cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A070939 Length of binary representation of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2002

Keywords

Comments

Zero is assumed to be represented as 0.
For n>1, n appears 2^(n-1) times. - Lekraj Beedassy, Apr 12 2006
a(n) is the permanent of the n X n 0-1 matrix whose (i,j) entry is 1 iff i=1 or i=j or i=2*j. For example, a(4)=3 is per([[1, 1, 1, 1], [1, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]). - David Callan, Jun 07 2006
a(n) is the number of different contiguous palindromic bit patterns in the binary representation of n; for examples, for 5=101_2 the bit patterns are 0, 1, 101; for 7=111_2 the corresponding patterns are 1, 11, 111; for 13=1101_2 the patterns are 0, 1, 11, 101. - Hieronymus Fischer, Mar 13 2012
A103586(n) = a(n + a(n)); a(A214489(n)) = A103586(A214489(n)). - Reinhard Zumkeller, Jul 21 2012
Number of divisors of 2^n that are <= n. - Clark Kimberling, Apr 21 2019

Examples

			8 = 1000 in binary has length 4.
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • L. Levine, Fractal sequences and restricted Nim, Ars Combin. 80 (2006), 113-127.

Crossrefs

A029837(n+1) gives the length of binary representation of n without the leading zeros (i.e., when zero is represented as the empty sequence). For n > 0 this is equal to a(n).
This is Guy Steele's sequence GS(4, 4) (see A135416).
Cf. A083652 (partial sums).

Programs

  • Haskell
    a070939 n = if n < 2 then 1 else a070939 (n `div` 2) + 1
    a070939_list = 1 : 1 : l [1] where
       l bs = bs' ++ l bs' where bs' = map (+ 1) (bs ++ bs)
    -- Reinhard Zumkeller, Jul 19 2012, Jun 07 2011
    
  • Magma
    A070939:=func< n | n eq 0 select 1 else #Intseq(n, 2) >; [ A070939(n): n in [0..104] ]; // Klaus Brockhaus, Jan 13 2011
    
  • Maple
    A070939 := n -> `if`(n=0, 1, ilog2(2*n)):
    seq(A070939(n), n=0..104); # revised by Peter Luschny, Aug 10 2017
  • Mathematica
    Table[Length[IntegerDigits[n, 2]], {n, 0, 50}] (* Stefan Steinerberger, Apr 01 2006 *)
    Join[{1},IntegerLength[Range[110],2]] (* Harvey P. Dale, Aug 18 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], BitLength[n]]; (* Michael Somos, Jul 10 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, #binary(n))} /* Michael Somos, Aug 31 2012 */
    
  • PARI
    apply( {A070939(n)=exponent(n+!n)+1}, [0..99]) \\ works for negative n and is much faster than the above. - M. F. Hasler, Jan 04 2014, updated Feb 29 2020
    
  • Python
    def a(n): return len(bin(n)[2:])
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jan 01 2021
    
  • Python
    def A070939(n): return 1 if n == 0 else n.bit_length() # Chai Wah Wu, May 12 2022
  • Sage
    def A070939(n) : return (2*n).exact_log(2) if n != 0 else 1
    [A070939(n) for n in range(100)] # Peter Luschny, Aug 08 2012
    

Formula

a(0) = 1; for n >= 1, a(n) = 1 + floor(log_2(n)) = 1 + A000523(n).
G.f.: 1 + 1/(1-x) * Sum(k>=0, x^2^k). - Ralf Stephan, Apr 12 2002
a(0)=1, a(1)=1 and a(n) = 1+a(floor(n/2)). - Benoit Cloitre, Dec 02 2003
a(n) = A000120(n) + A023416(n). - Lekraj Beedassy, Apr 12 2006
a(2^m + k) = m + 1, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 14 2017
a(n) = A113473(n) if n>0.

