cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 161 results. Next

A338966 Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.

Original entry on oeis.org

92307499707128546879177569498768, 124792381938502167387269721273817892704188259502965515, 122697712831832245109951209382504597654581237223625701047064169830144
Offset: 2

Views

Author

Robert A. Russell, Dec 04 2020

Keywords

Comments

Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide formulas here.
For the 600 facets of the 600-cell (vertices of the 120-cell), the formula is (960*n^20 + 1440*n^30 + 960*n^40 + 1200*n^50 - 816*n^60 - 1440*n^66 + 40*n^100 - 800*n^104 - 1200*n^114 + 624*n^120 + 60*n^150 - 1800*n^152 + 40*n^200 + 400*n^208 - 59*n^300 + 450*n^302 - 60*n^330 + n^600) / 14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the formula is (960 n^24 + 1440 n^36 + 960 n^48 + 1200 n^60 + 336 n^72 - 1152 n^76 - 1440 n^84 - 760 n^120 - 1200 n^132 + 336 n^144 + 288 n^152 + 60 n^180 - 1800 n^182 + 440 n^240 - 59 n^360 + 450 n^364 - 60 n^396 + n^720) / 14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the formula is (960*n^40 + 1440*n^60 + 960*n^80 + 1200*n^100 - 816*n^120 - 1440*n^128 + 40*n^200 - 800*n^202 - 1200*n^216 + 624*n^240 + 60*n^300 - 1800*n^302 + 40*n^400 + 400*n^404 - 59*n^600 + 450*n^604 - 60*n^640 + n^1200) / 14400.

Crossrefs

Cf. A338964 (oriented), A338965 (unoriented), A338967 (achiral), A338982 (exactly n colors), A000389 (5-cell), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell).

Programs

  • Mathematica
    Table[(960n^4 +1440n^6 +960n^8 +1200n^10 +336n^12 +288n^16 -1440n^17 -1440n^19 +40n^20 +400n^22 -1200n^23 +336n^24 -1200n^27 +60n^30 -1800n^31 +288n^32 +40n^40 +400n^44 +n^60 -60n^61 +450n^62 -60n^75 +n^120)/14400, {n,2,10}]

Formula

a(n) = (960*n^4 + 1440*n^6 + 960*n^8 + 1200*n^10 + 336*n^12 + 288*n^16 - 1440*n^17 - 1440*n^19 + 40*n^20 + 400*n^22 - 1200*n^23 + 336*n^24 - 1200*n^27 + 60*n^30 - 1800*n^31 + 288*n^32 + 40*n^40 + 400*n^44 + n^60 - 60*n^61 + 450*n^62 - 60*n^75 + n^120) / 14400.
a(n) = Sum_{j=2..Min(n,120)} A338982(n) * binomial(n,j).
a(n) = A338964(n) - A338965(n) =(A338964(n) - A338967(n)) / 2 = A338965(n) - A338967(n).

A000574 Coefficient of x^5 in expansion of (1 + x + x^2)^n.

Original entry on oeis.org

3, 16, 51, 126, 266, 504, 882, 1452, 2277, 3432, 5005, 7098, 9828, 13328, 17748, 23256, 30039, 38304, 48279, 60214, 74382, 91080, 110630, 133380, 159705, 190008, 224721, 264306, 309256, 360096, 417384, 481712, 553707, 634032, 723387, 822510
Offset: 3

Views

Author

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=7, a(n-4) is the number of 5-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column m=5 of (1, 3) Pascal triangle A095660.

Programs

  • Magma
    [3*Binomial(n+2,5)-2*Binomial(n+1,5): n in [3..50]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A000574:=-(-3+2*z)/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
    seq(3*binomial(n+2,5)-2*binomial(n+1,5),n=3..100); # Robert Israel, Aug 04 2015
    A000574 := n -> GegenbauerC(`if`(5A000574(n)), n=3..20); # Peter Luschny, May 10 2016
  • Mathematica
    CoefficientList[Series[(3-2*x)/(1-x)^6,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
  • PARI
    x='x+O('x^50); Vec(x^3*(3-2*x)/(1-x)^6) \\ G. C. Greubel, Nov 22 2017

