cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A070939 Length of binary representation of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2002

Keywords

Comments

Zero is assumed to be represented as 0.
For n>1, n appears 2^(n-1) times. - Lekraj Beedassy, Apr 12 2006
a(n) is the permanent of the n X n 0-1 matrix whose (i,j) entry is 1 iff i=1 or i=j or i=2*j. For example, a(4)=3 is per([[1, 1, 1, 1], [1, 1, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]). - David Callan, Jun 07 2006
a(n) is the number of different contiguous palindromic bit patterns in the binary representation of n; for examples, for 5=101_2 the bit patterns are 0, 1, 101; for 7=111_2 the corresponding patterns are 1, 11, 111; for 13=1101_2 the patterns are 0, 1, 11, 101. - Hieronymus Fischer, Mar 13 2012
A103586(n) = a(n + a(n)); a(A214489(n)) = A103586(A214489(n)). - Reinhard Zumkeller, Jul 21 2012
Number of divisors of 2^n that are <= n. - Clark Kimberling, Apr 21 2019

Examples

			8 = 1000 in binary has length 4.
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • L. Levine, Fractal sequences and restricted Nim, Ars Combin. 80 (2006), 113-127.

Crossrefs

A029837(n+1) gives the length of binary representation of n without the leading zeros (i.e., when zero is represented as the empty sequence). For n > 0 this is equal to a(n).
This is Guy Steele's sequence GS(4, 4) (see A135416).
Cf. A083652 (partial sums).

Programs

  • Haskell
    a070939 n = if n < 2 then 1 else a070939 (n `div` 2) + 1
    a070939_list = 1 : 1 : l [1] where
       l bs = bs' ++ l bs' where bs' = map (+ 1) (bs ++ bs)
    -- Reinhard Zumkeller, Jul 19 2012, Jun 07 2011
    
  • Magma
    A070939:=func< n | n eq 0 select 1 else #Intseq(n, 2) >; [ A070939(n): n in [0..104] ]; // Klaus Brockhaus, Jan 13 2011
    
  • Maple
    A070939 := n -> `if`(n=0, 1, ilog2(2*n)):
    seq(A070939(n), n=0..104); # revised by Peter Luschny, Aug 10 2017
  • Mathematica
    Table[Length[IntegerDigits[n, 2]], {n, 0, 50}] (* Stefan Steinerberger, Apr 01 2006 *)
    Join[{1},IntegerLength[Range[110],2]] (* Harvey P. Dale, Aug 18 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], BitLength[n]]; (* Michael Somos, Jul 10 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, #binary(n))} /* Michael Somos, Aug 31 2012 */
    
  • PARI
    apply( {A070939(n)=exponent(n+!n)+1}, [0..99]) \\ works for negative n and is much faster than the above. - M. F. Hasler, Jan 04 2014, updated Feb 29 2020
    
  • Python
    def a(n): return len(bin(n)[2:])
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jan 01 2021
    
  • Python
    def A070939(n): return 1 if n == 0 else n.bit_length() # Chai Wah Wu, May 12 2022
  • Sage
    def A070939(n) : return (2*n).exact_log(2) if n != 0 else 1
    [A070939(n) for n in range(100)] # Peter Luschny, Aug 08 2012
    

Formula

a(0) = 1; for n >= 1, a(n) = 1 + floor(log_2(n)) = 1 + A000523(n).
G.f.: 1 + 1/(1-x) * Sum(k>=0, x^2^k). - Ralf Stephan, Apr 12 2002
a(0)=1, a(1)=1 and a(n) = 1+a(floor(n/2)). - Benoit Cloitre, Dec 02 2003
a(n) = A000120(n) + A023416(n). - Lekraj Beedassy, Apr 12 2006
a(2^m + k) = m + 1, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 14 2017
a(n) = A113473(n) if n>0.

Extensions

a(4) corrected by Antti Karttunen, Feb 28 2003

A023416 Number of 0's in binary expansion of n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 4
Offset: 0

Views

Author

Keywords

Comments

Another version (A080791) has a(0) = 0.

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652. Partial sums see A059015.
With initial zero and shifted right, same as A080791.
Cf. A055641 (for base 10), A188859.