Extensions

a(4) corrected by Antti Karttunen, Feb 28 2003

A029931 If 2n = Sum 2^e_i, a(n) = Sum e_i.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 6, 7, 8, 9, 9, 10, 11, 12, 10, 11, 12, 13, 13, 14, 15, 16, 11, 12, 13, 14, 14, 15, 16, 17, 15, 16, 17, 18, 18, 19, 20, 21, 7, 8, 9, 10, 10, 11, 12, 13, 11, 12, 13, 14, 14, 15, 16
Offset: 0

Views

Author

Keywords

Comments

Write n in base 2, n = sum b(i)*2^(i-1), then a(n) = sum b(i)*i. - Benoit Cloitre, Jun 09 2002
May be regarded as a triangular array read by rows, giving weighted sum of compositions in standard order. The standard order of compositions is given by A066099. - Franklin T. Adams-Watters, Nov 06 2006
Sum of all positive integer roots m_i of polynomial {m,k} - see link [Shevelev]; see also A264613. - Vladimir Shevelev, Dec 13 2015
Also the sum of binary indices of n, where a binary index of n (A048793) is any position of a 1 in its reversed binary expansion. For example, the binary indices of 11 are {1,2,4}, so a(11) = 7. - Gus Wiseman, May 22 2024

Examples

			14 = 8+4+2 so a(7) = 3+2+1 = 6.
Composition number 11 is 2,1,1; 1*2+2*1+3*1 = 7, so a(11) = 7.
The triangle starts:
  0
  1
  2 3
  3 4 5 6
The reversed binary expansion of 18 is (0,1,0,0,1) with 1's at positions {2,5}, so a(18) = 2 + 5 = 7. - _Gus Wiseman_, Jul 22 2019
		

Crossrefs

Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031.
Cf. A001793 (row sums), A011782 (row lengths), A059867, A066099, A124757.
Row sums of A048793 and A272020.
Contains exactly A000009(n) copies of n.
For length instead of sum we have A000120, complement A023416.
For minimum instead of sum we have A001511, opposite A000012.
For maximum instead of sum we have A029837 or A070939, opposite A070940.
For product instead of sum we have A096111.
The reverse version is A230877, row sums of A371572.
The reverse complement is A359359, row sums of A371571.
The complement is A359400, row sums of A368494.
Numbers k such that a(k) is prime are A372689.
A014499 lists binary indices of prime numbers.
A019565 gives Heinz number of binary indices, inverse A048675.
A372471 lists binary indices of primes, row-sums A372429.

Programs

  • Haskell
    a029931 = sum . zipWith (*) [1..] . a030308_row
    -- Reinhard Zumkeller, Feb 28 2014
    
  • Maple
    HammingWeight := n -> add(i, i = convert(n, base, 2)):
    a := proc(n) option remember; `if`(n = 0, 0,
    ifelse(n::even, a(n/2) + HammingWeight(n/2), a(n-1) + 1)) end:
    seq(a(n), n = 0..78); # Peter Luschny, Oct 30 2021
  • Mathematica
    a[n_] := (b = IntegerDigits[n, 2]).Reverse @ Range[Length @ b]; Array[a,78,0] (* Jean-François Alcover, Apr 28 2011, after B. Cloitre *)
  • PARI
    for(n=0,100,l=length(binary(n)); print1(sum(i=1,l, component(binary(n),i)*(l-i+1)),","))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b..-1]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A029931(n): return sum(i if j == '1' else 0 for i, j in enumerate(bin(n)[:1:-1],1)) # Chai Wah Wu, Dec 20 2022
    (C#)
    ulong A029931(ulong n) {
        ulong result = 0, counter = 1;
        while(n > 0) {
            if (n % 2 == 1)
              result += counter;
            counter++;
            n /= 2;
        }
        return result;
    } // Frank Hollstein, Jan 07 2023

