cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 104 results. Next

A003517 Number of permutations of [n+1] with exactly 1 increasing subsequence of length 3.

Original entry on oeis.org

1, 6, 27, 110, 429, 1638, 6188, 23256, 87210, 326876, 1225785, 4601610, 17298645, 65132550, 245642760, 927983760, 3511574910, 13309856820, 50528160150, 192113383644, 731508653106, 2789279908316, 10649977831752, 40715807302800, 155851062397940, 597261490737912
Offset: 2

Views

Author

Keywords

Comments

a(n-4) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 5 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+3,n-2). - Emeric Deutsch, May 30 2004
a(n) = A214292(2*n,n-3) for n > 2. - Reinhard Zumkeller, Jul 12 2012
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly once. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly once. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016
a(n) is the number of permutations pi of [n+3] such that s(pi)=321456...(n+3), where s denotes West's stack-sorting map. - Colin Defant, Jan 14 2019
a(n) is also the number of permutations of [n+1] avoiding the pattern 321. For permutations avoiding any of the other permutations of [3] (that is, any of 132, 213, 231, or 312) see A002054. - N. J. A. Sloane, Nov 26 2022

Examples

			a(3)=6 because the only permutations of 1234 with exactly 1 increasing subsequence of length 3 are 1423, 4123, 1342, 2314, 2341, 3124.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

T(n, n+6) for n=0, 1, 2, ..., array T as in A047072.
See also A002054.
First differences are in A026017.
A diagonal of any of the essentially equivalent arrays: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Maple
    A003517List := proc(m) local A, P, n; A := [1]; P := [1,1,1,1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A003517List(25); # Peter Luschny, Mar 26 2022
  • Mathematica
    f[x_] = (Sqrt[1 - 4 x] - 1)^6/(64 x^4); CoefficientList[Series[f[x], {x, 0, 25}], x][[3 ;; 26]] (* Jean-François Alcover, Jul 13 2011, after g.f. *)
    Table[6 Binomial[2n+1,n-2]/(n+4),{n,2,30}] (* Harvey P. Dale, Feb 27 2012 *)
  • PARI
    a(n)=6*binomial(2*n+1,n-2)/(n+4) \\ Charles R Greathouse IV, May 18 2015
    
  • PARI
    x='x+O('x^50); Vec(x^2*((1-(1-4*x)^(1/2))/(2*x))^6) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = 6*binomial(2*n+1, n-2)/(n+4).
G.f.: x^2*C(x)^6, where C(x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
E.g.f.: exp(2*x)*(Bessel_I(2,2*x) - Bessel_I(4,2*x)). - Paul Barry, Jun 04 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n >= 5, a(n-3) = (-1)^(n-5)*coeff(charpoly(A,x),x^5). - Milan Janjic, Jul 08 2010
a(n) = Sum_{i>=1, j>=1, k>=1, i+j+k=n+1} Catalan(i)*Catalan(j)*Catalan(k). T. D. Noe, Dec 22 2010
D-finite with recurrence -(n+4)*(n-2)*a(n) + 2*n*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=2} 1/a(n) = 7/2 - 34*Pi/(27*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 828*log(phi)/(25*sqrt(5)) - 2819/450, where phi is the golden ratio (A001622). (End)
a(n) ~ 3*4^(n+1)/(n^(3/2)*sqrt(Pi)). - Stefano Spezia, Apr 17 2024
a(n) = A000108(n+3) - 4*A000108(n+2) + 3*A000108(n+1). - Taras Goy, Jul 15 2024
a(n) = 6*(2*n+1)!*(n-1)!/((2*n-4)!*(n+4)!)*A000108(n-2). - Taras Goy, Dec 21 2024

A001453 Catalan numbers - 1.