Programs

  • Haskell
    a023416 0 = 1
    a023416 1 = 0
    a023416 n = a023416 n' + 1 - m where (n', m) = divMod n 2
    a023416_list = 1 : c [0] where c (z:zs) = z : c (zs ++ [z+1,z])
    -- Reinhard Zumkeller, Feb 19 2012, Jun 16 2011, Mar 07 2011
    
  • Maple
    A023416 := proc(n)
        if n = 0 then
            1;
        else
            add(1-e,e=convert(n,base,2)) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2012
  • Mathematica
    Table[ Count[ IntegerDigits[n, 2], 0], {n, 0, 100} ]
    DigitCount[Range[0,110],2,0] (* Harvey P. Dale, Jan 10 2013 *)
  • PARI
    a(n)=if(n==0,1,n=binary(n); sum(i=1, #n, !n[i])) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    a(n)=if(n==0,1,#binary(n)-hammingweight(n)) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    a(n) = if(n == 0, 1, 1+logint(n,2) - hammingweight(n))  \\ Gheorghe Coserea, Sep 01 2015
    
  • Python
    def A023416(n): return n.bit_length()-n.bit_count() if n else 1 # Chai Wah Wu, Mar 13 2023

Formula

a(n) = 1, if n = 0; 0, if n = 1; a(n/2)+1 if n even; a((n-1)/2) if n odd.
a(n) = 1 - (n mod 2) + a(floor(n/2)). - Marc LeBrun, Jul 12 2001
G.f.: 1 + 1/(1-x) * Sum_{k>=0} x^(2^(k+1))/(1+x^2^k). - Ralf Stephan, Apr 15 2002
a(n) = A070939(n) - A000120(n).
a(n) = A008687(n+1) - 1.
a(n) = A000120(A035327(n)).
From Hieronymus Fischer, Jun 12 2012: (Start)
a(n) = m + 1 + Sum_{j=1..m+1} (floor(n/2^j) - floor(n/2^j + 1/2)), where m=floor(log_2(n)).
General formulas for the number of digits <= d in the base p representation n, where 0 <= d < p.
a(n) = m + 1 + Sum_{j=1..m+1} (floor(n/p^j) - floor(n/p^j + (p-d-1)/p)), where m=floor(log_p(n)).
G.f.: 1 + (1/(1-x))*Sum_{j>=0} ((1-x^(d*p^j))*x^p^j + (1-x^p^j)*x^p^(j+1)/(1-x^p^(j+1))). (End)
Product_{n>=1} ((2*n)/(2*n+1))^((-1)^a(n)) = sqrt(2)/2 (A010503) (see Allouche & Shallit link). - Michel Marcus, Aug 31 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 2 - 2*log(2) (A188859) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021

A030190 Binary Champernowne sequence (or word): write the numbers 0,1,2,3,4,... in base 2 and juxtapose.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

a(A003607(n)) = 0 and for n > 0: a(A030303(n)) = 1. - Reinhard Zumkeller, Dec 11 2011
An irregular table in which the n-th row lists the bits of n (see the example section). - Jason Kimberley, Dec 07 2012
The binary Champernowne constant: it is normal in base 2. - Jason Kimberley, Dec 07 2012
This is the characteristic function of A030303, which gives the indices of 1's in this sequence and has first differences given by A066099. - M. F. Hasler, Oct 12 2020

Examples

			As an array, this begins:
0,
1,
1, 0,
1, 1,
1, 0, 0,
1, 0, 1,
1, 1, 0,
1, 1, 1,
1, 0, 0, 0,
1, 0, 0, 1,
1, 0, 1, 0,
1, 0, 1, 1,
1, 1, 0, 0,
1, 1, 0, 1,
1, 1, 1, 0,
1, 1, 1, 1,
1, 0, 0, 0, 0,
1, 0, 0, 0, 1,
...
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Cf. A007376, A003137, A030308. Same as and more fundamental than A030302, but I have left A030302 in the OEIS because there are several sequences that are based on it (A030303 etc.). - N. J. A. Sloane.
a(n) = T(A030530(n), A083652(A030530(n))-n-1), T as defined in A083651, a(A083652(k))=1.
Tables in which the n-th row lists the base b digits of n: this sequence and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
A076478 is a similar sequence.
For run lengths see A056062; see also A318924.
See also A066099 for (run lengths of 0s) + 1 = first difference of positions of 1s given by A030303.