Formula

G.f.: x^3*(3-2*x)/(1-x)^6.
a(n) = 3*binomial(n+2,5) - 2*binomial(n+1,5).
a(n) = A111808(n,5) for n>4. - Reinhard Zumkeller, Aug 17 2005
a(n) = binomial(n+1, 4)*(n+12)/5 = 3*b(n-3)-2*b(n-4), with b(n)=binomial(n+5, 5); cf. A000389.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Vincenzo Librandi, Jun 10 2012
a(n) = 3*binomial(n, 3) + 4*binomial(n, 4) + binomial(n, 5). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 5 if 5Peter Luschny, May 10 2016
a(n) = Sum_{i=1..n-1} A000217(i)*A055998(n-1-i). - Bruno Berselli, Mar 05 2018
E.g.f.: exp(x)*x^3*(60 + 20*x + x^2)/120. - Stefano Spezia, Jul 09 2023

Extensions

More terms from Vladeta Jovovic, Oct 02 2000

A087107 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3).

Original entry on oeis.org

1, 1, 3, 3, 1, 1, 15, 69, 147, 162, 90, 20, 1, 63, 873, 5191, 16620, 31560, 36750, 25830, 10080, 1680, 1, 255, 9489, 130767, 919602, 3832650, 10238000, 18244380, 21990360, 17745000, 9198000, 2772000, 369600, 1, 1023, 97953, 2903071, 40317780
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

Let s_n denote the sequence (1, 4^n, 10^n, 20^n, ...) regarded as an infinite column vector, where 1, 4, 10, 20, ... is the sequence of tetrahedral numbers A000292. It appears that the n-th row of this table is determined by the matrix product P^(-1)s_n, where P denotes Pascal's triangle A007318. - Peter Bala, Nov 26 2017
From Peter Bala, Mar 11 2018: (Start)
The observation above is correct.
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+3,3)^p of degree 3*p in terms of falling factorials: C(x+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(n,k+1).
The sum of the p-th powers of the tetrahedral numbers is also given by Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 3..3*p} A299041(p,k)*C(n+3,k+1) for p >= 1. (End)

Examples

			Row 3 contains 1,15,69,147,162,90,20, so Sum_{i=1..n} C(i+2,3)^3 = 4 * C(n+3,4) * [ a(1,3)/4 + a(2,3)*C(n-1,1)/5 + a(3,3)*C(n-1,2)/6 + ... + a(7,3)*C(n-1,6)/10 ] = 4 * C(n+3,4) * [ 1/4 + 15*C(n-1,1)/5 + 69*C(n-1,2)/6 + 147*C(n-1,3)/7 + 162*C(n-1,4)/8 + 90*C(n-1,5)/9 + 20*C(n-1,6)/10 ]. Cf. A086021 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
n=0 | 1
n=1 | 1  3   3    1
n=2 | 1 15  69  147   162    90    20
n=3 | 1 63 873 5191 16620 31560 36750 25830 10080 1680
...
Row 2: C(i+3,3)^2 = C(i,0) + 15*C(i,1) + 69*C(i,2) + 147*C(i,3) + 162*C(i,4) + 90*C(i,5) + 20*C(i,6). Hence, Sum_{i = 0..n-1} C(i+3,3)^2 =  C(n,1) + 15*C(n,2) + 69*C(n,3) + 147*C(n,4) + 162*C(n,5) + 90*C(n,6) + 20*C(n,7). (End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+3, 3)^n, i= 0..k), k = 0..3*n), n = 0..8); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 4, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 3, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 3*p - 2}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 4, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 3, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 3*p-2, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+4, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+3, i-2*k)^(p-1) ].
From Peter Bala, Nov 26 2017: (Start)
Conjectural formula for table entries: T(n,k) = Sum_{j = 0..k} (-1)^(k+j)*binomial(k,j)*binomial(j+3,3)^n.
Conjecturally, the n-th row polynomial R(n,x) = 1/(1 + x)*Sum_{i >= 0} binomial(i+3,3)^n *(x/(1 + x))^n. (End)
From Peter Bala, Mar 11 2018: (Start)
The conjectures above are correct.
The following remarks assume the row and column indices start at 0.
T(n+1,k) = C(k+3,3)*T(n,k) + 3*C(k+2,3)*T(n,k-1) + 3*C(k+1,3)*T(n,k-2) + C(k,3)*T(n,k-3) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 3*n.
Sum_{k = 0..3*n} T(n,k)*binomial(x,k) = (binomial(x+3,3))^n.
x^3*R(n,x) = (1 + x)^3 * the n-th row polynomial of A299041.
R(n+1,x) = 1/3!*(1 + x)^3*(d/dx)^3 (x^3*R(n,x)).
(1 - x)^(3*n)*R(n,x/(1 - x)) gives the n-th row polynomial of A174266.
R(n,x) = (1 + x)^3 o (1 + x)^3 o ... o (1 + x)^3 (n factors), where o denotes the black diamond product of power series defined in Dukes and White. Note the polynomial x^3 o ... o x^3 (n factors) is the n-th row polynomial of A299041. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A132366 Partial sum of centered tetrahedral numbers A005894.

