cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000325 a(n) = 2^n - n.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 58, 121, 248, 503, 1014, 2037, 4084, 8179, 16370, 32753, 65520, 131055, 262126, 524269, 1048556, 2097131, 4194282, 8388585, 16777192, 33554407, 67108838, 134217701, 268435428, 536870883, 1073741794, 2147483617
Offset: 0

Views

Author

Rosario Salamone (Rosario.Salamone(AT)risc.uni-linz.ac.at)

Keywords

Comments

Number of permutations of degree n with at most one fall; called "Grassmannian permutations" by Lascoux and Schützenberger. - Axel Kohnert (Axel.Kohnert(AT)uni-bayreuth.de)
Number of different permutations of a deck of n cards that can be produced by a single shuffle. [DeSario]
Number of Dyck paths of semilength n having at most one long ascent (i.e., ascent of length at least two). Example: a(4)=12 because among the 14 Dyck paths of semilength 4, the only paths that have more than one long ascent are UUDDUUDD and UUDUUDDD (each with two long ascents). Here U = (1, 1) and D = (1, -1). Also number of ordered trees with n edges having at most one branch node (i.e., vertex of outdegree at least two). - Emeric Deutsch, Feb 22 2004
Number of {12,1*2*,21*}-avoiding signed permutations in the hyperoctahedral group.
Number of 1342-avoiding circular permutations on [n+1].
2^n - n is the number of ways to partition {1, 2, ..., n} into arithmetic progressions, where in each partition all the progressions have the same common difference and have lengths at least 1. - Marty Getz (ffmpg1(AT)uaf.edu) and Dixon Jones (fndjj(AT)uaf.edu), May 21 2005
if b(0) = x and b(n) = b(n-1) + b(n-1)^2*x^(n-2) for n > 0, then b(n) is a polynomial of degree a(n). - Michael Somos, Nov 04 2006
The chromatic invariant of the Mobius ladder graph M_n for n >= 2. - Jonathan Vos Post, Aug 29 2008
Dimension sequence of the dual alternative operad (i.e., associative and satisfying the identity xyz + yxz + zxy + xzy + yzx + zyx = 0) over the field of characteristic 3. - Pasha Zusmanovich, Jun 09 2009
An elephant sequence, see A175654. For the corner squares six A[5] vectors, with decimal values between 26 and 176, lead to this sequence (without the first leading 1). For the central square these vectors lead to the companion sequence A168604. - Johannes W. Meijer, Aug 15 2010
a(n+1) is also the number of order-preserving and order-decreasing partial isometries (of an n-chain). - Abdullahi Umar, Jan 13 2011
A040001(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, May 12 2012
A130103(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, May 12 2012
The number of labeled graphs with n vertices whose vertex set can be partitioned into a clique and a set of isolated points. - Alex J. Best, Nov 20 2012
For n > 0, a(n) is a B_2 sequence. - Thomas Ordowski, Sep 23 2014
See coefficients of the linear terms of the polynomials of the table on p. 10 of the Getzler link. - Tom Copeland, Mar 24 2016
Consider n points lying on a circle, then for n>=2 a(n-1) is the maximum number of ways to connect two points with non-intersecting chords. - Anton Zakharov, Dec 31 2016
Also the number of cliques in the (n-1)-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) < e(k). [Martinez and Savage, 2.7]
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i), e(j), e(k) pairwise distinct. [Martinez and Savage, 2.7]
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(j) >= e(k) and e(i) != e(k) pairwise distinct. [Martinez and Savage, 2.7]
(End)
Number of F-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are F-equivalent iff the positions of pattern F are identical in these paths. - Sergey Kirgizov, Apr 08 2018
From Gus Wiseman, Feb 10 2019: (Start)
Also the number of connected partitions of an n-cycle. For example, the a(1) = 1 through a(4) = 12 connected partitions are:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{1}{23}} {{1}{234}}
{{12}{3}} {{12}{34}}
{{13}{2}} {{123}{4}}
{{1}{2}{3}} {{124}{3}}
{{134}{2}}
{{14}{23}}
{{1}{2}{34}}
{{1}{23}{4}}
{{12}{3}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
(End)
Number of subsets of n-set without the single-element subsets. - Yuchun Ji, Jul 16 2019
For every prime p, there are infinitely many terms of this sequence that are divisible by p (see IMO Compendium link and Doob reference). Corresponding indices n are: for p = 2, even numbers A299174; for p = 3, A047257; for p = 5, A349767. - Bernard Schott, Dec 10 2021
Primes are in A081296 and corresponding indices in A048744. - Bernard Schott, Dec 12 2021

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 27*x^5 + 58*x^6 + 121*x^7 + ...
		

