cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 105 results. Next

A059297 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

T(n,k) = C(n,k)*k^(n-k) is the number of functions f from domain [n] to codomain [n+1] such that f(x)=n+1 for exactly k elements x of [n] and f(f(x))=n+1 for the remaining n-k elements x of [n]. Subsequently, row sums of T(n,k) provide the number of functions f:[n]->[n+1] such that either f(x)=n+1 or f(f(x))=n+1 for every x in [n]. We note that there are C(n,k) ways to choose the k elements mapped to n+1 and there are k^(n-k) ways to map n-k elements to a set of k elements. - Dennis P. Walsh, Sep 05 2012
Conjecture: the matrix inverse is A137452. - R. J. Mathar, Mar 12 2013
The above conjecture is correct. This triangle is the exponential Riordan array [1, x*exp(x)]. Thus the inverse array is the exponential Riordan array [ 1, W(x)], which equals A137452. - Peter Bala, Apr 08 2013

Examples

			Triangle begins:
1;
0,  1;
0,  2,   1;
0,  3,   6,    1;
0,  4,  24,   12,    1;
0,  5,  80,   90,   20,   1;
0,  6, 240,  540,  240,  30,  1;
0,  7, 672, 2835, 2240, 525, 42,  1;
Row 4. Expansion of x^4 in terms of Abel polynomials:
x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.
O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.
Cf. A061356, A202017, A137452 (inverse array), A264428.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n, k) *k^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 05 2012
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid  (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • Sage
    # uses[bell_transform from A264428]
    def A059297_row(n):
        nat = [k for k in (1..n)]
        return bell_transform(n, nat)
    [A059297_row(n)  for n in range(8)] # Peter Luschny, Dec 20 2015

Formula

E.g.f.: exp(x*y*exp(y)). - Vladeta Jovovic, Nov 18 2003
Up to signs, this is the triangle of connection constants expressing the monomials x^n as a linear combination of the Abel polynomials A(k,x) := x*(x+k)^(k-1), 0 <= k <= n. O.g.f. for the k-th column: A(-k,1/x) = x^k/(1-k*x)^(k+1). Cf. A061356. Examples are given below. - Peter Bala, Oct 09 2011
The o.g.f.'s for the diagonals of this triangle are the rational functions occurring in the expansion of the compositional inverse (with respect to x) (x-t*x*exp(x))^-1 = x/(1-t) + 2*t/(1-t)^3*x^2/2! + (3*t+9*t^2)/(1-t)^5*x^3/3! + (4*t+52*t^2+64*t^3)/(1-t)^7*x^4/4! + .... For example, the o.g.f. for second subdiagonal is (3*t+9*t^2)/(1-t)^5 = 3*t + 24*t^2 + 90*t^3 + 240*t^4 + .... See the Bala link. The coefficients of the numerator polynomials are listed in A202017. - Peter Bala, Dec 08 2011
Recurrence equation: T(n+1,k+1) = Sum_{j=0..n-k} (j+1)*binomial(n,j)*T(n-j,k). - Peter Bala, Jan 13 2015
The Bell transform of [1,2,3,...]. See A264428 for the Bell transform. - Peter Luschny, Dec 20 2015

A087761 Expansion of (1-x)^(1/(x-1)).

Original entry on oeis.org

1, 1, 4, 21, 140, 1130, 10674, 115206, 1396016, 18739080, 275712840, 4408612560, 76070179272, 1408041937848, 27816773482848, 583970117197320, 12978149959718400, 304310928180279360, 7506092106055537344
Offset: 0

Views

Author

Vladeta Jovovic, Oct 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[BellY[n, k, Table[m! HarmonicNumber[m], {m, n}]], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    a(n)=if(n==0,1,(n-1)!*sum(k=0,n-1,(n-k)*sum(j=1,n-k,1/j)*a(k)/k!)) \\ Paul D. Hanna, Mar 17 2010; corrected Mar 19 2010