Original entry on oeis.org

1, 4, 13, 41, 131, 428, 1429, 4861, 16795, 58785, 208011, 742899, 2674439, 9694844, 35357669, 129644789, 477638699, 1767263189, 6564120419, 24466267019, 91482563639, 343059613649, 1289904147323, 4861946401451, 18367353072151, 69533550916003, 263747951750359
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A001454. Column k=2 of A047874.
A141364 is essentially the same sequence.
All of A000108, A001453, A246604, A273526, A120304, A289615, A289616, A289652, A289653, A289654 are very similar sequences.

Programs

Formula

a(n) = A000108(n) - 1 = binomial(2*n,n)/(n+1) - 1.
D-finite with recurrence: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Sep 04 2013
a(n) = Sum_{k=1..floor(n/2)} (C(n,k)-C(n,k-1))^2. - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n-1} A000245(n-k-1). - John M. Campbell, Dec 28 2016
From Ilya Gutkovskiy, Dec 28 2016: (Start)
O.g.f.: (1 - sqrt(1 - 4*x))/(2*x) - 1/(1 - x).
E.g.f.: exp(x)*(exp(x)*(BesselI(0,2*x) - BesselI(1,2*x)) - 1). (End)
a(n)= 3*Sum_{k=1..n} binomial(2*k-2,k)/(k+1). - Gary Detlefs, Feb 14 2020

Extensions

More terms from James Sellers, Sep 08 2000

A000344 a(n) = 5*binomial(2n, n-2)/(n+3).

Original entry on oeis.org

1, 5, 20, 75, 275, 1001, 3640, 13260, 48450, 177650, 653752, 2414425, 8947575, 33266625, 124062000, 463991880, 1739969550, 6541168950, 24647883000, 93078189750, 352207870014, 1335293573130, 5071418015120, 19293438101000, 73514652074500, 280531912316292
Offset: 2

Views

Author

Keywords

Comments

a(n-3) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 4 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=2. Example: For n=3 there are the 5 paths EENENN, EENNEN, EENNNE, ENEENN, NEEENN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+2,n-2). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^2 + 5*x^3 + 20*x^4 + 75*x^5 + 275*x^6 + 1001*x^7 + 3640*x^8 + ...
		

References

  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

T(n, n+5) for n=0, 1, 2, ..., array T as in A047072.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • GAP
    List([2..30],n->5*Binomial(2*n,n-2)/(n+3)); # Muniru A Asiru, Aug 09 2018
  • Magma
    [5*Binomial(2*n,n-2)/(n+3): n in [2..30]]; // Vincenzo Librandi, May 03 2011
    
  • Maple
    A000344List := proc(m) local A, P, n; A := [1]; P := [1,1,1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A000344List(27); # Peter Luschny, Mar 26 2022
  • Mathematica
    Table[5 Binomial[2n,n-2]/(n+3),{n,2,40}] (* or *) CoefficientList[Series[ (1-Sqrt[1-4 x]+x (-5+3 Sqrt[1-4 x]-(-5+Sqrt[1-4 x]) x))/(2 x^5), {x,0,38}],x]  (* Harvey P. Dale, May 01 2011 *)
    a[ n_] := If[ n < 0, 0, 5 Binomial[2 n, n - 2] / (n + 3)]; (* Michael Somos, May 28 2014 *)
  • PARI
    a(n)=5*binomial(2*n,n-2)/(n+3) \\ Charles R Greathouse IV, Jul 25 2011
    