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Column 1 of triangle A008518.
Row sum of triangles A184049 and A184050.

Programs

  • Haskell
    a000325 n = 2 ^ n - n
    a000325_list = zipWith (-) a000079_list [0..]
    -- Reinhard Zumkeller, Jul 17 2012
    
  • Magma
    [2^n - n: n in [0..35]]; // Vincenzo Librandi, May 13 2011
    
  • Maple
    A000325 := proc(n) option remember; if n <=1 then n+1 else 2*A000325(n-1)+n-1; fi; end;
    g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-n, n=0..31); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    Table[2^n - n, {n, 0, 39}] (* Alonso del Arte, Sep 15 2014 *)
    LinearRecurrence[{4, -5, 2}, {1, 2, 5}, {0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
  • PARI
    {a(n) = 2^n - n}; /* Michael Somos, Nov 04 2006 */
    
  • Python
    def A000325(n): return (1<Chai Wah Wu, Jan 11 2023

Formula

a(n+1) = 2*a(n) + n - 1, a(0) = 1. - Reinhard Zumkeller, Apr 12 2003
Binomial transform of 1, 0, 1, 1, 1, .... The sequence starting 1, 2, 5, ... has a(n) = 1 + n + 2*Sum_{k=2..n} binomial(n, k) = 2^(n+1) - n - 1. This is the binomial transform of 1, 1, 2, 2, 2, 2, .... a(n) = 1 + Sum_{k=2..n} C(n, k). - Paul Barry, Jun 06 2003
G.f.: (1-3x+3x^2)/((1-2x)*(1-x)^2). - Emeric Deutsch, Feb 22 2004
A107907(a(n+2)) = A000051(n+2) for n > 0. - Reinhard Zumkeller, May 28 2005
a(n+1) = sum of n-th row of the triangle in A109128. - Reinhard Zumkeller, Jun 20 2005
Row sums of triangle A133116. - Gary W. Adamson, Sep 14 2007
G.f.: 1 / (1 - x / (1 - x / ( 1 - x / (1 + x / (1 - 2*x))))). - Michael Somos, May 12 2012
First difference is A000225. PSUM transform is A084634. - Michael Somos, May 12 2012
a(n) = [x^n](B(x)^n-B(x)^(n-1)), n>0, a(0)=1, where B(x) = (1+2*x+sqrt(1+4*x^2))/2. - Vladimir Kruchinin, Mar 07 2014
E.g.f.: (exp(x) - x)*exp(x). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A125128(n) - A000225(n) + 1. - Miquel Cerda, Aug 12 2016
a(n) = 2*A125128(n) - A095151(n) + 1. - Miquel Cerda, Aug 12 2016
a(n) = A079583(n-1) - A000225(n-1). - Miquel Cerda, Aug 15 2016
a(n)^2 - 4*a(n-1)^2 = (n-2)*(a(n)+2*a(n-1)). - Yuchun Ji, Jul 13 2018
a(n) = 2^(-n) * A186947(n) = 2^n * A002064(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(2^n) = (2^a(n) - 1)*2^n. - Lorenzo Sauras Altuzarra, Feb 01 2022

A265901 Square array read by descending antidiagonals: A(n,1) = A188163(n), and for k > 1, A(n,k) = A087686(1+A(n,k-1)).

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 8, 15, 12, 6, 16, 31, 27, 14, 9, 32, 63, 58, 30, 21, 10, 64, 127, 121, 62, 48, 24, 11, 128, 255, 248, 126, 106, 54, 26, 13, 256, 511, 503, 254, 227, 116, 57, 29, 17, 512, 1023, 1014, 510, 475, 242, 120, 61, 38, 18, 1024, 2047, 2037, 1022, 978, 496, 247, 125, 86, 42, 19, 2048, 4095, 4084, 2046, 1992, 1006, 502, 253, 192, 96, 45, 20
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
The topmost row (row 1) of the array is A000079 (powers of 2), and in general each row 2^k contains the sequence (2^n - k), starting from the term (2^(k+1) - k). This follows from the properties (3) and (4) of A004001 given on page 227 of Kubo & Vakil paper (page 3 in PDF).
Moreover, each row 2^k - 1 (for k >= 2) contains the sequence 2^n - n - (k-2), starting from the term (2^(k+1) - (2k-1)). To see why this holds, consider the definitions of sequences A162598 and A265332, the latter which also illustrates how the frequency counts Q_n for A004001 are recursively constructed (in the Kubo & Vakil paper).