Programs

  • Haskell
    import Data.List (unfoldr)
    a030190 n = a030190_list !! n
    a030190_list = concatMap reverse a030308_tabf
    -- Reinhard Zumkeller, Jun 16 2012, Dec 11 2011
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,2)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten[ Table[ IntegerDigits[n, 2], {n, 0, 26}]] (* Robert G. Wilson v, Mar 08 2005 *)
    First[RealDigits[ChampernowneNumber[2], 2, 100, 0]] (* Paolo Xausa, Jun 16 2024 *)
  • PARI
    A030190_row(n)=if(n,binary(n),[0]) \\ M. F. Hasler, Oct 12 2020
    
  • Python
    from itertools import count, islice
    def A030190_gen(): return (int(d) for m in count(0) for d in bin(m)[2:])
    A030190_list = list(islice(A030190_gen(),30)) # Chai Wah Wu, Jan 07 2022

A000788 Total number of 1's in binary expansions of 0, ..., n.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 9, 12, 13, 15, 17, 20, 22, 25, 28, 32, 33, 35, 37, 40, 42, 45, 48, 52, 54, 57, 60, 64, 67, 71, 75, 80, 81, 83, 85, 88, 90, 93, 96, 100, 102, 105, 108, 112, 115, 119, 123, 128, 130, 133, 136, 140, 143, 147, 151, 156, 159, 163, 167, 172, 176, 181, 186
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A000120.
The graph of this sequence is a version of the Takagi curve: see Lagarias (2012), Section 9, especially Theorem 9.1. - N. J. A. Sloane, Mar 12 2016
a(n-1) is the largest possible number of ordered pairs (a,b) such that a/b is a prime in a subset of the positive integers with n elements. - Yifan Xie, Feb 21 2025

References

  • J.-P. Allouche & J. Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94
  • R. Bellman and H. N. Shapiro, On a problem in additive number theory, Annals Math., 49 (1948), 333-340. See Eq. 1.9. [From N. J. A. Sloane, Mar 12 2009]
  • L. E. Bush, An asymptotic formula for the average sums of the digits of integers, Amer. Math. Monthly, 47 (1940), pp. 154-156. [From the bibliography of Stolarsky, 1977]
  • P. Cheo and S. Yien, A problem on the k-adic representation of positive integers (Chinese; English summary), Acta Math. Sinica, 5 (1955), pp. 433-438. [From the bibliography of Stolarsky, 1977]
  • M. P. Drazin and J. S. Griffith, On the decimal representation of integers, Proc. Cambridge Philos. Soc., (4), 48 (1952), pp. 555-565. [From the bibliography of Stolarsky, 1977]
  • E. N. Gilbert, Games of identification or convergence, SIAM Review, 4 (1962), 16-24.
  • Grabner, P. J.; Kirschenhofer, P.; Prodinger, H.; Tichy, R. F.; On the moments of the sum-of-digits function. Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
  • R. L. Graham, On primitive graphs and optimal vertex assignments, pp. 170-186 of Internat. Conf. Combin. Math. (New York, 1970), Annals of the NY Academy of Sciences, Vol. 175, 1970.
  • E. Grosswald, Properties of some arithmetic functions, J. Math. Anal. Appl., 28 (1969), pp.405-430.
  • Donald E. Knuth, The Art of Computer Programming, volume 3 Sorting and Searching, section 5.3.4, subsection Bitonic sorting, with C'(p) = a(p-1).
  • Hiu-Fai Law, Spanning tree congestion of the hypercube, Discrete Math., 309 (2009), 6644-6648 (see p(m) on page 6647).
  • Z. Li and E. M. Reingold, Solution of a divide-and-conquer maximin recurrence, SIAM J. Comput., 18 (1989), 1188-1200.
  • B. Lindström, On a combinatorial problem in number theory, Canad. Math. Bull., 8 (1965), 477-490.
  • Mauclaire, J.-L.; Murata, Leo; On q-additive functions. I. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 6, 274-276.
  • Mauclaire, J.-L.; Murata, Leo; On q-additive functions. II. Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 9, 441-444.
  • M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., 3 (1974), 255-261.
  • L. Mirsky, A theorem on representations of integers in the scale of r, Scripta Math., 15 (1949), pp. 11-12.
  • I. Shiokawa, On a problem in additive number theory, Math. J. Okayama Univ., 16 (1974), pp.167-176. [From the bibliography of Stolarsky, 1977]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., 32 (1977), 717-730.
  • Trollope, J. R. An explicit expression for binary digital sums. Math. Mag. 41 1968 21-25.

