cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016754 Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0

Views

Author

Keywords

Comments

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl, Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25, ... and the line from 9, in the direction 9, 49, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009
Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011
Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012
Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus, Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev, Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh, Dec 25 2016
Engel expansion of Pi*StruveL_0(1)/2 where StruveL_0(1) is A197037. - Benedict W. J. Irwin, Jun 21 2018
Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; the segments on the hypotenuse {p = a(n)/A001844(n), q = A060300(n)/A001844(n) = A001844(n) - p} and their ratio p/q = a(n)/A060300(n) are irreducible fractions in Q\Z. X values are A005408, Y values are A046092, Z values are A001844. - Ralf Steiner, Feb 25 2020
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 (A344332). - Bernard Schott, Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott, Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742 (see Comment of Jan 26 2018). - Bernard Schott, Feb 24 2023
From Peter Bala, Jan 03 2024: (Start)
The sequence terms are the exponents of q in the series expansions of the following infinite products:
1) q*Product_{n >= 1} (1 - q^(16*n))*(1 + q^(8*n)) = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + ....
2) q*Product_{n >= 1} (1 + q^(16*n))*(1 - q^(8*n)) = q - q^9 - q^25 + q^49 + q^81 - q^121 - q^169 + + - - ....
3) q*Product_{n >= 1} (1 - q^(8*n))^3 = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 - + ....
4) q*Product_{n >= 1} ( (1 + q^(8*n))*(1 - q^(16*n))/(1 + q^(16*n)) )^3 = q + 3*q^9 - 5*q^25 - 7*q^49 + 9*q^81 + 11*q^121 - 13*q^169 - 15*q^225 + + - - .... (End)

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A000447 (partial sums).
Cf. A348005, A379481 [= a(A048673(n)-1)].
Partial sums of A022144.
Positions of odd terms in A341528.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 1 + Sum_{i=1..n} 8*i = 1 + 8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010
O.g.f.: (1+6*x+x^2)/(1-x)^3. - R. J. Mathar, Jan 11 2008
a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008
a(n) = A061038(2+4n). - Paul Curtz, Oct 26 2008
Sum_{n>=0} 1/a(n) = Pi^2/8 = A111003. - Jaume Oliver Lafont, Mar 07 2009
a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009
a(n) = a(n-1) + 8*n with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009
a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = (A005408(n))^2. - Zak Seidov, Nov 29 2011
From George F. Johnson, Sep 05 2012: (Start)
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach, Jul 12 2013
E.g.f.: (1 + 8*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 23 2016
a(n) = A101321(8,n). - R. J. Mathar, Jul 28 2016
Product_{n>=1} A033996(n)/a(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A014105(n) + A000384(n+1). - Bruce J. Nicholson, Nov 11 2017
a(n) = A003215(n) + A002378(n). - Klaus Purath, Jun 09 2020
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Sum_{n>=0} (-1)^n/a(n) = A006752. - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 (A003881). (End)
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A014634(n) - A002943(n). See Diamond Triangles illustration.
a(n) = A003154(n+1) - A046092(n). See Diamond Stars illustration. (End)
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 - ... ))))).
Row 2 of A142992. (End)
From Peter Bala, Mar 26 2024: (Start)
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 + ... + (4*n^2 - 1)/(8 + ... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813. (End)

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002

A020882 Ordered hypotenuses (with multiplicity) of primitive Pythagorean triangles.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 65, 65, 73, 85, 85, 89, 97, 101, 109, 113, 125, 137, 145, 145, 149, 157, 169, 173, 181, 185, 185, 193, 197, 205, 205, 221, 221, 229, 233, 241, 257, 265, 265, 269, 277, 281, 289, 293, 305, 305, 313, 317, 325, 325, 337, 349, 353, 365, 365
Offset: 1