Formula

a(n) = a(n - 2^L(n)) + L(n) + 1 [where L(n) = floor(log_2(n)) = A000523(n)] = sum of digits of A048794 [at least for n < 512]. - Henry Bottomley, Mar 09 2001
a(0) = 0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n) + 1, where e1(n) = A000120(n). a(n) = log_2(A029930(n)). - Ralf Stephan, Jun 19 2003
G.f.: (1/(1-x)) * Sum_{k>=0} (k+1)*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 23 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000027(k+1). - Philippe Deléham, Oct 15 2011
a(n) = sum of n-th row of the triangle in A213629. - Reinhard Zumkeller, Jun 17 2012
From Reinhard Zumkeller, Feb 28 2014: (Start)
a(A089633(n)) = n and a(m) != n for m < A089633(n).
a(n) = Sum_{k=1..A070939(n)} k*A030308(n,k-1). (End)
a(n) = A073642(n) + A000120(n). - Peter Kagey, Apr 04 2016

Extensions

More terms from Erich Friedman

A048675 If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1

Views

Author

Antti Karttunen, Jul 14 1999

Keywords

Comments

The original motivation for this sequence was to encode the prime factorization of n in the binary representation of a(n), each such representation being unique as long as this map is restricted to A005117 (squarefree numbers, resulting a permutation of nonnegative integers A048672) or any of its subsequence, resulting an injective function like A048623 and A048639.
However, also the restriction to A260443 (not all terms of which are squarefree) results a permutation of nonnegative integers, namely A001477, the identity permutation.
When a polynomial with nonnegative integer coefficients is encoded with the prime factorization of n (e.g., as in A206296, A260443), then a(n) gives the evaluation of that polynomial at x=2.
The primitive completely additive integer sequence that satisfies a(n) = a(A225546(n)), n >= 1. By primitive, we mean that if b is another such sequence, then there is an integer k such that b(n) = k * a(n) for all n >= 1. - Peter Munn, Feb 03 2020
If the binary rank of an integer partition y is given by Sum_i 2^(y_i-1), and the Heinz number is Product_i prime(y_i), then a(n) is the binary rank of the integer partition with Heinz number n. Note the function taking a set s to Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices), and the function taking a multiset m to Product_i prime(m_i) is the inverse of A112798 (prime indices). - Gus Wiseman, May 22 2024

Examples

			From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
   30: {1,2,3}
   40: {1,1,1,3}
   54: {1,2,2,2}
   72: {1,1,1,2,2}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
(End)
		

Crossrefs

Row 2 of A104244.
Similar logarithmic functions: A001414, A056239, A090880, A289506, A293447.
Left inverse of the following sequences: A000079, A019565, A038754, A068911, A134683, A260443, A332824.
A003961, A028234, A032742, A055396, A064989, A067029, A225546, A297845 are used to express relationship between terms of this sequence.
Cf. also A048623, A048676, A099884, A277896 and tables A277905, A285325.
Cf. A297108 (Möbius transform), A332813 and A332823 [= a(n) mod 3].
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000203,A331750), (A005940,A087808), (A007913,A248663), (A007947,A087207), (A097248,A048675), (A206296,A000129), (A248692,A056239), (A283477,A005187), (A284003,A006068), (A285101,A028362), (A285102,A068052), (A293214,A001065), (A318834,A051953), (A319991,A293897), (A319992,A293898), (A320017,A318674), (A329352,A069359), (A332461,A156552), (A332462,A156552), (A332825,A000010) and apparently (A163511,A135529).
See comments/formulas in A277333, A331591, A331740 giving their relationship to this sequence.
The formula section details how the sequence maps the terms of A329050, A329332.
A277892, A322812, A322869, A324573, A324575 give properties of the n-th term of this sequence.
The term k appears A018819(k) times.
The inverse transformation is A019565 (Heinz number of binary indices).
The version for distinct prime indices is A087207.
Numbers k such that a(k) is prime are A277319, counts A372688.
Grouping by image gives A277905.
A014499 lists binary indices of prime numbers.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Maple
    nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
    A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
    # simpler alternative
    f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Oct 10 2016
  • Mathematica
    a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
    
  • PARI
    \\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
    v048675sigs = readvec("a048675.txt");
    A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        if n==1: return 0
        f=factorint(n)
        return sum([f[i]*2**(primepi(i) - 1) for i in f])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017