Original entry on oeis.org

1, 6, 21, 56, 125, 246, 441, 736, 1161, 1750, 2541, 3576, 4901, 6566, 8625, 11136, 14161, 17766, 22021, 27000, 32781, 39446, 47081, 55776, 65625, 76726, 89181, 103096, 118581, 135750, 154721, 175616, 198561, 223686, 251125, 281016, 313501, 348726, 386841
Offset: 0

Views

Author

Jonathan Vos Post, Nov 09 2007

Keywords

Comments

From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) is the number of achiral colorings of the 5 tetrahedral facets (or vertices) of a regular 4-dimensional simplex using n or fewer colors. An achiral arrangement is identical to its reflection. The 4-dimensional simplex is also called a 5-cell or pentachoron. Its Schläfli symbol is {3,3,3}.
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy class of the permutation. The first formula for a(n-1) is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_1x_4^1
32 20 x_2^1x_3^1
2111 10 x_1^3x_2^1 (End)

Crossrefs

Cf. A337895 (oriented), A000389(n+4) (unoriented), A000389 (chiral), A331353 (5-cell edges, faces), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell), A338967 (120-cell, 600-cell).
a(n-1) = A325001(4,n).

Programs

  • Mathematica
    Do[Print[n, " ", (n^4 + 4 n^3 + 11 n^2 + 14 n + 6)/6 ], {n, 0, 10000}]
    Accumulate[Table[(2n+1)(n^2+n+3)/3,{n,0,40}]] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,6,21,56,125},40] (* Harvey P. Dale, Feb 26 2020 *)

Formula

a(n) = (n^4 + 4*n^3 + 11*n^2 + 14*n + 6)/6 = (n^2+2*n+6)*(n+1)^2/6.
G.f.: -(x+1)*(x^2+1) / (x-1)^5. - Colin Barker, May 04 2013
From Robert A. Russell, Oct 09 2020: (Start)
a(n-1) = n^2 * (5 + n^2) / 6.
a(n-1) = binomial(n+4,5) - binomial(n,5) = A000389(n+4) - A000389(n).
a(n-1) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n-1) = 2*A000389(n+4) - A337895(n) = A337895(n) - 2*A000389(n) .
G.f. for a(n-1): x * (x+1) * (x^2+1) / (1-x)^5. (End)
From Amiram Eldar, Feb 14 2023: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/5 + 3/25 - 3*Pi*coth(sqrt(5)*Pi)/(5*sqrt(5)).
Sum_{n>=0} (-1)^n/a(n) = Pi^2/10 - 3/25 + 3*Pi*cosech(sqrt(5)*Pi)/(5*sqrt(5)). (End)
a(n) = A006007(n) + A006007(n+1) = A002415(n) + A002415(n+2). - R. J. Mathar, Jun 05 2025

Extensions

Corrected offset, Mathematica program by Tomas J. Bulka (tbulka(AT)rodincoil.com), Sep 02 2009

A050982 5-idempotent numbers.

Original entry on oeis.org

1, 30, 525, 7000, 78750, 787500, 7218750, 61875000, 502734375, 3910156250, 29326171875, 213281250000, 1510742187500, 10458984375000, 70971679687500, 473144531250000, 3105010986328125, 20091247558593750, 128360748291015625, 810699462890625000
Offset: 5

Views

Author

Keywords

Comments

Number of n-permutations of 6 objects: t,u,v,z,x, y with repetition allowed, containing exactly five u's. Example: a(6)=30 because we have uuuuut, uuuutu, uuutuu, uutuuu, utuuuu, tuuuuu, uuuuuv, uuuuvu, uuuvuu, uuvuuu, uvuuuu, vuuuuu, uuuuuz, uuuuzu, uuuzuu, uuzuuu, uzuuuu, zuuuuu, uuuuux, uuuuxu, uuuxuu, uuxuuu, uxuuuu, xuuuuu, uuuuuy, uuuuyu, uuuyuu, uuyuuu, uyuuuu, yuuuuu. - Zerinvary Lajos, Jun 16 2008

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43.

