cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A007689 a(n) = 2^n + 3^n.

Original entry on oeis.org

2, 5, 13, 35, 97, 275, 793, 2315, 6817, 20195, 60073, 179195, 535537, 1602515, 4799353, 14381675, 43112257, 129271235, 387682633, 1162785755, 3487832977, 10462450355, 31385253913, 94151567435, 282446313697, 847322163875
Offset: 0

Views

Author

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 14.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 92.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For odd-indexed members divided by 5 see A096951.
Binomial transform of A000051.
Cf. A074600 - A074624, A082101 (primes).

Programs

Formula

E.g.f.: exp(2*x)*(1+exp(x)).
G.f.: (2-5*x)/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
Sum_{j=0..n-1} a(j) = (1/2)*(3^n - 1) + (2^n - 1). [Jolley] - Gary W. Adamson, Dec 20 2006
Equals double binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
If p[i] = Fibonacci(2i-5) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n) = 2*a(n-1) + 3^(n-1), with a(0)=2. - Vincenzo Librandi, Nov 18 2010
a(n) = A001550(n) - 1 = A000079(n) + A000244(n). - Reinhard Zumkeller, Mar 01 2012

Extensions

Additional comments from Michael Somos, Jun 10 2000

A082103 Numbers n such that 3^n + 2^(n-1) is prime.

Original entry on oeis.org

2, 3, 4, 6, 7, 8, 10, 15, 21, 24, 36, 49, 51, 86, 116, 134, 176, 284, 345, 498, 544, 649, 844, 1051, 1171, 1384, 1497, 1514, 1638, 1856, 2860, 2890, 3235, 3584, 4047, 5990, 7729, 8935, 9907, 15241, 15864, 17629, 19264, 28239, 43730, 46879, 65379, 89468, 128787, 139976
Offset: 1

Views

Author

Labos Elemer, Apr 14 2003

Keywords

Comments

a(51) > 2*10^5. - Robert Price, May 06 2016

Examples

			n=4: 89 = 2*2*2 + 3*3*3*3 is prime.
n=15: 3^15 + 2^14 = 14365291 is prime.
		

Crossrefs

Programs

Extensions

Edited and extended by Robert G. Wilson v, May 25 2004
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar
a(37)-a(50) from Robert Price, May 06 2016

A094473 Smallest prime factor of 2^n+3^n.

Original entry on oeis.org

5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 97, 5, 13, 5, 3041, 5, 13, 5, 41, 5, 13, 5, 17, 5, 13, 5, 97, 5, 13, 5, 1153, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 89, 5, 13, 5, 193, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5, 41, 5, 13, 5, 769, 5, 13, 5, 97, 5, 13, 5, 17, 5, 13, 5
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

If n = 4*k+1 or 4*k+3 then 2^n+3^n is divisible by 5.
If n = 4*k+2 then 2^n+3^n is divisible by 13.
Case n = 4*k including especially n = 2^j cannot be discussed with elementary tools and primality of 2^n+3^n remains open.
a(n) = 17 for n == 8 (mod 16). - Bruno Berselli, Dec 23 2019

Crossrefs

Programs

  • GAP
    List([1..80],n->Factors(2^n+3^n)[1]); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Min(PrimeFactors(2^n+3^n)): n in[1..100]]; // Vincenzo Librandi, Dec 23 2019
    
  • Magma
    [PrimeFactors(2^n+3^n)[1]: n in[1..600]]; // Bruno Berselli, Dec 23 2019
  • Mathematica
    mif[x_]:=Part[Flatten[FactorInteger[x]], 1] Table[mif[2^w+3^w], {w, 1, 75}]
    FactorInteger[#][[1,1]]&/@Table[2^n+3^n,{n,80}] (* Harvey P. Dale, Mar 26 2019 *)
  • PARI
    a(n)=factor(2^n+3^n)[1,1] \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    A094473(n) = { my(k=(2^n+3^n)); forprime(p=2,k,if(!(k%p),return(p))); }; \\ Antti Karttunen, Nov 01 2018
    

Formula

a(n) = A020639(A007689(n)). - Antti Karttunen, Nov 01 2018

A094475 Primes of form 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 641
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

2^n+p^n is prime if n=0;or n=1 and p is a smaller of twin primes; or n=2 and 4+p^2 is prime; or n=3 and 8+p^3 is prime etc. Several conditions have to be satisfied to get a modest number of terms...
n must be zero or a power of two. Checked n being powers of two through 2^22. Thus a(5) > 10^5800000. Primes of this magnitude are rare (about 1 in 13.4 million), so chance of finding one is remote with today's computer algorithms and speeds. - Robert Price, May 02 2013

Examples

			For n=4, p=2^4+5^4=641, so p can be prime even when the exponent is not a prime.
		

