015
Or, base 2 representation Sum{d(i)*2^(m-i): i=0,1,...,m} has even d(i) for all odd i.
Union of A000695 and 2*A000695. - Ralf Stephan, May 05 2004
Union of A000695 and A062880. - Franklin T. Adams-Watters, Aug 30 2014
Integers, the binary representation of which contains no pair of 1 bits whose difference in bit index is odd. - Frederik P.J. Vandecasteele, May 29 2025

Examples

			All nonnegative integers can be represented in the form b_i + b_j; e.g. 6 = 5+1, 7 = 5+2, 8 = 0+8, 9 = 4+5
		

Crossrefs

Programs

  • Haskell
    a126684 n = a126684_list !! (n-1)
    a126684_list = tail $ m a000695_list $ map (* 2) a000695_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y     = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Dec 03 2011
    
  • Mathematica
    nmax = 100;
    b[n_] := FromDigits[IntegerDigits[n, 2], 4];
    Union[A000695 = b /@ Range[0, nmax], 2 A000695][[1 ;; nmax+1]] (* Jean-François Alcover, Oct 28 2019 *)
  • PARI
    for(n=0,350,b=binary(n); l=length(b); if(sum(i=1,floor(l/2), component(b,2*i))==0,print1(n,",")))
    
  • Python
    from gmpy2 import digits
    def A126684(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x):
            s = digits(x,4)
            for i in range(l:=len(s)):
                if s[i]>'1':
                    break
            else:
                return int(s,2)
            return int(s[:i]+'1'*(l-i),2)
        def f(x): return n-1+x-g(x)-g(x>>1)
        return bisection(f,n-1,n-1) # Chai Wah Wu, Oct 29 2024

Formula

G.f.: sum(i>=1, T(i, x) + U(i, x) ), where
T := (k,x) -> x^(2^k-1)*V(k,x);
U := (k,x) -> 2*x^(3*2^(k-1)-1)*V(k,x); and
V := (k,x) -> (1-x^(2^(k-1)))*(4^(k-1) + sum(4^j*x^(2^j)/(1+x^(2^j)), j = 0..k-2))/(1-x);
Generating function. Define V(k) := [4^(k-1) + Sum ( j=0 to k-2, 4^j * x^(2^j)/(1+x^(2^j)) )] * (1-x^(2^(k-1)))/(1-x) and T(k) := (x^(2^k-1) * V(k), U(k) := x^(3*2^(k-1)-1) * V(k) then G.f. is Sum ( i >= 1, T(i) + U(i) ). Functional equation: if the sequence is a(n), n = 1, 2, 3, ... and h(x) := Sum ( n >= 1, x^a(n) ) then h(x) satisfies the following functional equation: (1 + x^2)*h(x^4) - (1 - x)*h(x^2) - x*h(x) + x^2 = 0.

Extensions

New name (using comment from Ralf Stephan) from Joerg Arndt, Aug 31 2014

A326788 BII-numbers of simple labeled graphs.

Original entry on oeis.org

0, 4, 16, 20, 32, 36, 48, 52, 256, 260, 272, 276, 288, 292, 304, 308, 512, 516, 528, 532, 544, 548, 560, 564, 768, 772, 784, 788, 800, 804, 816, 820, 2048, 2052, 2064, 2068, 2080, 2084, 2096, 2100, 2304, 2308, 2320, 2324, 2336, 2340, 2352, 2356, 2560, 2564
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
Also numbers whose binary indices all belong to A018900.

Examples

			The sequence of all simple labeled graphs together with their BII-numbers begins:
    0: {}
    4: {{1,2}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  288: {{2,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  512: {{2,4}}
  516: {{1,2},{2,4}}
  528: {{1,3},{2,4}}
  532: {{1,2},{1,3},{2,4}}
		

Crossrefs

Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,100],SameQ[2,##]&@@Length/@bpe/@bpe[#]&]

A366243 Numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are not powers of 4.

Original entry on oeis.org

1, 4, 9, 25, 36, 49, 100, 121, 169, 196, 225, 256, 289, 361, 441, 484, 529, 676, 841, 900, 961, 1024, 1089, 1156, 1225, 1369, 1444, 1521, 1681, 1764, 1849, 2116, 2209, 2304, 2601, 2809, 3025, 3249, 3364, 3481, 3721, 3844, 4225, 4356, 4489, 4761, 4900, 5041, 5329
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

Equivalently, numbers that are products of "Fermi-Dirac primes" that are powers of primes with exponents that are powers of 2 with odd exponents.
Products of distinct numbers of the form p^(2^(2*k-1)), where p is prime and k >= 1.
Numbers whose prime factorization has exponents that are positive terms of A062880.
Every integer k has a unique representation as a product of 2 numbers: one is in this sequence and the other is in A366242: k = A366245(k) * A366244(k).