Formula

Integral representation as n-th moment of a function on [0, 4]: a(n) = Integral_{x=0..4} x^n*((1/2)/Pi*x^(3/2)*(x^2-3*x+1)*(4-x)^(1/2)) dx, n >= 0, for which offset=0. - Karol A. Penson, Oct 11 2001
Expansion of x^2*C^5, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers (A000108). - Herbert Kociemba, May 02 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=4, a(n-2)=(-1)^(n-4)*coeff(charpoly(A,x),x^4). - Milan Janjic, Jul 08 2010
a(n) = A000108(n+2) - 3*A000108(n+1)+ A000108(n). - David Scambler, May 20 2012
D-finite with recurrence: (n+3)*(n-2)*a(n) = 2*n*(2n-1)*a(n-1). - R. J. Mathar, Jun 27 2012
a(n) = A214292(2*n-1,n-3) for n > 2. - Reinhard Zumkeller, Jul 12 2012
0 = a(n)*(-528*a(n+1) + 9162*a(n+2) - 9295*a(n+3) + 1859*a(n+4)) + a(n+1)*(-1650*a(n+1) - 762*a(n+2) + 4188*a(n+3) - 946*a(n+4)) + a(n+2)*(-1050*a(n+2) - 126*a(n+3) + 84*a(n+4)) for all n in Z. - Michael Somos, May 28 2014
0 = a(n)*(a(n)*(+16*a(n+1) + 6*a(n+2)) + a(n+1)*(+66*a(n+1) - 105*a(n+2) + 40*a(n+3)) + a(n+2)*(-69*a(n+2) + 15*a(n+3))) +a(n+1)*(a(n+1)*(50*a(n+1) + 42*a(n+2) - 28*a(n+3)) +a(n+2)*(+12*a(n+2))) for all n in Z. - Michael Somos, May 28 2014
0 = a(n)^2*(-16*a(n+1)^2 - 38*a(n+1)*a(n+2) - 12*a(n+2)^2) + a(n)*a(n+1)*(-66*a(n+1)^2 + 149*a(n+1)*a(n+2) - 23*a(n+2)^2) + a(n+1)^2*(-50*a(n+1)^2 + 2*a(n+2)^2) for all n in Z. - Michael Somos, May 28 2014
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (x*(2 + x) * BesselI(0, 2*x) - (2+x+x^2) * BesselI(1, 2*x)) * exp(2*x)/x^2.
a(n) ~ 5*4^n/(sqrt(Pi)*n^(3/2)). (End)
a(n) = (1/(n+1))*Sum_{i=0..n-2} (-1)^(n+i)*(n-i+1)*binomial(2n+2,i), n >= 2. - Taras Goy, Aug 09 2018
G.f.: x^2* 2F1(5/2,3;6;4*x) . - R. J. Mathar, Jan 27 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=2} 1/a(n) = 14/5 - 38*Pi/(45*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 1956*log(phi)/(125*sqrt(5)) - 316/125, where phi is the golden ratio (A001622). (End)
a(n) = 5*(2*n)!*(n-1)!/((2*n-4)!*(n+3)!)*A000108(n-2). - Taras Goy, Jul 15 2024
a(n) = Sum_{i+j+k+l+m = n-2} C(i)C(j)C(k)C(l)C(m), where C(s) = A000108(s). (Fifth convolution of Catalan numbers). - Taras Goy, Dec 21 2024

A214292 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n with T(n,0) = n and T(n,n) = -n.

Original entry on oeis.org

0, 1, -1, 2, 0, -2, 3, 2, -2, -3, 4, 5, 0, -5, -4, 5, 9, 5, -5, -9, -5, 6, 14, 14, 0, -14, -14, -6, 7, 20, 28, 14, -14, -28, -20, -7, 8, 27, 48, 42, 0, -42, -48, -27, -8, 9, 35, 75, 90, 42, -42, -90, -75, -35, -9, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44, -10
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 12 2012

Keywords

Examples

			The triangle begins:
    0:                              0
    1:                            1   -1
    2:                          2   0   -2
    3:                       3    2   -2   -3
    4:                     4    5   0   -5   -4
    5:                  5    9    5   -5   -9   -5
    6:                6   14   14   0  -14  -14   -6
    7:             7   20   28   14  -14  -28  -20   -7
    8:           8   27   48   42   0  -42  -48  -27   -8
    9:        9   35   75   90   42  -42  -90  -75  -35   -9
   10:     10   44  110  165  132   0 -132 -165 -110  -44  -10
   11:  11   54  154  275  297  132 -132 -297 -275 -154  -54  -11  .
		