Examples

			The top left corner of the array:
   1,  2,   4,   8,  16,   32,   64,  128,  256,   512,  1024, ...
   3,  7,  15,  31,  63,  127,  255,  511, 1023,  2047,  4095, ...
   5, 12,  27,  58, 121,  248,  503, 1014, 2037,  4084,  8179, ...
   6, 14,  30,  62, 126,  254,  510, 1022, 2046,  4094,  8190, ...
   9, 21,  48, 106, 227,  475,  978, 1992, 4029,  8113, 16292, ...
  10, 24,  54, 116, 242,  496, 1006, 2028, 4074,  8168, 16358, ...
  11, 26,  57, 120, 247,  502, 1013, 2036, 4083,  8178, 16369, ...
  13, 29,  61, 125, 253,  509, 1021, 2045, 4093,  8189, 16381, ...
  17, 38,  86, 192, 419,  894, 1872, 3864, 7893, 16006, 32298, ...
  18, 42,  96, 212, 454,  950, 1956, 3984, 8058, 16226, 32584, ...
  19, 45, 102, 222, 469,  971, 1984, 4020, 8103, 16281, 32650, ...
  20, 47, 105, 226, 474,  977, 1991, 4028, 8112, 16291, 32661, ...
  22, 51, 112, 237, 490,  999, 2020, 4065, 8158, 16347, 32728, ...
  23, 53, 115, 241, 495, 1005, 2027, 4073, 8167, 16357, 32739, ...
  25, 56, 119, 246, 501, 1012, 2035, 4082, 8177, 16368, 32751, ...
  28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, ...
  ...
		

Crossrefs

Inverse permutation: A267102.
Transpose: A265903.
Cf. A265900 (main diagonal).
Cf. A162598 (row index of n in array), A265332 (column index of n in array).
Column 1: A188163.
Column 2: A266109.
Row 1: A000079 (2^n).
Row 2: A000225 (2^n - 1, from 3 onward).
Row 3: A000325 (2^n - n, from 5 onward).
Row 4: A000918 (2^n - 2, from 6 onward).
Row 5: A084634 (?, from 9 onward).
Row 6: A132732 (2^n - 2n + 2, from 10 onward).
Row 7: A000295 (2^n - n - 1, from 11 onward).
Row 8: A036563 (2^n - 3).
Row 9: A084635 (?, from 17 onward).
Row 12: A048492 (?, from 20 onward).
Row 13: A249453 (?, from 22 onward).
Row 14: A183155 (2^n - 2n + 1, from 23 onward. Cf. also A244331).
Row 15: A000247 (2^n - n - 2, from 25 onward).
Row 16: A028399 (2^n - 4).
Cf. also permutations A267111, A267112.

Programs

Formula

For the first column k=1, A(n,1) = A188163(n), for columns k > 1, A(n,k) = A087686(1+A(n,k-1)).

A084635 Binomial transform of 1,0,1,0,1,1,1,...

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 38, 86, 192, 419, 894, 1872, 3864, 7893, 16006, 32298, 64960, 130375, 261310, 523300, 1047416, 2095801, 4192742, 8386814, 16775168, 33552107, 67106238, 134214776, 268432152, 536867229, 1073737734, 2147479122, 4294962304, 8589929103
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

Without its first term, it is the binomial transform of 1,1,1,1,2,2,2,2,2...