Crossrefs

Programs

Formula

a(n) = C(n, 5)*5^(n-5).
G.f.: x^5/(1-5*x)^6. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Apr 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 6400*log(5/4) - 17125/12.
Sum_{n>=5} (-1)^(n+1)/a(n) = 32400*log(6/5) - 23625/4. (End)

A087111 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,7). The p-th row (p>=1) contains a(i,p) for i=1 to 7*p-6, where a(i,p) satisfies Sum_{i=1..n} C(i+6,7)^p = 8 * C(n+7,8) * Sum_{i=1..7*p-6} a(i,p) * C(n-1,i-1)/(i+7).

Original entry on oeis.org

1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 63, 1169, 10703, 58821, 214123, 545629, 1004307, 1356194, 1347318, 974862, 500346, 172788, 36036, 3432, 1, 511, 45633, 1589567, 29302889, 333924087, 2577462937, 14287393351, 59159005164, 188008120188
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+7,7)^p of degree 7*p in terms of falling factorials: C(x+7,7)^p = Sum_{k = 0..7*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+7,7)^p = Sum_{k = 0..7*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,63,1169,...,3432, so Sum_{i=1..n} C(i+6,7)^3 = 8 * C(n+7,8) * [ a(1,3)/8 + a(2,3)*C(n-1,1)/9 + a(3,3)*C(n-1,2)/10 + ... + a(15,3)*C(n-1,14)/22 ] = 8 * C(n+7,8) * [ 1/8 + 63*C(n-1,1)/9 + 1169*C(n-1,2)/10 + ... + 3432*C(n-1,14)/22 ]. Cf. A086030 for more details.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+7, 7)^n, i = 0..k), k = 0..7*n), n = 0..4); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 8, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 7, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 7*p - 6}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 8, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 7, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 7*p-6, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+8, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+7, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+7,7)^n. Equivalently, let v_n denote the sequence (1, 8^n, 36^n, 120^n, ...) regarded as an infinite column vector, where 1, 8, 36, 120, ... is the sequence binomial(n+7,7) - see A000580. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..7} C(7,i)*C(k+7-i,7)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 7*n.
n-th row polynomial R(n,x) = (1 + x)^7 o (1 + x)^7 o ... o (1 + x)^7 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/7!*(1 + x)^7 * (d/dx)^7(x^7*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+7,7)^n*x^i/(1 + x)^(i+1).
(End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A128908 Riordan array (1, x/(1-x)^2).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 22 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,2,-1/2,1/2,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Row sums give A088305. - Philippe Deléham, Nov 21 2007
Column k is C(n,2k-1) for k > 0. - Philippe Deléham, Jan 20 2012
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
T is the convolution triangle of the positive integers (see A357368). - Peter Luschny, Oct 19 2022

Examples

			The triangle T(n,k) begins:
   n\k  0    1    2    3    4    5    6    7    8    9   10
   0:   1
   1:   0    1
   2:   0    2    1
   3:   0    3    4    1
   4:   0    4   10    6    1
   5:   0    5   20   21    8    1
   6:   0    6   35   56   36   10    1
   7:   0    7   56  126  120   55   12    1
   8:   0    8   84  252  330  220   78   14    1
   9:   0    9  120  462  792  715  364  105   16    1
  10:   0   10  165  792 1716 2002 1365  560  136   18    1
  ... reformatted by _Wolfdieter Lang_, Jul 31 2017
From _Peter Luschny_, Mar 06 2022: (Start)
The sequence can also be seen as a square array read by upwards antidiagonals.
   1, 1,   1,    1,    1,     1,     1,      1,      1, ...  A000012
   0, 2,   4,    6,    8,    10,    12,     14,     16, ...  A005843
   0, 3,  10,   21,   36,    55,    78,    105,    136, ...  A014105
   0, 4,  20,   56,  120,   220,   364,    560,    816, ...  A002492
   0, 5,  35,  126,  330,   715,  1365,   2380,   3876, ... (A053126)
   0, 6,  56,  252,  792,  2002,  4368,   8568,  15504, ... (A053127)
   0, 7,  84,  462, 1716,  5005, 12376,  27132,  54264, ... (A053128)
   0, 8, 120,  792, 3432, 11440, 31824,  77520, 170544, ... (A053129)
   0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130)
    A27,A292, A389, A580,  A582, A1288, A10966, A10968, A165817       (End)
		

Crossrefs

Cf. A165817 (the main diagonal of the array).