Formula

a(n) = Sum_{k=0..n} |Stirling1(n, k)|*A000248(k).
From Paul D. Hanna, Mar 17 2010: (Start)
E.g.f.: exp( Sum_{n>=1} H(n)*x^n ) where H(n) is the n-th harmonic number;
a(n) = (n-1)!*Sum_{k=0..n-1} (n-k)*H(n-k)*a(k)/k! for n>0 with a(0)=1. (End)
Empirical: a(n) = Sum_{i=0..n} binomial(n,i)*A005727(i)*(n-1)!/(i-1)! for n>0. - John M. Campbell, Dec 13 2016

A145460 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where sequence a_k of column k is the exponential transform of C(n,k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 1, 10, 15, 1, 0, 0, 3, 41, 52, 1, 0, 0, 1, 9, 196, 203, 1, 0, 0, 0, 4, 40, 1057, 877, 1, 0, 0, 0, 1, 10, 210, 6322, 4140, 1, 0, 0, 0, 0, 5, 30, 1176, 41393, 21147, 1, 0, 0, 0, 0, 1, 15, 175, 7273, 293608, 115975, 1, 0, 0, 0, 0, 0, 6, 35, 1176, 49932, 2237921, 678570
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

A(n,k) is also the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box k balls are seen at the top. E.g. A(3,1)=10:
|1.| |2.| |3.| |1|2| |1|2| |1|3| |1|3| |2|3| |2|3| |1|2|3|
|23| |13| |12| |3|.| |.|3| |2|.| |.|2| |1|.| |.|1| |.|.|.|
+--+ +--+ +--+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+-+

Examples

			Square array A(n,k) begins:
   1,   1,  1,  1,  1,  1,  ...
   1,   1,  0,  0,  0,  0,  ...
   2,   3,  1,  0,  0,  0,  ...
   5,  10,  3,  1,  0,  0,  ...
  15,  41,  9,  4,  1,  0,  ...
  52, 196, 40, 10,  5,  1,  ...
		

Crossrefs

A(2n,n) gives A029651.

Programs

  • Maple
    exptr:= proc(p) local g; g:=
              proc(n) option remember; `if`(n=0, 1,
                 add(binomial(n-1, j-1) *p(j) *g(n-j), j=1..n))
            end: end:
    A:= (n,k)-> exptr(i-> binomial(i, k))(n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    Exptr[p_] := Module[{g}, g[n_] := g[n] = If[n == 0, 1, Sum[Binomial[n-1, j-1] *p[j]*g[n-j], {j, 1, n}]]; g]; A[n_, k_] := Exptr[Function[i, Binomial[i, k]]][n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
      ary
    end
    def A145460(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A145460(20) # Seiichi Manyama, Sep 28 2017

Formula

A(0,k) = 1 and A(n,k) = Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0. - Seiichi Manyama, Sep 28 2017

A216857 Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} that have a fixed point summed over all subsets.

Original entry on oeis.org

0, 1, 4, 24, 224, 2880, 47232, 942592, 22171648, 600698880, 18422374400, 630897721344, 23864653578240, 988197253808128, 44460603225407488, 2159714024218951680, 112652924603290615808, 6280048587936003784704, 372616014329572403183616, 23445082059018189741752320, 1559275240299007139066675200
Offset: 0

Views

Author

Geoffrey Critzer, Sep 17 2012

Keywords

Comments

Essentially the same as A038049.
Also the number of rooted trees whose nodes are labeled with the blocks of a set partition of {1,2,...,n} each having a distinguished element. (See A000248.)
The bijection is straightforward. The trees correspond to functional digraphs mapping the distinguished elements towards the root. All the elements within each block are mapped to the distinguished element of that block. The distinguished element in the root node is the fixed point.

Crossrefs

Programs

  • Mathematica
    With[{nmax = 20}, CoefficientList[Series[-LambertW[-x*Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!] (* modified by G. C. Greubel, Nov 15 2017 *)
  • PARI
    for(n=0,30, print1(sum(k=1,n, binomial(n,k)*k^(n-1)), ", ")) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(serlaplace(-lambertw(-x*exp(x))))) \\ G. C. Greubel, Nov 15 2017

Formula

E.g.f.: T(x*exp(x)) where T(x) is the e.g.f. for A000169.
a(n) = Sum_{k=1..n} binomial(n,k)*k^(n-1).
a(n) ~ sqrt(1+LambertW(exp(-1))) * n^(n-1) / (exp(n)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Jul 09 2013
O.g.f.: Sum_{n>=0} n^(n-1)* x^n / (1 - n*x)^(n+1). - Paul D. Hanna, May 22 2018
E.g.f.: the compositional inverse of A(x) is -A(-x). - Alexander Burstein, Aug 11 2018

A000951 Number of forests with n nodes and height at most 4.