Crossrefs

For number of 0's in binary expansion of 0, ..., n see A059015.
The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652.

Programs

  • Haskell
    a000788_list = scanl1 (+) A000120_list
    -- Walt Rorie-Baety, Jun 30 2012
    
  • Haskell
    {a000788 0 = 0; a00788 n = a000788 n2 + a000788 (n-n2-1) + (n-n2) where n2 = n `div` 2}
    -- Walt Rorie-Baety, Jul 15 2012
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+add(i, i=Bits[Split](n))) end:
    seq(a(n), n=0..62);  # Alois P. Heinz, Nov 11 2024
  • Mathematica
    a[n_] := Count[ Table[ IntegerDigits[k, 2], {k, 0, n}], 1, 2]; Table[a[n], {n, 0, 62}] (* Jean-François Alcover, Dec 16 2011 *)
    Table[Plus@@Flatten[IntegerDigits[Range[n], 2]], {n, 0, 62}] (* Alonso del Arte, Dec 16 2011 *)
    Accumulate[DigitCount[Range[0,70],2,1]] (* Harvey P. Dale, Jun 08 2013 *)
  • PARI
    A000788(n)={ n<3 && return(n); if( bittest(n,0) \\
    , n+1 == 1<A000788(n>>1)*2+n>>1+1 \\
    , n == 1<A000788(n>>=1)+A000788(n-1)+n )} \\ M. F. Hasler, Nov 22 2009
    
  • PARI
    a(n)=sum(k=1,n,hammingweight(k)) \\ Charles R Greathouse IV, Oct 04 2013
    
  • PARI
    a(n) = if (n==0, 0, m = logint(n, 2); r = n % 2^m; m*2^(m-1) + r + 1 + a(r)); \\ Michel Marcus, Mar 27 2018
    
  • PARI
    a(n)={n++; my(t, i, s); c=n; while(c!=0, i++; c\=2); for(j=1, i, d=(n\2^(i-j))%2; t+=(2^(i-j)*(s*d+d*(i-j)/2)); s+=d); t} \\ David A. Corneth, Nov 26 2024
    (C++) /* See David W. Wilson link. */
    
  • Python
    def A000788(n): return sum(i.bit_count() for i in range(1,n+1)) # Chai Wah Wu, Mar 01 2023
    
  • Python
    def A000788(n): return (n+1)*n.bit_count()+(sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1) # Chai Wah Wu, Nov 11 2024