Formula

a(1) = 0, a(n) = 1/2 * (e1*2^i1 + e2*2^i2 + ... + ez*2^iz) if n = p_{i1}^e1*p_{i2}^e2*...*p_{iz}^ez, where p_i is the i-th prime. (e.g. p_1 = 2, p_2 = 3).
Totally additive with a(p^e) = e * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n). [Missing factor e added to the comment by Antti Karttunen, Jul 29 2015]
From Antti Karttunen, Jul 29 2015: (Start)
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A032742(n)). [Where A055396(n) gives the index of the smallest prime dividing n and A032742(n) gives the largest proper divisor of n.]
a(1) = 0; for n > 1, a(n) = (A067029(n) * (2^(A055396(n)-1))) + a(A028234(n)).
Other identities. For all n >= 0:
a(A019565(n)) = n.
a(A260443(n)) = n.
a(A206296(n)) = A000129(n).
a(A005940(n+1)) = A087808(n).
a(A007913(n)) = A248663(n).
a(A007947(n)) = A087207(n).
a(A283477(n)) = A005187(n).
a(A284003(n)) = A006068(n).
a(A285101(n)) = A028362(1+n).
a(A285102(n)) = A068052(n).
Also, it seems that a(A163511(n)) = A135529(n) for n >= 1. (End)
a(1) = 0, a(2n) = 1+a(n), a(2n+1) = 2*a(A064989(2n+1)). - Antti Karttunen, Oct 11 2016
From Peter Munn, Jan 31 2020: (Start)
a(n^2) = a(A003961(n)) = 2 * a(n).
a(A297845(n,k)) = a(n) * a(k).
a(n) = a(A225546(n)).
a(A329332(n,k)) = n * k.
a(A329050(n,k)) = 2^(n+k).
(End)
From Antti Karttunen, Feb 02-25 2020, Feb 01 2021: (Start)
a(n) = Sum_{d|n} A297108(d) = Sum_{d|A225546(n)} A297108(d).
a(n) = a(A097248(n)).
For n >= 2:
A001221(a(n)) = A322812(n), A001222(a(n)) = A277892(n).
A000203(a(n)) = A324573(n), A033879(a(n)) = A324575(n).
For n >= 1, A331750(n) = a(A000203(n)).
For n >= 1, the following chains hold:
A293447(n) >= a(n) >= A331740(n) >= A331591(n).
a(n) >= A087207(n) >= A248663(n).
(End)
a(n) = A087207(A097248(n)). - Flávio V. Fernandes, Jul 16 2025

Extensions

Entry revised by Antti Karttunen, Jul 29 2015
More linking formulas added by Antti Karttunen, Apr 18 2017

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A122840 a(n) is the number of 0's at the end of n when n is written in base 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2006

Keywords

Comments

Greatest k such that 10^k divides n.
a(n) = the number of digits in n - A160093(n).
a(A005117(n)) <= 1. - Reinhard Zumkeller, Mar 30 2010
See A054899 for the partial sums. - Hieronymus Fischer, Jun 08 2012
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is 9/10^(k+1).
The asymptotic mean of this sequence is 1/9. (End)

Examples

			a(160) = 1 because there is 1 zero at the end of 160 when 160 is written in base 10.
		

Crossrefs

A007814 is the base 2 equivalent of this sequence.

