cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 178 results. Next

A052517 Number of ordered pairs of cycles over all n-permutations having two cycles.

Original entry on oeis.org

0, 0, 2, 6, 22, 100, 548, 3528, 26136, 219168, 2053152, 21257280, 241087680, 2972885760, 39605518080, 566931294720, 8678326003200, 141468564787200, 2446811181158400, 44753976117043200, 863130293635276800
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is a function of the harmonic numbers. If we discard the first term and set a(0)=0, a(1)=2..then a(n) = 2n!*h(n) where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Aug 04 2010
a(n+1) is twice the sum over all permutations of the number of its cycles (fixed points included). - Olivier Gérard, Oct 23 2012
In a game where n differently numbered cards are drawn in a random sequence, and a point is earned every time the newest card is either the highest or the lowest yet drawn (the first card gets two points as it is both the highest and the lowest), the expected number of points earned is a(n+1)/n!, for instance if n=3, there are two ways of getting 3 points and four ways of getting 4 points, giving an average of 22/6 = 3 2/3. - Elliott Line, Mar 19 2020

Examples

			a(3)=6 because we have the ordered pairs of cycles: ((1)(23)), ((23)(1)), ((2)(13)), ((13)(2)), ((3)(12)), ((12)(3)). - _Geoffrey Critzer_, Jun 13 2013
G.f. = 2*x^2 + 6*x^3 + 22*x^4 + 100*x^5 + 548*x^6 + 3528*x^7 + ...
		

References

  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 30.

Crossrefs

Equals 2 * A000254(n+1), n>0.
Equals, for n=>2, the second right hand column of A028421.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(1-x)^2 )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 13 2019
    
  • Maple
    pairsspec := [S,{S=Prod(B,B),B=Cycle(Z)},labeled]: seq(combstruct[count](pairsspec,size=n), n=0..20); # Typos fixed by Johannes W. Meijer, Oct 16 2009
  • Mathematica
    Flatten[{0,Table[(n+1)!*Sum[1/(k*(n+1-k)),{k,1,n}],{n,0,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)
    With[{m = 25}, CoefficientList[Series[Log[1-x]^2, {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, May 13 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=1, n-1, 1 / (k * (n - k))))};
    
  • Sage
    m = 25; T = taylor(log(1-x)^2, x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

E.g.f.: (log(1 - x))^2. - Michael Somos, Feb 05 2004
a(n) ~ 2*(n-1)!*log(n)*(1+gamma/log(n)), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 08 2012
a(n) = Sum_{k=1..n-1} 2*k*|S1(n-1,k)| = 2*|S1(n,2)|. - Olivier Gérard, Oct 23 2012
0 = a(n) * n^2 - a(n+1) * (2*n+1) + a(n+2) for all n in Z. - Michael Somos, Apr 23 2014
0 = a(n)*(a(n+1) - 7*a(n+2) + 6*a(n+3) - a(n+4)) + a(n+1)*(a(n+1) - 6*a(n+2) + 4*a(n+3)) + a(n+2)*(-3*a(n+2)) if n>0. - Michael Somos, Apr 23 2014
For n>=2, a(n) = (n-2)! * Sum_{i=1..n-1} Sum_{j=1..n-1} (i+j)/(i*j). - Pedro Caceres, Feb 14 2021

Extensions

Name improved by Geoffrey Critzer, Jun 13 2013

A025527 a(n) = n!/lcm{1,2,...,n} = (n-1)!/lcm{C(n-1,0), C(n-1,1), ..., C(n-1,n-1)}.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 522547200, 522547200, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

a(n) = a(n-1) iff n is prime. Thus a(1)=a(2)=a(3)=1 is the only triple in this sequence. - Franz Vrabec, Sep 10 2005
a(k) = a(k+1) for k in A006093. - Lekraj Beedassy, Aug 03 2006
Partial products of A048671. - Peter Luschny, Sep 09 2009

Examples

			a(5) = 2 as 5!/lcm(1..5) = 120/60 = 2.
		