Formula

McIlroy (1974) gives bounds and recurrences. - N. J. A. Sloane, Mar 24 2014
Stolarsky (1977) studies the asymptotics, and gives at least nine references to earlier work on the problem. I have added all the references that were not here already. - N. J. A. Sloane, Apr 06 2014
a(n) = Sum_{k=1..n} A000120(k). - Benoit Cloitre, Dec 19 2002
a(0) = 0, a(2n) = a(n)+a(n-1)+n, a(2n+1) = 2a(n)+n+1. - Ralf Stephan, Sep 13 2003
a(n) = n*log_2(n)/2 + O(n); a(2^n)=n*2^(n-1)+1. - Benoit Cloitre, Sep 25 2003 (The first result is due to Bellman and Shapiro, - N. J. A. Sloane, Mar 24 2014)
a(n) = n*log_2(n)/2+n*F(log_2(n)) where F is a nowhere differentiable continuous function of period 1 (see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
G.f.: (1/(1-x)^2) * Sum_{k>=0} x^2^k/(1+x^2^k). - Ralf Stephan, Apr 19 2003
a(2^n-1) = A001787(n) = n*2^(n-1). - M. F. Hasler, Nov 22 2009
a(4^n-2) = n(4^n-2).
For real n, let f(n) = [n]/2 if [n] even, n-[n+1]/2 otherwise. Then a(n) = Sum_{k>=0} 2^k*f((n+1)/2^k).
a(A000225(n)) = A173921(A000225(n)) = A001787(n); a(A000079(n)) = A005183(n). - Reinhard Zumkeller, Mar 04 2010
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/2^j + 1/2)*(2n + 2 - floor(n/2^j + 1/2))*2^j - floor(n/2^j)*(2n + 2 - (1 + floor(n/2^j)) * 2^j)), where m=floor(log_2(n)).
a(n) = (n+1)*A000120(n) - 2^(m-1) + 1/4 + (1/2)*Sum_{j=1..m+1} ((floor(n/2^j) + 1/2)^2 - floor(n/2^j + 1/2)^2)*2^j, where m=floor(log_2(n)).
a(2^m-1) = m*2^(m-1).
(This is the total number of '1' digits occurring in all the numbers with <= m bits.)
Generic formulas for the number of digits >= d in the base p representations of all integers from 0 to n, where 1<= d < p.
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/p^j + (p-d)/p)*(2n + 2 + ((p-2*d)/p - floor(n/p^j + (p-d)/p))*p^j) - floor(n/p^j)*(2n + 2 - (1+floor(n/p^j)) * p^j)), where m=floor(log_p(n)).
a(n) = (n+1)*F(n,p,d) + (1/2)*Sum_{j=1..m+1} ((((p-2*d)/p)*floor(n/p^j+(p-d)/p) + floor(n/p^j))*p^j - (floor(n/p^j+(p-d)/p)^2 - floor(n/p^j)^2)*p^j), where m=floor(log_p(n)) and F(n,p,d) = number of digits >= d in the base p representation of n.
a(p^m-1) = (p-d)*m*p^(m-1).
(This is the total number of digits >= d occurring in all the numbers with <= m digits in base p representation.)
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(d*p^j) - x^(p*p^j))/(1-x^(p*p^j)). (End)
a(n) = Sum_{k=1..n} A000120(A240857(n,k)). - Reinhard Zumkeller, Apr 14 2014
For n > 0, if n is written as 2^m + r with 0 <= r < 2^m, then a(n) = m*2^(m-1) + r + 1 + a(r). - Shreevatsa R, Mar 20 2018
a(n) = n*(n+1)/2 + Sum_{k=1..floor(n/2)} ((2k-1)((g(n,k)-1)*2^(g(n,k) + 1) + 2) - (n+1)*(g(n,k)+1)*g(n,k)/2), where g(n,k) = floor(log_2(n/(2k-1))). - Fabio Visonà, Mar 17 2020
From Jeffrey Shallit, Aug 07 2021: (Start)
A 2-regular sequence, satisfying the identities
a(4n+1) = -a(2n) + a(2n+1) + a(4n)
a(4n+2) = -2a(2n) + 2a(2n+1) + a(4n)
a(4n+3) = -4a(n) + 4a(2n+1)
a(8n) = 4a(n) - 8a(2n) + 5a(4n)
a(8n+4) = -9a(2n) + 5a(2n+1) + 4a(4n)
for n>=0. (End)
a(n) = Sum_{k=0..floor(log_2(n+1))} k * A360189(n,k). - Alois P. Heinz, Mar 06 2023

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 15 2001

A059015 Total number of 0's in binary expansions of 0, ..., n.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 6, 9, 11, 13, 14, 16, 17, 18, 18, 22, 25, 28, 30, 33, 35, 37, 38, 41, 43, 45, 46, 48, 49, 50, 50, 55, 59, 63, 66, 70, 73, 76, 78, 82, 85, 88, 90, 93, 95, 97, 98, 102, 105, 108, 110, 113, 115, 117, 118, 121, 123, 125, 126, 128, 129, 130, 130, 136, 141
Offset: 0

Views

Author

Patrick De Geest, Dec 15 2000

Keywords

Comments

Partial sums of A023416. - Reinhard Zumkeller, Jul 15 2011
The graph of this sequence is a version of the Takagi curve: see Lagarias (2012), Section 9, especially Theorem 9.1. - N. J. A. Sloane, Mar 12 2016

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652.