Crossrefs

Programs

  • Haskell
    a214292 n k = a214292_tabl !! n !! k
    a214292_row n = a214292_tabl !! n
    a214292_tabl = map diff $ tail a007318_tabl
       where diff row = zipWith (-) (tail row) row
  • Mathematica
    row[n_] := Table[Binomial[n, k], {k, 0, n}] // Differences;
    T[n_, k_] := row[n + 1][[k + 1]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 31 2018 *)

Formula

T(n,k) = A007318(n+1,k+1) - A007318(n+1,k), 0<=k<=n, i.e. first differences of rows in Pascal's triangle;
T(n,k) = -T(n,k);
row sums and central terms equal 0, cf. A000004;
sum of positive elements of n-th row = A014495(n+1);
T(n,0) = n;
T(n,1) = A000096(n-2) for n > 1; T(n,1) = - A080956(n) for n > 0;
T(n,2) = A005586(n-4) for n > 3; T(n,2) = A129936(n-2);
T(n,3) = A005587(n-6) for n > 5;
T(n,4) = A005557(n-9) for n > 8;
T(n,5) = A064059(n-11) for n > 10;
T(n,6) = A064061(n-13) for n > 12;
T(n,7) = A124087(n) for n > 14;
T(n,8) = A124088(n) for n > 16;
T(2*n+1,n) = T(2*n+2,n) = A000108(n+1), Catalan numbers;
T(2*n+3,n) = A000245(n+2);
T(2*n+4,n) = A002057(n+1);
T(2*n+5,n) = A000344(n+3);
T(2*n+6,n) = A003517(n+3);
T(2*n+7,n) = A000588(n+4);
T(2*n+8,n) = A003518(n+4);
T(2*n+9,n) = A001392(n+5);
T(2*n+10,n) = A003519(n+5);
T(2*n+11,n) = A000589(n+6);
T(2*n+12,n) = A090749(n+6);
T(2*n+13,n) = A000590(n+7).

A059365 Another version of the Catalan triangle: T(r,s) = binomial(2*r-s-1,r-1) - binomial(2*r-s-1,r), r>=0, 0 <= s <= r.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44
Offset: 0

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Triangle starts
  0;
  0,    1;
  0,    1,    1;
  0,    2,    2,    1;
  0,    5,    5,    3,    1;
  0,   14,   14,    9,    4,    1;
  0,   42,   42,   28,   14,    5,   1;
  0,  132,  132,   90,   48,   20,   6,   1;
  0,  429,  429,  297,  165,   75,  27,   7,  1;
  0, 1430, 1430, 1001,  572,  275, 110,  35,  8, 1;
  0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1;
  ...
		

Crossrefs

See also the triangle in A009766. First 2 diagonals both give A000108, next give A000245, A002057.
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Essentially the same as A033184.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A053121, A059365, A099039, A106566, A130020, A047072, A171567, A181645.

Programs

  • Magma
    /* as triangle */ [[[0] cat [Binomial(2*r-s-1, r-1)- Binomial(2*r-s-1, r): s in [1..r]]: r in [0..10]]]; // Vincenzo Librandi, Jan 09 2017
  • Mathematica
    Table[Binomial[2*r - s - 1, r - 1] - Binomial[2*r - s - 1, r], {r, 0, 10}, {s, 0, r}] // Flatten (* G. C. Greubel, Jan 08 2017 *)
  • PARI
    tabl(nn) = { print(0); for (r=1, nn, for (s=0, r, print1(binomial(2*r-s-1,r-1)-binomial(2*r-s-1,r), ", ");); print(););}  \\ Michel Marcus, Nov 01 2013
    

Formula

Essentially the same triangle as [0, 1, 1, 1, 1, 1, 1, ...] DELTA A000007, where DELTA is Deléham's operator defined in A084938, but the first term is T(0,0) = 0.

A000588 a(n) = 7*binomial(2n,n-3)/(n+4).