Crossrefs

Programs

Formula

a(n) = A000142(n)/A003418(n) = A000254(n)/A025529(n). - Franz Vrabec, Sep 13 2005
log a(n) = n log n - 2n + O(n/log^4 n). (The error term can be improved. On the Riemann Hypothesis it is O(n^k) for any k > 1/2.) - Charles R Greathouse IV, Oct 16 2012
a(n) = A205957(n), 1 <= n <= 11. - Daniel Forgues, Apr 22 2014
Conjecture: a(A006093(n)) = phi(A000142(A006093(n))) / phi(A003418(A006093(n))), where phi is the Euler totient function. - Fred Daniel Kline, Jun 03 2017

A000454 Unsigned Stirling numbers of first kind s(n,4).

Original entry on oeis.org

1, 10, 85, 735, 6769, 67284, 723680, 8409500, 105258076, 1414014888, 20313753096, 310989260400, 5056995703824, 87077748875904, 1583313975727488, 30321254007719424, 610116075740491776
Offset: 4

Views

Author

Keywords

Comments

Number of permutations of n elements with exactly 4 cycles.
The asymptotic expansion of the higher order exponential integral E(x, m=4, n=1) ~ exp(-x)/x^4*(1 - 10/x + 85/x^2 - 735/x^3 + 6769/x^4 - ...) leads to the sequence given above. See A163931 and A163932 for more information. - Johannes W. Meijer, Jun 11 2016

Examples

			(-log(1-x))^4 = x^4 + 2*x^5 + (17/6)*x^6 + (7/2)*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 217.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation) [From Shanzhen Gao, Sep 14 2010] [Apparently unpublished as of June 2016]

Crossrefs

Programs

  • Mathematica
    Abs[StirlingS1[Range[4,20],4]] (* Harvey P. Dale, Aug 26 2011 *)
  • PARI
    for(n=3,50,print1(polcoeff(prod(i=1,n,x+i),3,x),","))
    
  • Sage
    [stirling_number1(i,4) for i in range(4,22)] # Zerinvary Lajos, Jun 27 2008

Formula

Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^3; or a(n) = P'''(n-1,0)/3!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 4]
E.g.f.: (-log(1-x))^4/4!. [Corrected by Joerg Arndt, Oct 05 2009]
a(n) is coefficient of x^(n+4) in (-log(1-x))^4, multiplied by (n+4)!/4!.
a(n) = (h(n-1, 1)^3 - 3*h(n-1, 1)*h(n-1, 2) + 2*h(n-1, 3))*(n-1)!/3!, where h(n, r) = Sum_{i=1..n} 1/i^r. - Klaus Strassburger, 2000
a(n) = det(|S(i+4,j+3)|, 1 <= i,j <= n-4), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
a(n) = y(n)*n!/24, where y(0) = y(1) = y(2) = y(3) = 0, y(4) = 1 and n^4*y(n) + (-1-5*n-10*n^2-10*n^3-4*n^4)*y(n+1) + (1+n)*(2+n)*(7+12*n+6*n^2)*y(n+2) - 2*(1+n)*(2+n)*(3+n)*(3+2*n)*y(3+n) + (1+n)*(2+n)*(3+n)*(4+n)*y(n+4) = 0. - Benedict W. J. Irwin, Jul 12 2016
From Vaclav Kotesovec, Jul 12 2016: (Start)
a(n) = 2*(2*n - 5)*a(n-1) - (6*n^2 - 36*n + 55)*a(n-2) + (2*n - 7)*(2*n^2 - 14*n + 25)*a(n-3) - (n-4)^4*a(n-4).
a(n) ~ n! * (log(n))^3 / (6*n) * (1 + 3*gamma/log(n) + (3*gamma^2 - Pi^2/2)/ (log(n))^2), where gamma is the Euler-Mascheroni constant A001620. (End)
From Petros Hadjicostas, Jun 29 2020: (Start)
a(n) = A000399(n-1) + (n-1)*a(n-1) for n >= 1 (assuming a(n) = 0 for n = 0..3).
a(n) = A103719(n-4) + (n-2)*a(n-1) for n >= 4.
a(n) = A000254(n-3) + (2*n-3)*a(n-1) - (n-2)^2*a(n-2) for n >= 3.
a(n) = (n-4)! + 3*(n-2)*a(n-1) - (3*n^2-15*n+19)*a(n-2) + (n-3)^3*a(n-3) for n >= 4. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 18 2000

A000482 Unsigned Stirling numbers of first kind s(n,5).