Programs

  • Haskell
    a059015 n = a059015_list !! n
    a059015_list = scanl1 (+) $ map a023416 [0..]
    -- Reinhard Zumkeller, Jul 15 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, a(n-1)+add(1-i, i=Bits[Split](n))) end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Nov 11 2024
  • Mathematica
    Accumulate[ Table[ Count[ IntegerDigits[n, 2], 0], {n, 0, 65}]] (* Jean-François Alcover, Oct 03 2012 *)
    Accumulate[DigitCount[Range[0,70],2,0]] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    v=vector(100,i,1);for(i=1,#v-1,v[i+1] = v[i] + #binary(i) - hammingweight(i)); v \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    a(n)=if(n, my(m=logint(n,2)); 2 + (m+1)*(n+1) - 2^(m+1) + sum(j=1,m+1, my(t=floor(n/2^j + 1/2)); (n>>j)*(2*n + 2 - (1 + (n>>j))<Charles R Greathouse IV, Dec 14 2015
    
  • Python
    def A059015(n): return 2+(n+1)*(m:=(n+1).bit_length())-(1<Chai Wah Wu, Mar 01 2023
    
  • Python
    def A059015(n): return 2+(n+1)*((t:=(n+1).bit_length())-n.bit_count())-(1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1) # Chai Wah Wu, Nov 11 2024

Formula

a(n) = b(n)+1, with b(2n) = b(n)+b(n-1)+n, b(2n+1) = 2b(n)+n. - Ralf Stephan, Sep 13 2003
From Hieronymus Fischer, Jun 10 2012: (Start)
With m = floor(log_2(n)):
a(n) = 2 + (m+1)*(n+1) - 2^(m+1) + (1/2)*Sum_{j=1..m+1} (floor(n/2^j)*(2*n + 2 - (1 + floor(n/2^j))*2^j) - floor(n/2^j + 1/2)*(2*n + 2 - floor(n/2^j + 1/2)*2^j)).
a(n) = A083652(n) - (n+1)*A000120(n) + 2^(m-1) - (1/4) + (1/2)*sum_{j=1..m+1} (floor(n/2^j + 1/2)^2 - (floor(n/2^j) + 1/2)^2)*2^j.
a(2^m-1) = 2 + (m-2)*2^(m-1)
(this is the total number of zero digits occurring in all the numbers with <= m places).
G.f.: 1/(1 - x) + (1/(1 - x)^2)*Sum_{j>=0} x^(2*2^j)/(1 + x^(2^j)); corrected by Ilya Gutkovskiy, Mar 28 2018
General formulas for the number of digits <= d in the base p representations of all integers from 0 to n, where 0 <= d < p.
With m = floor(log_p(n)):
a(n) = 1 + (m+1)*(n+1) - (p^(m+1)-1)/(p-1) + (1/2)*sum_{j=1..m+1} (floor(n/p^j)*(2n + 2 - (1 + floor(n/p^j))*p^j) - floor(n/p^j + (p-d-1)/p)*(2n + 2 + ((p-2*d-2)/p - floor(n/p^j + (p-d-1)/p))*p^j)).
a(n) = H(n,p) - (n+1)*F(n,p,d+1) + (1/2)*sum_{j=1..m+1} ((floor(n/p^j + (p-d-1)/p)^2 - floor(n/p^j)^2)*p^j - (((p - 2*d-2)/p)*floor(n/p^j + (p-d-1)/p) + floor(n/p^j))*p^j), where H(n,p) = sum of number of digits in the base p representations of 0 to n and F(n,p,d) = number of digits >=d in the base p representation of n.
a(p^m-1) = 1 + (d+1)*m*p^(m-1) - (p^m-1)/(p-1).
(this is the total number of digits <= d occurring in all the numbers with <= m places in base p representation).
G.f.: 1/(1-x) + (1/(1-x)^2)*Sum_{j>=0} ((1-x^(d*p^j))*x^p^j + (1-x^p^j)*x^p^(j+1)/(1-x^p^(j+1))). (End)

A359359 Sum of positions of zeros in the binary expansion of n, where positions are read starting with 1 from the left (big-endian).