Programs

  • Haskell
    a122840 n = if n < 10 then 0 ^ n else 0 ^ d * (a122840 n' + 1)
                where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Mar 09 2013
    
  • Mathematica
    a[n_] := IntegerExponent[n, 10]; Array[a, 100] (* Amiram Eldar, Mar 10 2021 *)
  • PARI
    a(n)=valuation(n,10) \\ Charles R Greathouse IV, Feb 26 2014
    
  • Python
    def a(n): return len(str(n)) - len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jun 09 2017
    
  • Python
    def A122840(n): return len(s:=str(n))-len(s.rstrip('0')) # Chai Wah Wu, Jul 06 2022
    
  • Python
    A122840 = lambda n: sympy.multiplicity(10,n) # M. F. Hasler, Apr 05 2024

Formula

a(n) = A160094(n) - 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = A054899(n) - A054899(n-1).
G.f.: g(x) = Sum_{j>0} x^10^j/(1-x^10^j). (End)
a(n) = min(A007814(n), A112765(n)). - Jianing Song, Jul 23 2022

A089633 Numbers having no more than one 0 in their binary representation.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 27, 29, 30, 31, 47, 55, 59, 61, 62, 63, 95, 111, 119, 123, 125, 126, 127, 191, 223, 239, 247, 251, 253, 254, 255, 383, 447, 479, 495, 503, 507, 509, 510, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1023
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 01 2004

Keywords

Comments

Complement of A158582. - Reinhard Zumkeller, Apr 16 2009
Also union of A168604 and A030130. - Douglas Latimer, Jul 19 2012
Numbers of the form 2^t - 2^k - 1, 0 <= k < t.
n is in the sequence if and only if 2*n+1 is in the sequence. - Robert Israel, Dec 14 2018
Also the least binary rank of a strict integer partition of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). - Gus Wiseman, May 24 2024

Examples

			From _Tilman Piesk_, May 09 2012: (Start)
This may also be viewed as a triangle:             In binary:
                  0                                         0
               1     2                                 01       10
             3    5    6                          011      101      110
           7   11   13   14                  0111     1011     1101     1110
        15   23   27   29   30          01111    10111    11011    11101    11110
      31  47   55   59   61   62
   63   95  111  119  123  125  126
Left three diagonals are A000225,  A055010, A086224. Right diagonal is A000918. Central column is A129868. Numbers in row n (counted from 0) have n binary 1s. (End)
From _Gus Wiseman_, May 24 2024: (Start)
The terms together with their binary expansions and binary indices begin:
   0:      0 ~ {}
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   5:    101 ~ {1,3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
  11:   1011 ~ {1,2,4}
  13:   1101 ~ {1,3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  23:  10111 ~ {1,2,3,5}
  27:  11011 ~ {1,2,4,5}
  29:  11101 ~ {1,3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  47: 101111 ~ {1,2,3,4,6}
  55: 110111 ~ {1,2,3,5,6}
  59: 111011 ~ {1,2,4,5,6}
  61: 111101 ~ {1,3,4,5,6}
  62: 111110 ~ {2,3,4,5,6}
(End)
		

Crossrefs

Cf. A181741 (primes), union of A081118 and A000918, apart from initial -1.
For least binary index (instead of rank) we have A001511.
Applying A019565 (Heinz number of binary indices) gives A077011.
For greatest binary index we have A029837 or A070939, opposite A070940.
Row minima of A118462 (binary ranks of strict partitions).
For sum instead of minimum we have A372888, non-strict A372890.
A000009 counts strict partitions, ranks A005117.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A277905 groups all positive integers by binary rank of prime indices.

Programs

  • Haskell
    a089633 n = a089633_list !! (n-1)
    a089633_list = [2 ^ t - 2 ^ k - 1 | t <- [1..], k <- [t-1,t-2..0]]
    -- Reinhard Zumkeller, Feb 23 2012
    
  • Maple
    seq(seq(2^a-1-2^b,b=a-1..0,-1),a=1..11); # Robert Israel, Dec 14 2018
  • Mathematica
    fQ[n_] := DigitCount[n, 2, 0] < 2; Select[ Range[0, 2^10], fQ] (* Robert G. Wilson v, Aug 02 2012 *)
  • PARI
    {insq(n) = local(dd, hf, v); v=binary(n);hf=length(v);dd=sum(i=1,hf,v[i]);if(dd<=hf-2,-1,1)}
    {for(w=0,1536,if(insq(w)>=0,print1(w,", ")))}
    \\ Douglas Latimer, May 07 2013
    