Views

Author

Keywords

Comments

The largest member 'c' of the primitive Pythagorean triples (a,b,c) ordered by increasing c.
These are numbers of the form a^2 + b^2 where gcd(b-a, 2*a*b)=1. - M. F. Hasler, Apr 04 2010
Equivalently, numbers of the form a^2 + b^2 where gcd(a,b) = 1 and a and b are not both odd. To avoid double-counting, require a > b > 0. - Franklin T. Adams-Watters, Mar 15 2015
The density of such points in a circle with radius squared = a(n) is ~ Pi * a(n). Restricting to a > b > 0 reduces this by a factor of 1/8; requiring gcd(a,b)=1 provides a factor of 6/Pi^2; and a, b not both odd is a factor of 2/3. (2/3, not 3/4, because the case a, b both even has already been eliminated.) Multiplying, a(n) * Pi * 1/8 * 6/Pi^2 * 2/3 is a(n) / (2 * Pi). But n is approximately this number of points, so a(n) ~ 2 * Pi * n. Conjectured by David W. Wilson, proof by Franklin T. Adams-Watters, Mar 15 2015
Permutations are in A094194, A088511, A121727, A119321, A113482 and A081804. Entries of A024409 occur here more than once. - R. J. Mathar, Apr 12 2010
The distinct terms of this sequence seem to constitute a subset of the sequence defined as a(n) = (-1)^n + 6*n for n >= 1. - Alexander R. Povolotsky, Mar 15 2015
The terms in this sequence are given by f(m,n) = m^2 + n^2 where m and n are any two integers satisfying m > 1, n < m, the greatest common divisor of m and n is 1, and m and n are both not odd. E.g., f(m,n) = f(2,1) = 2^2 + 1^2 = 4 + 1 = 5. - Agola Kisira Odero, Apr 29 2016

References

  • M. de Frénicle, "Méthode pour trouver la solutions des problèmes par les exclusions", in: "Divers ouvrages de mathématiques et de physique, par Messieurs de l'Académie royale des sciences", Paris, 1693, pp 1-44.

Crossrefs

Cf. A004613, A008846, A020883-A020886, A046086, A046087, A222946 (as a number triangle).

Programs

  • Mathematica
    t={};Do[Do[a=Sqrt[c^2-b^2];If[a>b,Break[]];If[IntegerQ[a]&&GCD[a,b,c]==1,AppendTo[t,c]],{b,c-1,3,-1}],{c,400}];t (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
    f[c_] := Block[{a = 1, b, lst = {}}, While[b = Sqrt[c^2 - a^2]; a < b, If[ IntegerQ@ b && GCD[a, b, c] == 1, AppendTo[lst, a]]; a++]; lst]
    Join @@ Table[ConstantArray[n, Length@f@n], {n, 1, 400, 4}] (* Robert G. Wilson v, Mar 16 2014; corrected by Andrey Zabolotskiy, Oct 31 2019 *)
  • PARI
    {my( c=0, new=[]); for( b=1,99, for( a=1, b-1, gcd(b-a,2*a*b) == 1 && new=concat(new,a^2+b^2)); new=vecsort(new); for( j=1,#new, new[j] > (b+1)^2 & (new=vecextract(new, Str(j,".."))) & next(2); write("b020882.txt",c++," "new[j])); new=[])} \\ M. F. Hasler, Apr 04 2010

Formula

a(n) = sqrt((A120681(n)^2 + A120682(n)^2)/2). - Lekraj Beedassy, Jun 24 2006
a(n) = sqrt(A046086(n)^2 + A046087(n)^2). - Zak Seidov, Apr 12 2011
a(n) ~ 2*Pi*n. - observation by David W. Wilson, proved by Franklin T. Adams-Watters (cf. comments), Mar 15 2015
a(n) = sqrt(A180620(n)^2 + A231100(n)^2). - Rui Lin, Oct 09 2019

Extensions

Edited by N. J. A. Sloane, May 15 2010

A180620 Odd legs of primitive Pythagorean triples (with multiplicity) sorted with respect to increasing hypotenuse.