Original entry on oeis.org

1, 3, 16, 125, 1296, 16087, 229384, 3687609, 66025360, 1303751051, 28151798544, 659841763957, 16681231615816, 452357366282655, 13095632549137576, 403040561722348913, 13138626717852194976, 452179922268565180819, 16381932383826669204640
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A210725. - Alois P. Heinz, Mar 15 2013

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[Exp[x*Exp[x*Exp[x*Exp[x*Exp[x]]]]], {x, 0, nn}], x] (* T. D. Noe, Jun 21 2012 *)

Formula

E.g.f.: exp(x*exp(x*exp(x*exp(x*exp(x))))).

Extensions

More terms from Vladeta Jovovic, Apr 07 2001

A143398 Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains k labels, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 10, 3, 1, 0, 41, 9, 4, 1, 0, 196, 40, 10, 5, 1, 0, 1057, 210, 30, 15, 6, 1, 0, 6322, 1176, 175, 35, 21, 7, 1, 0, 41393, 7273, 1176, 105, 56, 28, 8, 1, 0, 293608, 49932, 7084, 756, 126, 84, 36, 9, 1, 0, 2237921, 372060, 42120, 6510, 378, 210, 120, 45, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Examples

			T(4,2) = 9: 3->{1,2}<-4, 2->{1,3}<-4, 2->{1,4}<-3, 1->{2,3}<-4, 1->{2,4}<-3, 1->{3,4}<-2, {1,2}{3,4}, {1,3}{2,4}, {1,4}{2,3}.
Triangle begins:
  1;
  0,   1;
  0,   3,  1;
  0,  10,  3,  1;
  0,  41,  9,  4,  1;
  0, 196, 40, 10,  5,  1;
  ...
		

Crossrefs

Main diagonal gives A000012.
Row sums give A143406.
T(2n,n) gives A029651.

Programs

  • Maple
    u:= (n, k)-> `if`(k=0, 0, floor(n/k)):
    T:= (n, k)-> n! *add(i^(n-k*i)/ ((n-k*i)! *i! *k!^i), i=0..u(n, k)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    t[n_, n_] = 1; t[, 0] = 0; t[n, k_] := n!*Sum[i^(n-k*i)/((n-k*i)!*i!*k!^i), {i, 0, n/k}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)
  • PARI
    u(n,k) = if(k==0, 0, n\k);
    T(n, k) = n!*sum(j=0, u(n, k), j^(n-k*j)/(k!^j*j!*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022

Formula

T(n,k) = n! * Sum_{i=0..u(n,k)} i^(n-k*i)/((n-k*i)!*i!*k!^i) with u(n,k) = 0 if k=0 and u(n,k) = floor(n/k) else.

A216507 E.g.f. exp( x^2 * exp(x) ).

Original entry on oeis.org

1, 0, 2, 6, 24, 140, 870, 5922, 45416, 381096, 3442410, 33382910, 345803172, 3801763836, 44156760830, 539962736250, 6929042527920, 93032248209872, 1303556965679826, 19018807375195638, 288341417011487420, 4534168069704168420, 73829219253218066022, 1242905562198878544626
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Column k=2 of A292978.
Cf. A216688 (e.g.f. exp(x*exp(x^2))), A216689 (e.g.f. exp(x*exp(x)^2)).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x^2 Exp[x]], {x, 0, nn}],
       x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x^2 * exp(x) )))
    /* Joerg Arndt, Sep 14 2012 */

Formula

From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(n*(1+r)/(2+r)) * r^n * sqrt((1+r)*(4+r)/(2+r))), where r is the root of the equation r^2*(2+r)*exp(r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(n^(1/3)/3))) / (3*LambertW(n^(1/3)/3)).
(End)
a(n) = Sum_{k = 0..n/2} C(n,2*k) * ((2*k)!/k!) * k^(n-2*k). - David Einstein, Oct 30 2016