  • PARI
    isoka(n) = #select(x->(x==0), binary(n)) <= 1; \\ Michel Marcus, Dec 14 2018
    
  • Python
    from itertools import count, islice
    def A089633_gen(): # generator of terms
        return ((1<A089633_list = list(islice(A089633_gen(),30)) # Chai Wah Wu, Feb 10 2023
    
  • Python
    from math import isqrt, comb
    def A089633(n): return (1<<(a:=(isqrt((n<<3)+1)-1>>1)+1))-(1<Chai Wah Wu, Dec 19 2024

Formula

A023416(a(n)) <= 1; A023416(a(n)) = A023532(n-2) for n>1;
A000120(a(u)) <= A000120(a(v)) for uA000120(a(n)) = A003056(n).
a(0)=0, n>0: a(n+1) = Min{m>n: BinOnes(a(n))<=BinOnes(m)} with BinOnes=A000120.
If m = floor((sqrt(8*n+1) - 1) / 2), then a(n) = 2^(m+1) - 2^(m*(m+3)/2 - n) - 1. - Carl R. White, Feb 10 2009
A029931(a(n)) = n and A029931(m) != n for m < a(n). - Reinhard Zumkeller, Feb 28 2014
A265705(a(n),k) = A265705(a(n),a(n)-k), k = 0 .. a(n). - Reinhard Zumkeller, Dec 15 2015
a(A014132(n)-1) = 2*a(n-1)+1 for n >= 1. - Robert Israel, Dec 14 2018
Sum_{n>=1} 1/a(n) = A065442 + A160502 = 3.069285887459... . - Amiram Eldar, Jan 09 2024
A019565(a(n)) = A077011(n). - Gus Wiseman, May 24 2024

A080079 Least number causing the longest carry sequence when adding numbers <= n to n in binary representation.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 26 2003

Keywords

Comments

T(n,k) < T(n,a(n)) = A070940(n) for 1 <= k < a(n) and T(n,k) <= T(n,a(n)) for a(n) <= k <= n, where T is defined as in A080080.
a(n) gives the distance from n to the nearest 2^t > n. - Ctibor O. Zizka, Apr 09 2020

Crossrefs

Programs

  • Haskell
    a080079 n = (length $ takeWhile (< a070940 n) (a080080_row n)) + 1
    -- Reinhard Zumkeller, Apr 22 2013
    
  • Magma
    [-n+2*2^Floor(Log(n)/Log(2)): n in [1..80]]; // Vincenzo Librandi, Dec 01 2016
    
  • Maple
    # Alois P. Heinz observes in A327489:
    A080079 := n -> 1 + Bits:-Nor(n, n):
    # Likewise:
    A080079 := n -> 1 + Bits:-Nand(n, n):
    seq(A080079(n), n=1..81); # Peter Luschny, Sep 23 2019
  • Mathematica
    Flatten@Table[Nest[Most[RotateRight[#]] &, Range[n], n - 1], {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
    Table[FromDigits[(IntegerDigits[n, 2] /. {0 -> 1, 1 -> 0}), 2] +
    1, {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
    Table[BitXor[n, 2^IntegerPart[Log[2, n] + 1] - 1] + 1, {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
    Table[2 2^Floor[Log[2, n]] - n, {n, 30}] (* Birkas Gyorgy, Feb 07 2011 *)
    Flatten@Table[Reverse@Range[2^n], {n, 0, 4}] (* Birkas Gyorgy, Feb 07 2011 *)
  • Python
    def A080079(n): return (1 << n.bit_length())-n # Chai Wah Wu, Jun 30 2022