Programs

  • Maple
    # Computing the rows of the array representation:
    S := proc(n,k) option remember;
    if n = k then 1 elif k < 0 or k > n then 0 else
    S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end:
    Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1):
    for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1,2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
    
  • Python
    from functools import cache
    @cache
    def A128908(n, k):
        if n == k: return 1
        if (k <= 0 or k > n): return 0
        return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k)
    for n in range(10):
        print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A128908 = lambda n,k: T(k,n)
    for n in (0..10): print([A128908(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
    

Formula

T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012

A234249 Number of ways to choose 4 points in an n X n X n triangular grid.

Original entry on oeis.org

15, 210, 1365, 5985, 20475, 58905, 148995, 341055, 720720, 1426425, 2672670, 4780230, 8214570, 13633830, 21947850, 34389810, 52602165, 78738660, 115584315, 166695375, 236561325, 330791175, 456326325, 621682425, 837222750, 1115465715, 1471429260, 1923014940
Offset: 3

Views

Author

Heinrich Ludwig, Feb 02 2014

Keywords

Comments

Sequence is column #5 of A084546: a(n) = A084546(n+1, 4).
All elements of the sequence are multiples of 15.
a(n-1) is the number of chiral pairs of colorings of the 8 cubic facets of a tesseract (hypercube) with Schläfli symbol {4,3,3} or of the 8 vertices of a hyperoctahedron with Schläfli symbol {3,3,4}. Both figures are regular 4-D polyhedra and they are mutually dual. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020

Crossrefs

Cf. A084546, A050534 (number of ways to choose 2 points), A093566 (3 points), A231653.
Cf. A337956 (oriented), A337956 (unoriented), A337956 (achiral) colorings, A331356 (hyperoctahedron edges, tesseract faces), A331360 (hyperoctahedron faces, tesseract edges), A337954 (hyperoctahedron facets, tesseract vertices).
Other polychora: A000389 (5-cell), A338950 (24-cell), A338966 (120-cell, 600-cell).
Row 4 of A325006 (orthotope facets, orthoplex vertices).

Programs

  • Maple
    A234249:=n->n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384: seq(A234249(n), n=3..40); # Wesley Ivan Hurt, Jan 10 2017
  • Mathematica
    Table[Binomial[Binomial[n,2],4], {n,4,30}] (* Robert A. Russell, Oct 20 2020 *)
  • PARI
    Vec(-15*x^3*(x^2+5*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 02 2014

Formula

a(n) = n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384.
a(n) = C(C(n + 1, 2), 4).
G.f.: -15*x^3*(x^2+5*x+1) / (x-1)^9. - Colin Barker, Feb 02 2014
From Robert A. Russell, Oct 20 2020: (Start)
a(n-1) = 15*C(n,4) + 135*C(n,5) + 330*C(n,6) + 315*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n-1) = A337956(n) - A337957(n) = (A337956(n) - A337958(n)) / 2 = A337957(n) - A337958(n).
a(n-1) = A325006(4,n). (End)

A242023 Decimal expansion of Sum_{n >= 1} (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)).

Original entry on oeis.org

8, 4, 7, 3, 7, 6, 4, 4, 4, 5, 8, 4, 9, 1, 6, 5, 6, 8, 0, 1, 8, 0, 9, 4, 5, 5, 3, 3, 2, 8, 3, 1, 6, 8, 4, 5, 0, 8, 2, 6, 7, 0, 9, 6, 6, 1, 9, 4, 8, 3, 4, 7, 9, 8, 5, 2, 8, 4, 2, 6, 9, 7, 0, 4, 5, 5, 2, 6, 2, 5, 6, 9, 6, 9
Offset: 0