Crossrefs

Programs

  • Magma
    [ a: n in [0..2100] | IsPrime(a) where a is 5^n+2^n]; // Vincenzo Librandi, Nov 18 2010
  • Mathematica
    Select[Table[2^n+5^n,{n,0,5000}],PrimeQ] (* Harvey P. Dale, May 28 2014 *)

A294132 Sorted list of prime factors of numbers of the form 3^(2^m) + 2^(2^m) with m >= 0.

Original entry on oeis.org

5, 13, 17, 97, 257, 401, 769, 1153, 3041, 14177, 65537, 286721, 1810433, 2752513, 4043777, 7340033, 13631489, 23068673, 72222721, 319291393, 348061697, 625483777, 3937533953, 54498164737, 106216554497, 121899667073, 151597350913, 342456532993
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2017

Keywords

Comments

Primes p such that the multiplicative order of 3/2 (mod p) is a power of 2.

Examples

			The first 5 such numbers are 5, 13, 97, 6817, 43112257, 1853024483819137. Their prime factorizations are (5), (13), (97), (17) (401), (14177) (3041), (1153) (1607133116929). - _N. J. A. Sloane_, Oct 29 2017
		

Crossrefs

Programs

  • PARI
    print1(5, ", "); forprime(p=13, 342456532993, z=znorder(Mod(3/2, p)); if(2^ispower(z)==z, print1(p, ", ")));

A050244 Numbers k such that 2^k + 3^k is a semiprime.

Original entry on oeis.org

3, 6, 7, 8, 10, 11, 12, 14, 16, 22, 32, 34, 38, 82, 83, 106, 128, 149, 218, 223, 334, 412, 436, 599, 647, 916, 1373, 4414, 7246, 8423, 10118, 10942, 15898, 42422, 65986
Offset: 1

Views

Author

Hugo Pfoertner, May 08 2003

Keywords

Comments

Empirically, the smaller factor of 2^a(n) + 3^a(n) is a term of A294132 for all known terms. a(34) > 22000. - Hugo Pfoertner, Jul 29 2019
Terms for n >= 34 are probable semiprimes. - Tyler Busby, Feb 18 2023
Empirically, this sequence is a subsequence of A093641. No more terms of A093641 less than 10^5 are in this sequence. - Tyler Busby, Feb 20 2023

Examples

			a(1)=3 because 2^3 + 3^3 = 5 * 7.
a(2)=6 because 2^6 + 3^6 = 13 * 61.
a(3)=7 because 2^7 + 3^7 = 5 * 463.
a(4)=8 because 2^8 + 3^8 = 17 * 401.
a(5)=10 because 2^10 + 3^10 = 13 * 4621.
a(6)=11 because 2^11 + 3^11 = 5 * 35839.
a(7)=12 because 2^12 + 3^12 = 97 * 5521.
a(8)=14 because 2^14 + 3^14 = 13 * 369181.
a(9)=16 because 2^16 + 3^16 = 3041 * 14177.
a(10)=22 because 2^22 + 3^22 = 13 * 2414250301.
a(11)=32 because 2^32 + 3^32 = 1153 * 1607133116929.
a(12)=34 because 2^34 + 3^34 = 13 * 1282861452271981.
a(13)=38 because 2^38 + 3^38 = 13 * 103911691734684541.
a(14)=82 because 2^82 + 3^82 = 13 * 102329189594547549657540565413396038701.
a(15)=83 because 2^83 + 3^83 = 5 * 798167678837469920188160718521149336927.
a(16)=106 because 2^106 + 3^106 = 13 * 28900785585664327723593061693364968422740414514061.
a(17)=128 because 2^128 + 3^128 = 257 * 45876204582640401445607833244277975113391731388650867226881.
a(18)=149 because 2^149 + 3^149 = 5 * 24665899002341798194980052306171212216360861465143461865961807325057879.
		