Crossrefs

Programs

  • Magma
    [2^n -n*(n^2-3*n+8)/6: n in [0..50]]; // G. C. Greubel, Mar 19 2023
    
  • Mathematica
    Table[2^n -n -Binomial[n,3], {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
  • SageMath
    [2^n -n*(n^2-3*n+8)/6 for n in range(51)] # G. C. Greubel, Mar 19 2023

Formula

a(n) = 2^n - n*(n^2 - 3*n + 8)/6.
a(n) = 1 + C(n, 2) + Sum_{k=4..n} C(n, k).
O.g.f.: (1-5*x+10*x^2-10*x^3+5*x^4)/((1-x)^4*(1-2*x)). - R. J. Mathar, Apr 02 2008
a(n) = A000225(n) - (n-1) - binomial(n, 3). - G. C. Greubel, Mar 19 2023

A084636 Binomial transform of (1,0,1,0,1,0,2,0,2,0,2,0,...).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 33, 71, 157, 349, 768, 1662, 3534, 7398, 15291, 31297, 63595, 128555, 258930, 520240, 1043540, 2090956, 4186757, 8379499, 16766313, 33541481, 67093588, 134199826, 268414602, 536846754, 1073713983, 2147451717, 4294930839, 8589893143
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

Partial sums are A084637 (without leading 1).
The sequence starting 1,2,4,... is the binomial transform of (1,1,1,1,1,2,2,2,...) with b(n) = Sum_{k=0..4} C(n,k) + 2*Sum_{k=5..n} C(n,k) = 2^(n+1) - (n^4 -2*n^3 + 11*n^2 + 14*n + 24)/24. This gives the partial sums of A084635.

Crossrefs

Programs

  • Magma
    [(2^n-1) -(1/24)*n*(n^3-6*n^2+23*n-18) +0^n: n in [0..50]]; // G. C. Greubel, Mar 19 2023
    
  • Mathematica
    Table[Boole[n==0] +(2^n-1) -(1/24)*n*(n^3-6*n^2+23*n-18), {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
  • SageMath
    [(2^n-1) -(1/24)*n*(n^3-6*n^2+23*n-18) +0^n for n in range(51)] # G. C. Greubel, Mar 19 2023

Formula

a(n) = Sum_{k=0..2} C(n, 2*k) + 2*Sum_{k=3..floor(n/2)} C(n, 2*k).
a(n) = (n^4 - 6*n^3 + 23*n^2 - 18*n + 24)/24 + 2*Sum_{k=3..floor(n/2)} C(n, 2*k).
O.g.f.: (1-2*x+2*x^2)*(1-4*x+5*x^2-2*x^3+x^4)/((1-x)^5*(1-2*x)). - R. J. Mathar, Apr 07 2008
a(n) = A000225(n) - (1/24)*n*(n-1)*(n^2 - 5*n + 18) + [n=0]. - G. C. Greubel, Mar 19 2023

A084637 Binomial transform of (1,0,1,0,1,0,1,1,1,1,1,...).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 65, 136, 293, 642, 1410, 3072, 6606, 14004, 29295, 60592, 124187, 252742, 511672, 1031912, 2075452, 4166408, 8353165, 16732664, 33498977, 67040458, 134134046, 268333872, 536748474, 1073595228, 2147309211, 4294760928, 8589691767
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

The sequence starting 1,2,4,... is the binomial transform of (1, 1, 1, 1, 1, 1, 2, 2, 2, ...) with A035038(n) = Sum_{k=0..5} C(n,k) + 2*Sum_{k=6..n} C(n,k) = 2^n - (n^5 - 5*n^4 + 25*n^3 + 5*n^2 + 94*n + 120)/120. This gives the partial sums of A084636.

Crossrefs

Programs

  • Magma
    [2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120: n in [0..50]]; // G. C. Greubel, Mar 19 2023
    
  • Mathematica
    Table[2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120, {n,0,50}] (* G. C. Greubel, Mar 19 2023 *)
  • PARI
    Vec((1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6)/((1-x)^6*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016
    
  • SageMath
    [2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120 for n in range(51)] # G. C. Greubel, Mar 19 2023

Formula

a(n) = Sum_{k=0..2} C(n, 2*k) + Sum_{k=6..n} C(n, k).
a(n) = 2^n - n*(n^4 - 10*n^3 + 55*n^2 - 110*n + 184)/120.
G.f.: (1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6) / ((1-x)^6*(1-2*x)). - Colin Barker, Mar 17 2016

A367559 Square array T(n, k) = 2^k - n, read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 2, -1, 1, 4, -2, 0, 3, 8, -3, -1, 2, 7, 16, -4, -2, 1, 6, 15, 32, -5, -3, 0, 5, 14, 31, 64, -6, -4, -1, 4, 13, 30, 63, 128, -7, -5, -2, 3, 12, 29, 62, 127, 256, -8, -6, -3, 2, 11, 28, 61, 126, 255, 512, -9, -7, -4, 1, 10, 27, 60, 125, 254, 511, 1024
Offset: 0