Original entry on oeis.org

1, 15, 175, 1960, 22449, 269325, 3416930, 45995730, 657206836, 9957703756, 159721605680, 2706813345600, 48366009233424, 909299905844112, 17950712280921504, 371384787345228000, 8037811822645051776, 181664979520697076096, 4280722865357147142912, 105005310755917452984576
Offset: 5

Views

Author

Keywords

Comments

Number of permutations of n elements with exactly 5 cycles.
Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^4; or a(n) = P''''(n-1,0)/4! - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset of 5]
The asymptotic expansion of the higher order exponential integral E(x,m=5,n=1) ~ exp(-x)/x^5*(1 - 15/x + 175/x^2 - 1960/x^3 + 22449/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

Examples

			(-log(1-x))^5 = x^5 + 5/2*x^6 + 25/6*x^7 + 35/6*x^8 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Shanzhen Gao, Permutations with Restricted Structure (in preparation) [Shanzhen Gao, Sep 14 2010]

Crossrefs

Programs

  • Mathematica
    Abs[StirlingS1[Range[5,30],5]] (* Harvey P. Dale, May 26 2014 *)
  • PARI
    for(n=4,50,print1(polcoeff(prod(i=1,n,x+i),4,x),","))
    
  • Sage
    [stirling_number1(i,5) for i in range(5,22)] # Zerinvary Lajos, Jun 27 2008

Formula

E.g.f.: (-log(1-x))^5/5!. [Corrected by Joerg Arndt, Oct 05 2009]
a(n) is coefficient of x^(n+5) in (-log(1-x))^5, multiplied by (n+5)!/5!.
a(n) = det(|S(i+5,j+4)|, 1 <= i,j <= n-5), where S(n,k) are Stirling numbers of the second kind. [Mircea Merca, Apr 06 2013]
a(n) = 5*(n-3)*a(n-1) - 5*(2*n^2 - 14*n + 25)*a(n-2) + 5*(n-4)*(2*n^2 - 16*n + 33)*a(n-3) - (5*n^4 - 90*n^3 + 610*n^2 - 1845*n + 2101)*a(n-4) + (n-5)^5*a(n-5). - Vaclav Kotesovec, Feb 24 2025

A056792 Minimal number of steps to get from 0 to n by (a) adding 1 or (b) multiplying by 2.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 9, 8, 9, 9, 10, 7, 8, 8, 9, 8, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 11, 7, 8, 8, 9, 8, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 11, 8, 9, 9, 10, 9, 10, 10, 11, 9, 10, 10, 11, 10, 11
Offset: 0

Views

Author

N. J. A. Sloane, Sep 01 2000

Keywords

Comments

A stopping problem: begin with n and at each stage if even divide by 2 or if odd subtract 1. That is, iterate A029578 while nonzero.
From Peter Kagey, Jul 16 2015: (Start)
The number of appearances of n in this sequence is identically A000045(n). Proof:
By application of the formula,
"a(0) = 0, a(2*n+1) = a(2*n) + 1 and a(2*n) = a(n) + 1",
it can be seen that:
{i: a(i) = n} = {2*i: a(i) = n-1, n>0} U {2*i+1: a(i) = n-2, n>1}.
Because the two sets on the left hand side share no elements:
|{i: a(i) = n}| = |{i: a(i) = n-1, n>0}| + |{i: a(i) = n-2, n>1}|
Notice that
|{i : a(i) = 1}| = |{1}| = 1 = A000045(1) and
|{i : a(i) = 2}| = |{2}| = 1 = A000045(2).
Therefore the number of appearances of n in this sequence is A000045(n). (End)

Examples

			12 = 1100 in binary, so a(12)=2+4-1=5.
		

Crossrefs

Equals A056791 - 1. The least inverse (indices of record values) of A056792 is A052955 prepended with 0. See also A014701, A115954, A056796, A056817.
Cf. A000120, A070939, A007088: base 2 sequences.
Analogous sequences with a different multiplier k: A061282 (k=3), A260112 (k=4).