Views

Author

Richard R. Forberg, Aug 11 2014

Keywords

Comments

Sum of terms of the inverse of Binomial(n,4) or A000332, for n>=4, with alternating signs.
In general the sums of Binomial coefficients of this form appear to have the form m*log(2) - r, where m is an integer and r is rational as below:
For Binomial(n,1): m = 1, r = 0. See A002162.
For Binomial(n,2): m = 4, r = 2. See A000217.
For Binomial(n,3): m = 12 r = 15/2. See A000292.
For Binomial(n,4): m = 32, r = 64/3. See A000332.
For Binomial(n,5): m = 80, r = 655/12. See A000389.
For Binomial(n,6): m = 192, r = 661/5. See A000579.
For Binomial(n,7): m = 448, r = 9289/30. See A000580.
For Binomial(n,8): m = 1024, r = 74432/105. See A000581.
This is generalized as follows:
m grows as A001787(k) = k*2^(k-1) for Binomial(n,k).
r * (k-1)! produces the integer sequence: a(k) = 0, 2, 15, 128, 1310, 15864, 222936, 3572736, where a(k+1)/a(k) approaches 2*k for large k.
Results are precise to 100 digits or more using Mathematica.

Examples

			0.8473764445849165680180945...
		

Crossrefs

Programs

  • Magma
    [32*Log(2) - 64/3]; // G. C. Greubel, Nov 23 2017
  • Mathematica
    Sum[N[(-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)), 150], {n, 1, Infinity}]
    RealDigits[32*Log[2] - 64/3, 10, 50][[1]] (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    32*log(2) - 64/3 \\ Michel Marcus, Aug 13 2014
    
  • PARI
    sumalt(n=1, (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3))) \\ Michel Marcus, Aug 14 2014
    

Formula

Equals 32*log(2) - 64/3.
Equals 32*(A259284-1). - R. J. Mathar, Jun 30 2021

A338949 Number of unoriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

1, 18736, 249563343, 245072692820, 51780391393325, 4114243321427946, 166320182540310771, 4099464588809407728, 69243270244113372390, 868065984969662449300, 8550173137863803682016, 69007957379144017626756
Offset: 1

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.

Crossrefs

Cf. A338948 (oriented), A338950 (chiral), A338951 (achiral), A338953 (edges, faces), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338965 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(96n^2+144n^3+144n^4+140n^6+300n^7+120n^8+36n^9+45n^12+84n^13+18n^14+12n^15+12n^18+n^24)/1152,{n,15}]
    LinearRecurrence[{25,-300,2300,-12650,53130,-177100,480700,-1081575,2042975,-3268760,4457400,-5200300,5200300,-4457400,3268760,-2042975,1081575,-480700,177100,-53130,12650,-2300,300,-25,1},{1,18736,249563343,245072692820,51780391393325,4114243321427946,166320182540310771,4099464588809407728,69243270244113372390,868065984969662449300,8550173137863803682016,69007957379144017626756,471182396311499869193288,2790108355121570273031710,14612960014479438426745050,68774495831757984888966336,294660451484256436406752191,1161683435155207577365494648,4252399462403852518286044405,14563558286595288907896687700,46968928774940328123724865031,143447144215320073513164583826,416884377543198363455158598933,1157756823443195554136397711600,3083952997773835021725260467500},20] (* Harvey P. Dale, Mar 24 2024 *)

Formula

a(n) = (96*n^2 + 144*n^3 + 144*n^4 + 140*n^6 + 300*n^7 + 120*n^8 + 36*n^9 + 45*n^12 + 84*n^13 + 18*n^14 + 12*n^15 + 12*n^18 + n^24) / 1152.
a(n) = 1*C(n,1) + 18734*C(n,2) + 249507138*C(n,3) + 244074551860*C(n,4) + 50557523375300*C(n,5) + 3807232072474470*C(n,6) + 138599298699649830*C(n,7) + 2881219380682352640*C(n,8) + 37996512548398853085*C(n,9) + 341001760994302265550*C(n,10) + 2186424231002014796100*C(n,11) + 10365985337974980021000*C(n,12) + 37236922591331944681200*C(n,13) + 103077062953464218018400*C(n,14) + 222282219864764987928000*C(n,15) + 375541967632270447008000*C(n,16) + 497391180994576316448000*C(n,17) + 513995707397665741248000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A338948(n) - A338950(n) = (A338948(n) + A338951(n)) / 2 = A338950(n) + A338951(n).
Previous Showing 51-60 of 161 results. Next