Crossrefs

A062503 is a subsequence.

Programs

  • Mathematica
    mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; q[e_] := EvenQ[e] && mdQ[e/2]; Select[Range[6000], # == 1 || AllTrue[FactorInteger[#][[;; , 2]], q] &]
  • PARI
    ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;}
    is(n) = {my(e = factor(n)[ ,2]); for(i = 1, #e, if(e[i]%2 || !ismd(e[i]/2), return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{k>=0} zeta(2^(2*k+1))/zeta(2^(2*k+2)) = 1.52599127273749217982... (this is the constant c in A366242).

A061313 Minimal number of steps to get from 1 to n by (a) subtracting 1 or (b) multiplying by 2.

Original entry on oeis.org

0, 1, 3, 2, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 9, 8, 8, 7, 8, 7, 7, 6, 8, 7, 7, 6, 7, 6, 6, 5, 11, 10, 10, 9, 10, 9, 9, 8, 10, 9, 9, 8, 9, 8, 8, 7, 10, 9, 9, 8, 9, 8, 8, 7, 9, 8, 8, 7, 8, 7, 7, 6, 13, 12, 12, 11, 12, 11, 11, 10, 12, 11, 11, 10, 11, 10, 10, 9, 12, 11, 11, 10, 11, 10, 10, 9, 11, 10
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2001

Keywords

Comments

Also number of steps to get from n to 1 by process of adding 1 if odd, or dividing by 2 if even.
It is straightforward to prove that the number n appears F(n) times in this sequence, where F(n) is the n-th Fibonacci number (A000045). - Gary Gordon, May 31 2019
Conjecture: a(n)+2 is the sum of the terms of the Hirzebruch (negative) continued fraction for the Stern-Brocot tree fraction A007305(n)/A007306(n). - Andrey Zabolotskiy, Apr 17 2020

Examples

			a(2) = 1 since 2 = 1*2, a(3) = 3 since 3 = 1*2*2-1, a(11) = 6 since 11 = (1*2*2-1)*2*2-1.
		

Crossrefs

Programs

  • Haskell
    a061313 n = fst $ until ((== 1) . snd) (\(u, v) -> (u + 1, f v)) (0, n)
       where f n = if r == 0 then n' else n + 1  where (n', r) = divMod n 2
    -- Reinhard Zumkeller, Sep 05 2015
  • Mathematica
    f[n_] := Block[{c = 0, m = n}, While[m != 1, If[ EvenQ[m], While[ EvenQ[m], m = m/2; c++ ], m++; c++ ]]; Return[c]]; Table[f[n], {n, 1, 100}]
  • PARI
    a(n)=if(n<2,0,s=n; c=1; while((s+s%2)/(2-s%2)>1,s=(s+s%2)/(2-s%2); c++); c)
    
  • PARI
    xpcount(n) = { p = 1; for(x=1,n, p1 = x; ct=0; while(p1>1, if(p1%2==0,p1/=2; ct++,p1 = p1*p+1; ct++) ); print1(ct, ", ") ) }
    
  • PARI
    a(n) = if(n--,2*(logint(n,2)+1)) - hammingweight(n); \\ Kevin Ryde, Oct 21 2021
    

Formula

a(2n) = a(n)+1; a(2n+1) = a(n+1)+2; a(1) = 0.
Is Sum_{k=1..n} a(k) asymptotic to C*n*log(n) where 3 > C > 2? - Benoit Cloitre, Aug 31 2002
G.f.: x/(1-x) * Sum_{k>=0} (x^2^k + x^2^(k+1)/(1+x^2^k)). - Ralf Stephan, Jun 14 2003
a(n) = A080791(n-1) + A029837(n). - Ralf Stephan, Jun 14 2003
a(n) = 2*A023416(n-1) + A000120(n-1) = A023416(A062880(n)) = A023416(A000695(n)) + 1. - Ralf Stephan, Jul 16 2003
a(n) = A119477(n) - 1. - Philippe Deléham, Nov 03 2008
Showing 1-10 of 30 results. Next