Programs

  • Haskell
    c i = if i `mod` 2 == 0 then i `div` 2 else i - 1
    b 0 foldCount = foldCount
    b sheetCount foldCount = b (c sheetCount) (foldCount + 1)
    a056792 n = b n 0 -- Peter Kagey, Sep 02 2015
  • Maple
    a:= n-> (l-> nops(l)+add(i, i=l)-1)(convert(n, base, 2)):
    seq(a(n), n=0..105);  # Alois P. Heinz, Jul 16 2015
  • Mathematica
    f[ n_Integer ] := (c = 0; k = n; While[ k != 0, If[ EvenQ[ k ], k /= 2, k-- ]; c++ ]; c); Table[ f[ n ], {n, 0, 100} ]
    f[n_] := Floor@ Log2@ n + DigitCount[n, 2, 1]; Array[f, 100] (* Robert G. Wilson v, Jul 31 2012 *)
  • PARI
    a(n)=if(n<1,0,n-valuation(n!*sum(i=1,n,1/i),2))
    
  • PARI
    a(n)=if(n<1,0,1+a(if(n%2,n-1,n/2)))
    
  • PARI
    a(n)=if(n<1,0,n=binary(n);sum(i=1,#n,n[i])+#n-1) \\ Charles R Greathouse IV, Apr 11 2012
    

Formula

a(0) = 0, a(2*n+1) = a(2*n) + 1 and a(2*n) = a(n) + 1.
a(n) = n-valuation(A000254(n), 2) for n>0. - Benoit Cloitre, Mar 09 2004
a(n) = A000120(n) + A070939(n) - 1. - Michel Marcus, Jul 17 2015
a(n) = (weight of binary expansion of n) + (length of binary expansion of n) - 1.

Extensions

More terms from James Sellers, Sep 06 2000
More terms from David W. Wilson, Sep 07 2000

A001721 Generalized Stirling numbers.

Original entry on oeis.org

1, 11, 107, 1066, 11274, 127860, 1557660, 20355120, 284574960, 4243508640, 67285058400, 1131047366400, 20099588140800, 376612896038400, 7422410595801600, 153516757766400000, 3325222830101760000, 75283691519393280000, 1778358268603445760000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=5) ~ exp(-x)/x^2*(1 - 11/x + 107/x^2 - 1066/x^3 + 11274/x^4 - 127860/x^5 + 1557660/x^6 - ... ) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Related to n!*(the k-th successive summation of the harmonic numbers): k=0..A000254, k=1..A001705,k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564.

Programs

  • Mathematica
    f[k_] := k + 4; t[n_] := Table[f[k], {k, 1, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 1, 16}] (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(k+1, 1)*5^k*Stirling1(n+1, k+1). - Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004
a(n) = n!*Sum_{k=0..n-1} (-1)^k*binomial(-5,k)/(n-k). - Milan Janjic, Dec 14 2008
a(n) = n!*[4]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. With offset 1. - Gary Detlefs, Jan 04 2011
E.g.f.: (1 + 5*log(1/(1-x)))/(1 - x)^6. - Ilya Gutkovskiy, Jan 23 2017

Extensions

More terms from Borislav Crstici (bcrstici(AT)etv.utt.ro), Jan 26 2004

A004041 Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).

Original entry on oeis.org

1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, 15188465029114325025, 537928935889764226500
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

n-th elementary symmetric function of the first n+1 odd positive integers.
Also the determinant of the n X n matrix given by m(i,j) = 2*i + 2 = if i = j and otherwise 1. For example, Det[{{4, 1, 1, 1, 1, 1}, {1, 6, 1, 1, 1, 1}, {1, 1, 8, 1, 1, 1}, {1, 1, 1, 10, 1, 1}, {1, 1, 1, 1, 12, 1}, {1, 1, 1, 1, 1, 14}}] = 264207 = a(6). - John M. Campbell, May 20 2011

Examples

			(arctanh(x))^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
		

Crossrefs

Cf. A002428.
From Johannes W. Meijer, Jun 08 2009: (Start)
Equals second left hand column of A028338 triangle.
Equals second right hand column of A109692 triangle.
Equals second left hand column of A161198 triangle divided by 2.
(End)