Views

Author

Paul Curtz, Nov 22 2023

Keywords

Examples

			This sequence as square array T(n, k):
  n\k  0    1    2    3    4    5    6    7    8    9    10.
  ---------------------------------------------------------.
  0 :  1    2    4    8   16   32   64  128  256  512  1024.
  1 :  0    1    3    7   15   31   63  127  255  511  1023.
  2 : -1    0    2    6   14   30   62  126  254  510  1022.
  3 : -2   -1    1    5   13   29   61  125  253  509  1021.
  4 : -3   -2    0    4   12   28   60  124  252  508  1020.
  5 : -4   -3   -1    3   11   27   59  123  251  507  1019.
  6 : -5   -4   -2    2   10   26   58  122  250  506  1018.
  7 : -6   -5   -3    1    9   25   57  121  249  505  1017.
  8 : -7   -6   -4    0    8   24   56  120  248  504  1016.
  9 : -8   -7   -5   -1    7   23   55  119  247  503  1015.
  10: -9   -8   -6   -2    6   22   54  118  246  502  1014.
		

Crossrefs

Programs

Formula

G.f. of row n: 1/(1-2*x) - n/(1-x).
E.g.f. of row n: exp(2*x) - n*exp(x).
T(0, k) = 2^k = A000079(k).
T(1, k) = 2^k - 1 = A000225(k).
T(2, k) = 2^k - 2 = A000918(k).
T(3, k) = 2^k - 3 = A036563(k).
T(5, k) = 2^k - 5 = A168616(k).
T(9, k) = 2^k - 9 = A185346(k).
T(10, k) = 2^k - 10 = A246168(k).
T(n, k) = 3*T(n, k-1) - 2*T(n, k-2) for k > 1.
T(n+1, k) = T(n, k) + 1.
T(n, n) = 2^n - n = A000325(n).
Sum_{k = 0..n} T(n - k, k) = A084634(n).
a(n) = 2^A002262(n) - A025581(n).
G.f.: (1 - 2*x - y + 3*x*y)/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Nov 27 2023

A084638 Binomial transform of (1,0,1,0,1,0,1,0,2,0,2,0,2,....).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 129, 265, 558, 1200, 2610, 5682, 12288, 26292, 55587, 116179, 240366, 493108, 1004780, 2036692, 4112144, 8278552, 16631717, 33364381, 66863358, 133903816, 268037862, 536371734, 1073120208, 2146715436, 4294024647, 8588785575
Offset: 0

Views

Author

Paul Barry, Jun 06 2003

Keywords

Comments

The sequence starting 1,2,4,... is the binomial transform of (1,1,1,1,1,1,1,2,2...) with a(n) = Sum_{k=0..6} C(n,k) + 2*Sum_{k=7..n} C(n,k) = 2^(n+1) - A008859(n). This gives the partial sums of A084637.

Crossrefs

Programs

  • Magma
    [2^n -4 -(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160)/720 + 0^n: n in [0..50]]; // G. C. Greubel, Mar 20 2023
    
  • Mathematica
    Table[2^n -4 -(1/6!)*(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160) + Boole[n==0], {n,0,50}] (* G. C. Greubel, Mar 20 2023 *)
  • PARI
    Vec((1-8*x+28*x^2-56*x^3+70*x^4-56*x^5+28*x^6-8*x^7+2*x^8)/((1-x)^7*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016
    
  • SageMath
    [2^n -4 -(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160)/720 + 0^n for n in range(51)] # G. C. Greubel, Mar 20 2023

Formula

a(n) = Sum_{k=0..3, C(n, 2*k)} + 2*Sum_{k=4..floor(n/2), C(n, 2*k)}.
a(n) = (n^6-15*n^5+115*n^4-405*n^3+964*n^2-660*n+720)/720 + 2*Sum_{k=4..floor(n/2), C(n, 2k)}.
G.f.: (1-8*x+28*x^2-56*x^3+70*x^4-56*x^5+28*x^6-8*x^7+2*x^8) / ((1-x)^7*(1-2*x)). - Colin Barker, Mar 17 2016
Showing 1-7 of 7 results.