A245501 Number A(n,k) of endofunctions f on [n] such that f^k(i) = f(i) for all i in [n]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 10, 256, 1, 1, 1, 3, 19, 41, 3125, 1, 1, 1, 4, 12, 110, 196, 46656, 1, 1, 1, 3, 19, 73, 751, 1057, 823543, 1, 1, 1, 4, 10, 116, 556, 5902, 6322, 16777216, 1, 1, 1, 3, 21, 41, 901, 4737, 52165, 41393, 387420489, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 24 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,     1,    1,    1,    1,    1,    1, ...
  1,     1,    1,    1,    1,    1,    1, ...
  1,     4,    3,    4,    3,    4,    3, ...
  1,    27,   10,   19,   12,   19,   10, ...
  1,   256,   41,  110,   73,  116,   41, ...
  1,  3125,  196,  751,  556,  901,  220, ...
  1, 46656, 1057, 5902, 4737, 8422, 1921, ...
		

Crossrefs

Main diagonal gives A245507.

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> `if`(k=0, 1, `if`(k=1, n^n, n! *coeff(series(
        exp(add((x*exp(x))^d/d, d=divisors(k-1))), x, n+1), x, n))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[0, 1] = 1; A[n_, k_] := If[k==0, 1, If[k==1, n^n, n!*SeriesCoefficient[ Exp[ DivisorSum[k-1, (x*Exp[x])^#/#&]], {x, 0, n}]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

Formula

A(n,k) = n! * [x^n] exp(Sum_{d|(k-1)} (x*exp(x))^d/d) for k>1, A(n,0)=1, A(n,1)=n^n.

A279636 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the exponential transform of the k-th powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 5, 10, 15, 1, 1, 9, 22, 41, 52, 1, 1, 17, 52, 125, 196, 203, 1, 1, 33, 130, 413, 836, 1057, 877, 1, 1, 65, 340, 1445, 3916, 6277, 6322, 4140, 1, 1, 129, 922, 5261, 19676, 41077, 52396, 41393, 21147, 1, 1, 257, 2572, 19685, 104116, 288517, 481384, 479593, 293608, 115975
Offset: 0

Views

Author

Alois P. Heinz, Dec 16 2016

Keywords

Examples

			Square array A(n,k) begins:
:   1,    1,    1,     1,      1,       1,        1, ...
:   1,    1,    1,     1,      1,       1,        1, ...
:   2,    3,    5,     9,     17,      33,       65, ...
:   5,   10,   22,    52,    130,     340,      922, ...
:  15,   41,  125,   413,   1445,    5261,    19685, ...
:  52,  196,  836,  3916,  19676,  104116,   572036, ...
: 203, 1057, 6277, 41077, 288517, 2133397, 16379797, ...
		

Crossrefs

Rows n=0+1,2 give: A000012, A000051.
Main diagonal gives A279644.
Cf. A145460.

Programs

  • Maple
    egf:= k-> exp(exp(x)*add(Stirling2(k, j)*x^j, j=0..k)-`if`(k=0, 1, 0)):
    A:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*j^k*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[Binomial[n-1, j-1]*j^k*A[n-j, k], {j, 1, n}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

E.g.f. of column k: exp(exp(x)*(Sum_{j=0..k} Stirling2(n,j)*x^j) - delta_{0,k}).

A216689 Expansion of e.g.f. exp( x * exp(x)^2 ).

Original entry on oeis.org

1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
Offset: 0

Views

Author

Joerg Arndt, Sep 14 2012

Keywords

Crossrefs

Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).
Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).

Programs

  • Mathematica
    With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
  • PARI
    x='x+O('x^66);
    Vec(serlaplace(exp( x * exp(x)^2 )))
    /* Joerg Arndt, Sep 14 2012 */
    
  • PARI
    /* From o.g.f.: */
    {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
    for(n=0,25,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */
    
  • PARI
    /* From binomial sum: */
    {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
    for(n=0,30,print1(a(n),", ")) /* Paul D. Hanna, Aug 02 2014 */

Formula

O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)
Previous Showing 11-20 of 105 results. Next