Programs

  • Mathematica
    Table[(-1)^(n + 1)* Sum[(-2)^(n - k) k (-1)^(n - k) StirlingS1[n + 1, k + 1], {k, 0, n}], {n, 1, 18}] (* Zerinvary Lajos, Jul 08 2009 *)
    FunctionExpand@Table[(2 n + 1)!! (Log[4] + HarmonicNumber[n + 1/2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 13 2016 *)

Formula

a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
a(n) is coefficient of x^(2*n+2) in (arctanh x)^2, multiplied by (n + 1)*(2*n + 1)!!.
a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 1, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
a(n) ~ 2^(1/2)*log(n)*n*(2n/e)^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: 1/2*(1 - 2*x)^(-3/2)*(2 - log(1 - 2*x)). - Vladeta Jovovic, Feb 19 2003
Sum_{n>=1} a(n-1)/(n!*n*2^n) = (Pi/2)^2. - Philippe Deléham, Aug 12 2003
For n >= 1, a(n-1) = 2^(n-1)*n!*(Sum_{k=0..n-1} (-1)^k*binomial(1/2, k)/(n - k)). - Milan Janjic, Dec 14 2008
Recurrence: a(n) = 4*n*a(n-1) - (2*n - 1)^2*a(n-2). - Vladimir Reshetnikov, Oct 13 2016

A051524 Second unsigned column of triangle A051338.

Original entry on oeis.org

0, 1, 13, 146, 1650, 19524, 245004, 3272688, 46536624, 703404576, 11277554400, 191338156800, 3427105248000, 64651956364800, 1281740285145600, 26648514872985600, 579892995734169600, 13183403757582643200
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=6) ~ exp(-x)/x^2*(1 - 13/x + 146/x^2 - 1650/x^3 + 19524/x^4 - 245004/x^5 + 3272688/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S.: see reference given for triangle A051338.

Crossrefs

Cf. A001725 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs, Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 5; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051338(n, 1)*(-1)^(n-1);
E.g.f.: -log(1-x)/(1-x)^6.
For n>=1, a(n) = n!*Sum_{k=0..n-1} (-1)^k*binomial(-6,k)/(n-k). - Milan Janjic, Dec 14 2008
a(n) = n!*[5]h(n), where [k]h(n) denotes the k-th successive summation of h(n) from 0 to n. - Gary Detlefs, Jan 04 2011
Conjecture: a(n) +(-2*n-9)*a(n-1) +(n+4)^2*a(n-2)=0. - R. J. Mathar, Aug 04 2013

A051545 Second unsigned column of triangle A051339.

Original entry on oeis.org

0, 1, 15, 191, 2414, 31594, 434568, 6314664, 97053936, 1576890000, 27046454400, 488849155200, 9293295110400, 185464792800000, 3878247384345600, 84822225638169600, 1937048605944883200, 46113230058645657600
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=7) ~ exp(-x)/x^2*(1 - 15/x + 191/x^2 - 2414/x^3 + 31594/x^4 - 434568/x^5 + 6314664/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051339.

Crossrefs

Cf. A001730 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..(this sequence), k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs, Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 6; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051339(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^7.
a(n) = n!*Sum_{k=0,..,n-1}((-1)^k*binomial(-7,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[6]h(n), where [k]h(n) denotes the k-th successive summation of The harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011

A051560 Second unsigned column of triangle A051379.

Original entry on oeis.org

0, 1, 17, 242, 3382, 48504, 725592, 11393808, 188204400, 3270729600, 59753750400, 1146140409600, 23046980025600, 485075533132800, 10669304848204800, 244861798361241600, 5854837379724748800
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=8) ~ exp(-x)/x^2*(1 - 17/x + 242/x^2 - 3382/x^3 + 48504/x^4 - 725592/x^5 + 11393808/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051379.

Crossrefs

Cf. A049388 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 7; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051379(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^8.
a(n) = n!*Sum_{k=0..n-1} ((-1)^k*binomial(-8,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[7]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011
Conjecture: a(n) +(-2*n-13)*a(n-1) +(n+6)^2*a(n-2)=0. - R. J. Mathar, Aug 04 2013
Previous Showing 21-30 of 178 results. Next