Original entry on oeis.org

1, 0, 2, 0, 5, 2, 3, 0, 9, 5, 6, 2, 7, 3, 4, 0, 14, 9, 10, 5, 11, 6, 7, 2, 12, 7, 8, 3, 9, 4, 5, 0, 20, 14, 15, 9, 16, 10, 11, 5, 17, 11, 12, 6, 13, 7, 8, 2, 18, 12, 13, 7, 14, 8, 9, 3, 15, 9, 10, 4, 11, 5, 6, 0, 27, 20, 21, 14, 22, 15, 16, 9, 23, 16, 17, 10
Offset: 0

Views

Author

Gus Wiseman, Jan 03 2023

Keywords

Examples

			The binary expansion of 100 is (1,1,0,0,1,0,0), with zeros at positions {3,4,6,7}, so a(100) = 20.
		

Crossrefs

The number of zeros is A023416, partial sums A059015.
For positions of 1's we have A230877, reversed A029931.
The reversed version is A359400.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion.
A039004 lists the positions of zeros in A345927.

Programs

  • Mathematica
    Table[Total[Join@@Position[IntegerDigits[n,2],0]],{n,0,100}]

Formula

a(n>0) = binomial(A029837(n)+1,2) - A230877(n).

A124757 Zero-based weighted sum of compositions in standard order.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 3, 4, 5, 6, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14, 15, 0, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 7, 8, 9, 10, 5, 6, 7, 8, 8, 9, 10, 11, 9, 10, 11, 12, 12, 13, 14
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
Sum of all positions of 1's except the last in the reversed binary expansion of n. For example, the reversed binary expansion of 14 is (0,1,1,1), so a(14) = 2 + 3 = 5. Keeping the last position gives A029931. - Gus Wiseman, Jan 17 2023

Examples

			Composition number 11 is 2,1,1; 0*2+1*1+2*1 = 3, so a(11) = 3.
The table starts:
  0
  0
  0 1
  0 1 2 3
		

Crossrefs

Cf. A066099, A070939, A029931, A011782 (row lengths), A001788 (row sums).
Row sums of A048793 if we delete the last part of every row.
For prime indices instead of standard comps we have A359674, rev A359677.
Positions of first appearances are A359756.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reverse A030308.
A230877 adds up positions of 1's in binary expansion, length A000120.
A359359 adds up positions of 0's in binary expansion, length A023416.

Programs

  • Mathematica
    Table[Total[Most[Join@@Position[Reverse[IntegerDigits[n,2]],1]]],{n,30}]

Formula

For a composition b(1),...,b(k), a(n) = Sum_{i=1..k} (i-1)*b(i).
For n>0, a(n) = A029931(n) - A070939(n).

A123753 Partial sums of A070941.

Original entry on oeis.org

1, 3, 6, 9, 13, 17, 21, 25, 30, 35, 40, 45, 50, 55, 60, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 12 2006

Keywords

Crossrefs

Programs

  • Maple
    A123753 := proc(n) local i, J, z; i := n+1: J := i; i := i-1; z := 1;
    while 0 <= i do J := J+i; i := i-z; z := z+z od; J end:
    seq(A123753(n), n=0..57); # Peter Luschny, Nov 30 2017
    # Alternatively:
    a := n -> (n+1)*(1 + ilog2(2*n+3)) - 2^ilog2(2*n+3) + 1:
    seq(a(n), n=0..57); # Peter Luschny, Dec 02 2017
  • Mathematica
    a[n_] := (n + 1)(1 + IntegerLength[n + 1, 2]) - 2^IntegerLength[n + 1, 2] + 1;
    Table[a[n], {n, 0, 57}] (* Peter Luschny, Dec 02 2017 *)
  • Python
    def A123753(n):
        s, i, z = n+1, n, 1
        while 0 <= i: s += i; i -= z; z += z
        return s
    print([A123753(n) for n in range(0, 58)]) # Peter Luschny, Nov 30 2017
    