Formula

From Benoit Cloitre, Feb 22 2003: (Start)
a(n) = A004755(n) - 2*n.
a(n) = -n + 2*2^floor(log(n)/log(2)). (End)
From Ralf Stephan, Jun 02 2003: (Start)
a(n) = n iff n = 2^k, otherwise a(n) = A035327(n-1).
a(n) = A062383(n) - n. (End)
a(0) = 0, a(2*n) = 2*a(n), a(2*n+1) = 2*a(n)-1 + 2*[n==0]. - Ralf Stephan, Jan 04 2004
a(n) = A240769(n,1); A240769(n, a(n)) = 1. - Reinhard Zumkeller, Apr 13 2014
a(n) = n + 1 - A006257(n). - Reinhard Zumkeller, Apr 14 2014

A070941 Length of binary representation of 2n+1.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2002

Keywords

Comments

Sequence consists of A011782(n) n+1's. - Jon Perry, Apr 04 2004
For n > 0: a(n) = A003314(n+1) - A003314(n) = A123753(n) - A123753(n-1). - Reinhard Zumkeller, Oct 12 2006
For k >= 2, k appears 2^(k-2) times consecutively. - Bernard Schott, Jun 08 2019
Also length of binary representation of 2n. - Michel Marcus, Oct 28 2020

Crossrefs

Bisection of A070939 and also of A070940.

Programs

  • Mathematica
    Table[IntegerLength[n,2],{n,1,201,2}] (* Harvey P. Dale, May 17 2011 *)
  • PARI
    a(n)=length(binary(2*n+1))
    
  • Python
    def A070941(n): return n.bit_length()+1 # Chai Wah Wu, Mar 29 2023

Formula

Let b(1)=1, b(n) = a(n-floor(n/2)) + 1, then a(n) = b(n+1). - Benoit Cloitre, Oct 23 2002
G.f.: 1/(1-x) * (1 + Sum_{k>=0} x^2^k). - Ralf Stephan, Apr 15 2002
a(n) = ceiling(log_2(n+1)) + 1 = A029837(n+1) + 1. - Ralf Stephan, Apr 15 2002
a(n) = ceiling(average of previous entries) + 1. - Jon Perry, Apr 04 2004

A277905 Irregular table: Each row n (n >= 0) lists in ascending order all A018819(n) numbers k for which A048675(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 16, 10, 18, 24, 32, 15, 20, 27, 36, 48, 64, 30, 40, 54, 72, 96, 128, 7, 25, 45, 60, 80, 81, 108, 144, 192, 256, 14, 50, 90, 120, 160, 162, 216, 288, 384, 512, 21, 28, 75, 100, 135, 180, 240, 243, 320, 324, 432, 576, 768, 1024, 42, 56, 150, 200, 270, 360, 480, 486, 640, 648, 864, 1152, 1536, 2048, 35, 63, 84, 112, 125, 225, 300, 400
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2016

Keywords

Comments

Each row beginning with an odd number (rows with even index) is followed by a row of the same length, with the same terms, but multiplied by 2. See also comments in the Formula section of A018819.
Note that although the indexing of rows start from zero, the indexing of this sequence starts from 1, with a(1) = 1.
Also Heinz numbers of integer partitions whose binary rank is n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). For example, row n = 6 is 15, 20, 27, 36, 48, 64, corresponding to the partitions (3,2), (3,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1). - Gus Wiseman, May 25 2024
Also, row n lists in ascending order all A018819(n) numbers k for which A097248(k) = A019565(n). - Flávio V. Fernandes, Jul 19 2025

Examples

			The irregular table begins as:
  row terms
   0   1;
   1   2;
   2   3,  4;
   3   6,  8;
   4   5,  9,  12,  16;
   5  10, 18,  24,  32;
   6  15, 20,  27,  36,  48,  64;
   7  30, 40,  54,  72,  96, 128;
   8   7, 25,  45,  60,  80,  81, 108, 144, 192, 256;
   9  14, 50,  90, 120, 160, 162, 216, 288, 384, 512;
  10  21, 28,  75, 100, 135, 180, 240, 243, 320, 324, 432,  576,  768, 1024;
  11  42, 56, 150, 200, 270, 360, 480, 486, 640, 648, 864, 1152, 1536, 2048;
...
		