Crossrefs

Extensions

Corrected and extended by Hugo Pfoertner, May 12 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 30 2007
a(28)-a(32) from Sean A. Irvine, Nov 05 2009
a(33) from Hugo Pfoertner, Jul 29 2019
a(34)-a(35) from Tyler Busby, Jan 14 2023

A283653 Numbers k such that 3^k + (-2)^k is prime.

Original entry on oeis.org

0, 2, 3, 4, 5, 17, 29, 31, 53, 59, 101, 277, 647, 1061, 2381, 2833, 3613, 3853, 3929, 5297, 7417, 90217, 122219, 173191, 256199, 336353, 485977, 591827, 1059503
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 12 2017

Keywords

Comments

Numbers j such that both 3^j + (-2)^j and 3^j + (-4)^j are primes: 0, 3, 4, 17, 59, ...
See Michael Somos comment in A082101.
Probably this is just A057468 with 0,2,4 added, because we already know that if another even number belong to this sequence it must be greater than log_3(10^16000000) = about 3.3*10^7. This is because 3^n+2^n can be a prime with n>0 only if n is a power of 2. - Giovanni Resta, Mar 12 2017

Examples

			4 is in this sequence because 3^4 + (-2)^4 = 97 is prime.
		

Crossrefs

Cf. A174326. Subsequence of A087451. Supersequence of A057468.
Cf. A082101.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(3^n+(-2)^n)];
    
  • Mathematica
    Select[Range[0, 10000], PrimeQ[3^# + (-2)^#] &] (* G. C. Greubel, Jul 29 2018 *)
  • PARI
    is(n)=isprime(3^n+(-2)^n) \\ Charles R Greathouse IV, Mar 16 2017

A094476 Primes of form 2^j + 17^j.

Original entry on oeis.org

2, 19, 293, 83537
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

The number j must be zero or a power of 2. Checked j being powers of two through 2^20. Thus a(5) > 10^2500000. Primes of this magnitude are rare (about 1 in 5.9 million), so chance of finding one is remote with today's computer algorithms and speeds. - Robert Price, Apr 29 2013

Examples

			j=0: p=1+1=2;j=1: p=2+17=19;j=2: p=4+289=293;j=4: p=16+83521=83537; the j exponents are powers of 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[2^n+17^n,{n,0,2000}],PrimeQ] (* Harvey P. Dale, Nov 27 2012 *)

A094488 Primes p such that 2^j+p^j are primes for j=0,1,2,8.

Original entry on oeis.org

137, 2087, 2687, 16067, 24107, 29207, 154787, 155537, 223007, 331907, 427877, 662897, 708137, 769997, 802127, 849047, 869597, 891887, 1031117, 1068497, 1261487, 1336337, 1712567, 1794677, 1807997, 1838297, 1990577, 2189987
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Examples

			For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=256+p^8.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s8=256+Prime[j]^8; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[200000]],AllTrue[{#+2,#^2+4,#^8+256},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 03 2018 *)

A094491 Primes p such that 2^j+p^j are primes for j=0,4,8,128.

Original entry on oeis.org

223, 2104547, 2403689, 4268233, 17620457, 21848647, 23487311, 29205821, 42889591, 43458859, 47899487, 48309017, 54666847, 61227457, 73038689, 81742547, 83574457, 85031153, 87285403, 95017003, 100339517, 103136867
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

Primes of 2^j+p^j form are a generalization of Fermat-primes. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094490.

Examples

			For j=0 1+1=2 is prime; other conditions are: because of p^4+16==prime; 3rd and 4th conditions are as follows: prime=p^8+256 and prime=2^128+p^128.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s4=16+Prime[j]^4;s8=256+Prime[j]^8;s128=2^128+Prime[j]^128 If[PrimeQ[s0]&&PrimeQ[s4]&&PrimeQ[s8]&&PrimeQ[s128], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]

Extensions

a(5)-a(22) from Donovan Johnson, Oct 12 2008
Showing 1-10 of 39 results. Next