  • Python
    def A123753(n): return (n+1)*(1+(m:=n.bit_length()))-(1<Chai Wah Wu, Mar 29 2023

Formula

a(n) = A003314(n+1)+1. - Reinhard Zumkeller, Oct 12 2006
Let bil(n) = floor(log_2(n)) + 1 for n>0, bil(0) = 0 and b(n) = n + n*bil(n) - 2^bil(n) + 1 then a(n) = b(n+1). (This suggests that '0' be prepended to this sequence.) - Peter Luschny, Dec 02 2017

A030530 n appears A070939(n) times.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a030530 n = a030530_list !! (n-1)
    a030530_list = 0 : concatMap (\n -> unfoldr
       (\x -> if x == 0 then Nothing else Just (n, div x 2)) n) [1..]
    -- Reinhard Zumkeller, Dec 05 2011
  • Mathematica
    Join[{0},Table[Table[n,IntegerLength[n,2]],{n,30}]]//Flatten (* Harvey P. Dale, Oct 20 2016 *)

Formula

A030190(n) = T(a(n), A083652(a(n))-n-1), T as defined in A083651.
a(A083652(k)) = k+1.
Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=1} (-1)^(n+1)/A053738(n) = 0.90457767... . - Amiram Eldar, Feb 18 2024

A120385 If a(n-1) = 1 then largest value so far + 1, otherwise floor(a(n-1)/2); or table T(n,k) with T(n,0) = n, T(n,k+1) = floor(T(n,k)/2).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 2, 1, 5, 2, 1, 6, 3, 1, 7, 3, 1, 8, 4, 2, 1, 9, 4, 2, 1, 10, 5, 2, 1, 11, 5, 2, 1, 12, 6, 3, 1, 13, 6, 3, 1, 14, 7, 3, 1, 15, 7, 3, 1, 16, 8, 4, 2, 1, 17, 8, 4, 2, 1, 18, 9, 4, 2, 1, 19, 9, 4, 2, 1, 20, 10, 5, 2, 1, 21, 10, 5, 2, 1, 22, 11, 5, 2, 1, 23, 11, 5, 2, 1, 24, 12, 6, 3, 1, 25
Offset: 1

Views

Author

Keywords

Comments

Although not strictly a fractal sequence as defined in the Kimberling link, this sequence has many fractal properties. If the first instance of each value is removed, the result is the original sequence with each row repeated twice. Removing all odd-indexed instances of each value does give the original sequence.

Examples

			The table starts:
  1;
  2, 1;
  3, 1;
  4, 2, 1;
  5, 2, 1;
  6, 3, 1;
  7, 3, 1;
  8, 4, 2, 1;
		

Crossrefs

Cf. A029837 (row lengths), A083652 (position of first n).
Cf. A005187 (row sums). A001477, A050292, A080277.

Programs

  • Maple
    T:= proc(n) T(n):= `if`(n=1, 1, [n, T(iquo(n, 2))][]) end:
    seq(T(n), n=1..30);  # Alois P. Heinz, Feb 12 2019
  • Mathematica
    Flatten[Function[n,NestWhile[Append[#, Floor[Last[#]/2]] &, {n}, Last[#] != 1 &]][#] & /@ Range[50]] (* Birkas Gyorgy, Apr 14 2011 *)

Formula

T(n,k) = floor(n/2^(k-1)).
From Peter Bala, Feb 02 2013: (Start)
The n-th row polynomial R(n,t) = Sum_{k>=0} t^k*floor(n/2^k) and satisfies the recurrence equation R(n,t) = t*R(floor(n/2),t) + n, with R(1,t) = 1.
O.g.f. Sum_{n>=1} R(n,t)*x^n = 1/(1-x)*Sum_{n>=0} t^n*x^(2^n)/(1 - x^(2^n)).
Product_{n>=1} ( 1 + x^((t^n - 2^n)/(t-2)) ) = 1 + Sum_{n>=1} x^R(n,t) = 1 + x + x^(2 + t) + x^(3 + t) + x^(4 + 2*t + t^2) + .... For related sequences see A050292 (t = -1), A001477(t = 0), A005187 (t = 1) and A080277 (t = 2).
(End)
Showing 1-10 of 17 results. Next