Crossrefs

Cf. A019565 (the left edge, the only terms that are squarefree).
Cf. A000079 (the trailing edge).
Row lengths are A018819 (number of partitions of binary rank n).
A000009 counts strict partitions, ranks A005117.
A029837 stc_sum or A070939 bin_len, opposite A070940 binexp_lastpos_1.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, cf. A001222, A003963, A056239, A296150.
A372890 adds up binary ranks of partitions, strict A372888.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Select[Range[0,2^k],Total[2^(prix[#]-1)]==k&],{k,0,10}] (* Gus Wiseman, May 25 2024 *)
  • Scheme
    (definec (A277905 n) (A277905bi (A277903 n) (A277904 n)))
    (define (A277905bi row col) (let outloop ((k (A019565 row)) (col col)) (if (zero? col) k (let inloop ((j (+ 1 k))) (if (= (A048675 j) row) (outloop j (- col 1)) (inloop (+ 1 j))))))) ;; Very slow implementation.
    ;; Implementation based on a naive recurrence:
    (definec (A277905 n) (if (= 1 n) n (let ((maybe_next (A277896 (A277905 (- n 1))))) (if (not (zero? maybe_next)) maybe_next (A019565 (A277903 n))))))

Formula

a(1) = 1; for n > 1, if A277896(a(n-1)) > 0, then a(n) = A277896(a(n-1)), otherwise a(n) = A019565(A277903(n)). [A naive recurrence for a one-dimensional version.]
Other identities. For all n >= 1:
A048675(a(n)) = A277903(n).

A372689 Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number.

Original entry on oeis.org

2, 3, 4, 6, 9, 11, 12, 16, 18, 23, 26, 29, 33, 38, 41, 43, 44, 48, 50, 55, 58, 61, 64, 69, 71, 72, 74, 79, 81, 86, 89, 91, 92, 96, 101, 103, 104, 106, 111, 113, 118, 121, 131, 132, 134, 137, 142, 144, 149, 151, 152, 154, 159, 163, 164, 166, 169, 174, 176, 181
Offset: 1

Views

Author

Gus Wiseman, May 18 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Note the function taking a set s to its binary rank Sum_i 2^(s_i-1) is the inverse of A048793 (binary indices).

Examples

			The terms together with their binary expansions and binary indices begin:
   2:      10 ~ {2}
   3:      11 ~ {1,2}
   4:     100 ~ {3}
   6:     110 ~ {2,3}
   9:    1001 ~ {1,4}
  11:    1011 ~ {1,2,4}
  12:    1100 ~ {3,4}
  16:   10000 ~ {5}
  18:   10010 ~ {2,5}
  23:   10111 ~ {1,2,3,5}
  26:   11010 ~ {2,4,5}
  29:   11101 ~ {1,3,4,5}
  33:  100001 ~ {1,6}
  38:  100110 ~ {2,3,6}
  41:  101001 ~ {1,4,6}
  43:  101011 ~ {1,2,4,6}
  44:  101100 ~ {3,4,6}
  48:  110000 ~ {5,6}
  50:  110010 ~ {2,5,6}
  55:  110111 ~ {1,2,3,5,6}
  58:  111010 ~ {2,4,5,6}
  61:  111101 ~ {1,3,4,5,6}
		

Crossrefs

Numbers k such that A029931(k) is prime.
Union of prime-indexed rows of A118462.
For even instead of prime we have A158704, odd A158705.
For prime indices instead of binary indices we have A316091.
The prime case is A372885, indices A372886.
A000040 lists the prime numbers, A014499 their binary indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A058698 counts partitions of prime numbers, strict A064688.
A372471 lists binary indices of primes, row-sums A372429.
A372687 counts strict partitions of prime binary rank, counted by A372851.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices A372886.
Binary indices:
- listed A048793, sum A029931
- reversed A272020
- opposite A371572, sum A230877
- length A000120, complement A023416
- min A001511, opposite A000012
- max A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359

Programs

  • Mathematica
    Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[#,2]],1]]]&]
Showing 1-10 of 22 results. Next