Original entry on oeis.org

0, 0, 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, 2187185, 8351070, 31865925, 121580760, 463991880, 1771605360, 6768687870, 25880277150, 99035193894, 379300783092, 1453986335186, 5578559816632, 21422369201800, 82336410323440, 316729578421620
Offset: 0

Views

Author

Keywords

Comments

a(n-5) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 6 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=3. Example: For n=3 there is only one path EEENNN. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+3,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 7*x^4 + 35*x^5 + 154*x^6 + 637*x^7 + 2548*x^8 + 9996*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026014.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    a[n_] := 7*Binomial[2n, n-3]/(n + 4); Table[a[n],{n,0,27}] (* James C. McMahon, Dec 05 2023 *)
  • PARI
    A000588(n)=7*binomial(2*n,n-3)/(n+4) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    my(x='x+O('x^50)); concat([0, 0, 0], Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^7)) \\ Altug Alkan, Nov 01 2015

Formula

Expansion of x^3*C^7, where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. for the Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=6, a(n-3)=(-1)^(n-6)*coeff(charpoly(A,x),x^6). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/6)*x^3*1F1(7/2; 8; 4*x).
a(n) ~ 7*4^n/(sqrt(Pi)*n^(3/2)). (End)
0 = a(n)*(+1456*a(n+1) - 87310*a(n+2) + 132834*a(n+3) - 68068*a(n+4) + 9724*a(n+5)) + a(n+1)*(+8918*a(n+1) - 39623*a(n+2) + 51726*a(n+3) - 299*a(n+4) - 1573*a(n+5)) + a(n+2)*(-24696*a(n+2) - 1512*a(n+3) + 1008*a(n+4)) for all n in Z. - Michael Somos, Jan 22 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 27/14 - 26*Pi/(63*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 11364*log(phi)/(175*sqrt(5)) - 4583/350, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^(n)*W(x)dx, n>=0, where W(x) = sqrt(4/x - 1)*(x^3 - 5*x^2 + 6*x - 1)/(2*Pi). The function W(x) for x->0 tends to -infinity (which is its absolute minimum), and W(4) = 0. W(x) is a signed function on the interval x = (0, 4) where it has two maxima separated by one local minimum. - Karol A. Penson, Jun 17 2024
D-finite with recurrence -(n+4)*(n-3)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 30 2024
a(n) = A000108(n+3) - 5*A000108(n+2) + 6*A000108(n+1) - A000108(n). - Taras Goy, Dec 21 2024

Extensions

More terms from N. J. A. Sloane, Jul 13 2010

A001392 a(n) = 9*binomial(2n,n-4)/(n+5).

Original entry on oeis.org

1, 9, 54, 273, 1260, 5508, 23256, 95931, 389367, 1562275, 6216210, 24582285, 96768360, 379629720, 1485507600, 5801732460, 22626756594, 88152205554, 343176898988, 1335293573130, 5193831553416, 20198233818840, 78542105700240, 305417807763705
Offset: 4

Views

Author

Keywords

Comments

Number of n-th generation vertices in the tree of sequences with unit increase labeled by 8 (cf. Zoran Sunic reference) - Benoit Cloitre, Oct 07 2003
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=4. - Herbert Kociemba, May 24 2004
Number of standard tableaux of shape (n+4,n-4). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^4 + 9*x^5 + 54*x^6 + 273*x^7 + 1260*x^8 + 5508*x^9 + 23256*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are in A026015.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

Formula

Expansion of x^4*C^9, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=8, a(n-4)=(-1)^(n-8)*coeff(charpoly(A,x),x^8). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence -(n+5)*(n-4)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jun 20 2013
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/24)*x^4*1F1(9/2; 10; 4*x).
a(n) ~ 9*4^n/(sqrt(Pi)*n^(3/2)). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 158*Pi/(81*sqrt(3)) - 649/270.
Sum_{n>=4} (-1)^n/a(n) = 52076*log(phi)/(225*sqrt(5)) - 22007/450, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Harvey P. Dale, Mar 03 2011

A003518 a(n) = 8*binomial(2*n+1,n-3)/(n+5).