Original entry on oeis.org

3, 5, 15, 7, 21, 35, 9, 45, 11, 63, 33, 55, 77, 13, 39, 65, 99, 91, 15, 117, 105, 143, 17, 51, 85, 119, 165, 19, 153, 57, 95, 195, 187, 133, 171, 21, 221, 105, 209, 255, 247, 23, 69, 115, 231, 161, 285, 273, 207, 25, 75, 323, 253, 175, 299, 225, 357, 27, 275, 345, 135, 189, 325
Offset: 1

Views

Author

Jonathan Vos Post, Sep 12 2010

Keywords

Comments

The primary key is the increasing length of the hypotenuse, A020882. If there is more than one solution with that hypotenuse, the (secondary) sorting key is the even leg.
Only the odd legs 'a' of reduced triangles with gcd(a,b,c)=1, a^2+b^2=c^2, a=q^2-p^2, b=2*p*q, c=q^2+p^2, gcd(p,q)=1 are listed.

Examples

			a(1) = 3 because the only triangle with the least possible hypotenuse 5 has catheti 3 and 4.
		

Crossrefs

Extensions

Comment on sorting added, more terms appended by R. J. Mathar, Oct 15 2010
Sequence's name and comments corrected by K. G. Stier, Nov 03 2013

A297878 1/4 of the even edges of primitive Pythagorean triangles with legs (b=A081872, c=A081859), ordered by semiperimeters.

Original entry on oeis.org

1, 3, 2, 6, 5, 3, 10, 7, 15, 4, 14, 12, 21, 9, 20, 5, 18, 28, 15, 11, 36, 6, 22, 35, 33, 45, 13, 30, 44, 7, 26, 42, 55, 21, 39, 15, 35, 8, 52, 66, 30, 65, 24, 63, 17, 78, 40, 9, 60, 77, 34, 56, 91, 51, 19, 72, 45, 10, 68, 88, 105, 38, 63, 85, 30, 104, 57, 21, 102, 120, 11, 76, 99, 42, 119, 70, 33, 95
Offset: 1

Views

Author

Ralf Steiner, Jan 07 2018

Keywords

Comments

It seems that all positive integers are included.
Every term has the form of edge length e = (v-u)*u/2, semiperimeter s = (h+b+c)/2 = u*v with b > c, h^2 = b^2 + c^2, u < v < 2*u, v odd (see Theorem 3 of Witcosky).

Examples

			From _Michel Marcus_, Mar 07 2018: (Start)
The first 10 terms of A081859 are 3,  5,  8,  7, 20, 12,  9, 28, 11, 16;
The first 10 terms of A081872 are 4, 12, 15, 24, 21, 35, 40, 45, 60, 63;
So the first 10 even legs are     4, 12,  8, 24, 20, 12, 40, 28, 60, 16;
So the first 10 terms are         1,  3,  2,  6,  5,  3, 10,  7, 15,  4. (End)
		

Crossrefs

Cf. A298042((odd edge - 1)/2), A081872(b), A081859(c).
Cf. A231100 (even legs ordered by hypotenuse).

Programs

  • Mathematica
    (* lists a0* have to be prepared before *)
    opPT = {a020882, a046087, a046086, a020882 + a046087 + a046086} topPT = Transpose[opPT]; stopPT = SortBy[topPT, {#[[4]]} &]; tstopPT = Transpose[stopPT]; nopPT = tstopPT; Do[ If[OddQ[tstopPT[[2]][[k]]], nopPT[[2]][[k]] = tstopPT[[2]][[k]]; nopPT[[3]][[k]] = tstopPT[[3]][[k]], nopPT[[2]][[k]] = tstopPT[[3]][[k]]; nopPT[[3]][[k]] = tstopPT[[2]][[k]]], {k, 1, 10000}]; nopPT[[3]]/4
Showing 1-4 of 4 results.