Original entry on oeis.org

1, 8, 44, 208, 910, 3808, 15504, 62016, 245157, 961400, 3749460, 14567280, 56448210, 218349120, 843621600, 3257112960, 12570420330, 48507033744, 187187399448, 722477682080, 2789279908316, 10772391370048, 41620603020640, 160878516023680, 622147386185325
Offset: 3

Views

Author

Keywords

Comments

a(n-6) is the number of n-th generation nodes in the tree of sequences with unit increase labeled by 7 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+4,n-3). - Emeric Deutsch, May 30 2004

Examples

			G.f. = x^3 + 8*x^4 + 44*x^5 + 208*x^6 + 910*x^7 + 3808*x^8 + 15504*x^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002057.
First differences are in A026018.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [8*Binomial(2*n+1,n-3)/(n+5): n in [3..30]]; // Vincenzo Librandi, Jan 23 2017
  • Mathematica
    Table[8 Binomial[2 n + 1, n - 3]/(n + 5), {n, 3, 25}] (* Michael De Vlieger, Oct 26 2016 *)
    CoefficientList[Series[((1 - Sqrt[1 - 4 x])/(2 x))^8, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 23 2017 *)
  • PARI
    {a(n) = if( n<3, 0, 8 * binomial(2*n + 1, n-3) / (n + 5))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^8) \\ Altug Alkan, Nov 01 2015
    

Formula

G.f.: x^3*C(x)^8, where C(x)=(1-sqrt(1-4*x))/(2*x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
The convolution of A002057 with itself. - Gerald McGarvey, Nov 08 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=7, a(n-4)=(-1)^(n-7)*coeff(charpoly(A,x),x^7). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
Integral representation as the n-th moment of the signed weight function W(x) on (0,4), i.e.: a(n+3) = Integral_{x=0..4} x^n*W(x) dx, n >= 0, with W(x) = (1/2)*x^(7/2)*(x-2)*(x^2-4*x+2)*sqrt(4-x)/Pi. - Karol A. Penson, Oct 26 2016
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: 4*BesselI(4,2*x)*exp(2*x)/x.
a(n) ~ 4^(n+2)/(sqrt(Pi)*n^(3/2)). (End)
D-finite with recurrence: -(n+5)*(n-3)*a(n) +2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 43*Pi/(36*sqrt(3)) - 81/80.
Sum_{n>=3} (-1)^(n+1)/a(n) = 6213*log(phi)/(50*sqrt(5)) - 10339/400, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Jon E. Schoenfield, May 06 2010

A030237 Catalan's triangle with right border removed (n > 0, 0 <= k < n).

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 9, 14, 1, 5, 14, 28, 42, 1, 6, 20, 48, 90, 132, 1, 7, 27, 75, 165, 297, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 1, 11, 65, 273, 910, 2548, 6188, 13260, 25194, 41990, 58786
Offset: 1

Views

Author

Keywords

Comments

This triangle appears in the totally asymmetric exclusion process as Y(alpha=1,beta=1,n,m), written in the Derrida et al. reference as Y_n(m) for alpha=1, beta=1. - Wolfdieter Lang, Jan 13 2006

Examples

			Triangle begins as:
  1;
  1, 2;
  1, 3,  5;
  1, 4,  9,  14;
  1, 5, 14,  28,  42;
  1, 6, 20,  48,  90,  132;
  1, 7, 27,  75, 165,  297,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862;
		

Crossrefs

Alternate versions of (essentially) the same Catalan triangle: A009766, A033184, A047072, A059365, A099039, A106566, A130020.
Row sums give A071724.

Programs

  • Haskell
    a030237 n k = a030237_tabl !! n !! k
    a030237_row n = a030237_tabl !! n
    a030237_tabl = map init $ tail a009766_tabl
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [(n-k+1)*Binomial(n+k, k)/(n+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Mar 17 2021
  • Maple
    A030237 := proc(n,m)
        (n-m+1)*binomial(n+m,m)/(n+1) ;
    end proc: # R. J. Mathar, May 31 2016
    # Compare the analogue algorithm for the Bell numbers in A011971.
    CatalanTriangle := proc(len) local P, T, n; P := [1]; T := [[1]];
    for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), P[-1]]);
    T := [op(T), P] od; T end: CatalanTriangle(6):
    ListTools:-Flatten(%); # Peter Luschny, Mar 26 2022
    # Alternative:
    ogf := n -> (1 - 2*x)/(1 - x)^(n + 2):
    ser := n -> series(ogf(n), x, n):
    row := n -> seq(coeff(ser(n), x, k), k = 0..n-1):
    seq(row(n), n = 1..11); # Peter Luschny, Mar 27 2022
  • Mathematica
    T[n_, k_]:= T[n, k] = Which[k==0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1]];
    Table[T[n, k], {n,1,12}, {k,0,n-1}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    T(n,k) = (n-k+1)*binomial(n+k, k)/(n+1) \\ Andrew Howroyd, Feb 23 2018
    
  • Sage
    flatten([[(n-k+1)*binomial(n+k, k)/(n+1) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Mar 17 2021
    

Formula

T(n, k) = (n-k+1)*binomial(n+k, k)/(n+1).
Sum_{k=0..n-1} T(n,k) = A000245(n). - G. C. Greubel, Mar 17 2021
T(n, k) = [x^k] ((1 - 2*x)/(1 - x)^(n + 2)). - Peter Luschny, Mar 27 2022

Extensions

Missing a(8) = T(7,0) = 1 inserted by Reinhard Zumkeller, Jul 12 2012

A003519 a(n) = 10*C(2n+1, n-4)/(n+6).

Original entry on oeis.org

1, 10, 65, 350, 1700, 7752, 33915, 144210, 600875, 2466750, 10015005, 40320150, 161280600, 641886000, 2544619500, 10056336264, 39645171810, 155989499540, 612815891050, 2404551645100, 9425842448792, 36921502679600, 144539291740025, 565588532895750, 2212449261033375
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n+5,n-4). - Emeric Deutsch, May 30 2004
a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x horizontally exactly twice. By symmetry, it is also the number of North-East paths from (0,0) to (n,n) that cross the diagonal y = x vertically exactly twice. Details can be found in Section 3.3 in Pan and Remmel's link. - Ran Pan, Feb 02 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    [10*Binomial(2*n+1, n-4)/(n+6): n in [4..35]]; // Vincenzo Librandi, Feb 03 2016
  • Maple
    seq(10*binomial(2*n+1,n-4)/(n+6), n=4..50); # Robert Israel, Feb 02 2016
  • Mathematica
    Table[10 Binomial[2 n + 1, n - 4]/(n + 6), {n, 4, 28}] (* Michael De Vlieger, Feb 03 2016 *)
  • PARI
    a(n) = 10*binomial(2*n+1, n-4)/(n+6); \\ Michel Marcus, Feb 02 2016
    

Formula

G.f.: x^4*C(x)^10, where C(x)=[1-sqrt(1-4x)]/(2x) is g.f. for the Catalan numbers (A000108). - Emeric Deutsch, May 30 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=9, a(n-5)=(-1)^(n-9)*coeff(charpoly(A,x),x^9). [Milan Janjic, Jul 08 2010]
a(n) = A214292(2*n,n-5) for n > 4. - Reinhard Zumkeller, Jul 12 2012
From Robert Israel, Feb 02 2016: (Start)
D-finite with recurrence a(n+1) = 2*(n+1)*(2n+3)/((n+7)*(n-3)) * a(n).
a(n) ~ 20 * 4^n/sqrt(Pi*n^3). (End)
E.g.f.: 5*BesselI(5,2*x)*exp(2*x)/x. - Ilya Gutkovskiy, Jan 23 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=4} 1/a(n) = 34*Pi/(45*sqrt(3)) - 44/175.
Sum_{n>=4} (-1)^n/a(n) = 53004*log(phi)/(125*sqrt(5)) - 79048/875, where phi is the golden ratio (A001622). (End)
Previous Showing 11-20 of 104 results. Next